Skip to main content
Top

2013 | OriginalPaper | Chapter

Data Assimilation in Brain Tumor Models

Authors : Joshua McDaniel, Eric Kostelich, Yang Kuang, John Nagy, Mark C. Preul, Nina Z. Moore, Nikolay L. Matirosyan

Published in: Mathematical Methods and Models in Biomedicine

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A typical problem in applied mathematics and science is to estimate the future state of a dynamical system given its current state. One approach aimed at understanding one or more aspects determining the behavior of the system is mathematical modeling. This method frequently entails formulation of a set of equations, usually a system of partial or ordinary differential equations. Model parameters are then measured from experimental data or estimated from computer simulation or other methods, for example chi-squared parameter optimization as done in[26] or genetic algorithms which are frequently used in neuroscience [33]. Solutions to the model are then studied through mathematical analysis and numerical simulation usually for qualitative fit to the dynamical system of interest and any relative time-series data that is available. While mathematical modeling can provide meaningful insight, it may have limited predictive value due to idealized assumptions underlying the model, measurement error in experimental data and parameters, and chaotic behavior in the system. In this chapter we explore a different approach focused on optimal state estimation given a model and observational data of a biological process, while accounting for the relative uncertainty in both. The case explored here is the growth and spread of glioblastoma multiforme (GBM), a very aggressive form of glioma brain tumor which remains extremely difficult to manage clinically. The method employed is different from other approaches used in biology in that it is independent of the mathematical model and seeks an optimal initial condition. This is in contrast to other techniques such as those discussed in [21], which are model dependent and seek to find an optimal model parameterization given the observations and uncertainties in the system of interest.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
The geopotential, Φ(z), is the work needed to raise a unit mass a vertical distance z from mean sea level and accounts for the variation of the earth’s gravitational field with latitude and elevation. The geopotential height is Φ(z) ∕ g 0, where \({g}_{0} = 9.80665\,{\mbox{ m\,s}}^{-2}\) is the global average of gravitational acceleration at mean sea level. For more details, see Chap.​ 1 of [12].
 
Literature
1.
go back to reference Amberger, V.R., Hensel, T., Ogata, T.N.,and Schwab, M.E.: Spreading and migration of human glioma and rat C6 cells on central nervous system myelin in vitro is correlated with tumor malignancy and involves a metalloproteolytic activity. Cancer Res., 58, 149–158 (1998) Amberger, V.R., Hensel, T., Ogata, T.N.,and Schwab, M.E.: Spreading and migration of human glioma and rat C6 cells on central nervous system myelin in vitro is correlated with tumor malignancy and involves a metalloproteolytic activity. Cancer Res., 58, 149–158 (1998)
3.
go back to reference Clatz, O., Sermesant, M., Bondiau, P.-Y., Delingette, H., Warfield, S.K., Malandian, G., and Ayache, N.: Realistic simulation of the 3d growth of brain tumors in MR images coupling diffusion with biomechanical deformation. IEEE Trans. Med. Imaging, 24, 1334–1346 (2005)CrossRef Clatz, O., Sermesant, M., Bondiau, P.-Y., Delingette, H., Warfield, S.K., Malandian, G., and Ayache, N.: Realistic simulation of the 3d growth of brain tumors in MR images coupling diffusion with biomechanical deformation. IEEE Trans. Med. Imaging, 24, 1334–1346 (2005)CrossRef
4.
go back to reference Cocosco, C.A., Kollokian, V., Kwan, R.K.-S., and Evans, A.C.: BrainWeb: Online Interface to a 3D MRI Simulated Brain Database NeuroImage, vol.5, no.4, part 2/4, S425, 1997 – Proceedings of 3-rd International Conference on Functional Mapping of the Human Brain, Copenhagen, (1997) Cocosco, C.A., Kollokian, V., Kwan, R.K.-S., and Evans, A.C.: BrainWeb: Online Interface to a 3D MRI Simulated Brain Database NeuroImage, vol.5, no.4, part 2/4, S425, 1997 – Proceedings of 3-rd International Conference on Functional Mapping of the Human Brain, Copenhagen, (1997)
5.
go back to reference Collins, D.L., Zijdenbos, A.P., Kollokian, V., Sled, J.G., Kabani, N.J., Holmes, C.J., and Evans, A.C.: Design and Construction of a Realistic Digital Brain Phantom IEEE Transactions on Medical Imaging, vol.17, No.3, p.463–468, (1998) Collins, D.L., Zijdenbos, A.P., Kollokian, V., Sled, J.G., Kabani, N.J., Holmes, C.J., and Evans, A.C.: Design and Construction of a Realistic Digital Brain Phantom IEEE Transactions on Medical Imaging, vol.17, No.3, p.463–468, (1998)
6.
go back to reference Demuth, T. and Berens, M.E.: Molecular mechanisms of glioma cell migration and invasion. J. Neurooncol. 70, 217–228 (2004)CrossRef Demuth, T. and Berens, M.E.: Molecular mechanisms of glioma cell migration and invasion. J. Neurooncol. 70, 217–228 (2004)CrossRef
7.
go back to reference Eikenberry, S.E., Sankar, T., Preul, M.C., Kostelich, E.J., Thalhauser, C.J., and Kuang, Y.: Virtual glioblastoma: growth, migration and treatment in a three-dimensional mathematical model. Cell Prolif. 42, 511–528 (2009)CrossRef Eikenberry, S.E., Sankar, T., Preul, M.C., Kostelich, E.J., Thalhauser, C.J., and Kuang, Y.: Virtual glioblastoma: growth, migration and treatment in a three-dimensional mathematical model. Cell Prolif. 42, 511–528 (2009)CrossRef
8.
go back to reference Evensen, G.:Data Assimilation: The Ensemble Kalman Filter, Springer (2006) Evensen, G.:Data Assimilation: The Ensemble Kalman Filter, Springer (2006)
9.
go back to reference Gelb A. (ed): Appliede Optimal State Estimation. MIT Press, Cambridge, Ma., (1974) Gelb A. (ed): Appliede Optimal State Estimation. MIT Press, Cambridge, Ma., (1974)
10.
go back to reference Grossman, A., Helbich, T.H., Kuriyama, N., Ostrowitzki, S., Roberts, T. P., Shames, D.M., van Bruggen, N., Wendland, M.F., Israel, M.A., and Brasch, R.C.: Dynamic contrast-enhanced magnetic resonance imaging as a surrogate marker of tumor response to anti-angiogenic therapy in a xenograft model of glioblastoma multiforme. J. Magn. Reson. Imaging, 15, 233–240 (2002)CrossRef Grossman, A., Helbich, T.H., Kuriyama, N., Ostrowitzki, S., Roberts, T. P., Shames, D.M., van Bruggen, N., Wendland, M.F., Israel, M.A., and Brasch, R.C.: Dynamic contrast-enhanced magnetic resonance imaging as a surrogate marker of tumor response to anti-angiogenic therapy in a xenograft model of glioblastoma multiforme. J. Magn. Reson. Imaging, 15, 233–240 (2002)CrossRef
11.
go back to reference Hoffman, R.N, Ponte, R.M., Kostelich, E.J., Blumberg, A., Szunyogh, I., Vinogradov, S.V., and Henderson, J.M.: A simulation study using a local ensemble transform Kalman filter for data assimilation in New York Harbor. J. Atmos. Ocean Tech., 25, 1638–1656 (2008) Hoffman, R.N, Ponte, R.M., Kostelich, E.J., Blumberg, A., Szunyogh, I., Vinogradov, S.V., and Henderson, J.M.: A simulation study using a local ensemble transform Kalman filter for data assimilation in New York Harbor. J. Atmos. Ocean Tech., 25, 1638–1656 (2008)
12.
go back to reference Horton, J.R.: An Introduction to dynamic meteorology. 4th ed. Amsterdam: Elsevier Academic Press (2004) Horton, J.R.: An Introduction to dynamic meteorology. 4th ed. Amsterdam: Elsevier Academic Press (2004)
13.
go back to reference Hunt, B.R., Kostelich, E.J., and Szunyogh, I.: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112–126 (2007)MathSciNetMATHCrossRef Hunt, B.R., Kostelich, E.J., and Szunyogh, I.: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112–126 (2007)MathSciNetMATHCrossRef
14.
go back to reference Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME Ser. D: J. Basic Eng., 82, 35–45 (1960)CrossRef Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME Ser. D: J. Basic Eng., 82, 35–45 (1960)CrossRef
15.
go back to reference Kalman, R.E., and Bucy, R.S.: New results in linear filtering and prediction theory. Trans. ASME Ser. D: J. Basic Eng., 83, 95–108 (1961)MathSciNetCrossRef Kalman, R.E., and Bucy, R.S.: New results in linear filtering and prediction theory. Trans. ASME Ser. D: J. Basic Eng., 83, 95–108 (1961)MathSciNetCrossRef
16.
go back to reference Kalnay, E.: Atmospheric modeling, data assimilation, and Predictability. Cambridge University Press (2003) Kalnay, E.: Atmospheric modeling, data assimilation, and Predictability. Cambridge University Press (2003)
17.
go back to reference Kwan, R.K.-S., Evans, A.C., and Pike, G.B.: An Extensible MRI Simulator for Post-Processing Evaluation. Visualization in Biomedical Computing (VBC’96). Lecture Notes in Computer Science, vol. 1131. Springer-Verlag, 135–140 (1996) Kwan, R.K.-S., Evans, A.C., and Pike, G.B.: An Extensible MRI Simulator for Post-Processing Evaluation. Visualization in Biomedical Computing (VBC’96). Lecture Notes in Computer Science, vol. 1131. Springer-Verlag, 135–140 (1996)
18.
go back to reference Kwan, R.K.-S., Evans, A.C., and Pike, G.B.: MRI simulation-based evaluation of image-processing and classification methods IEEE Transactions on Medical Imaging. 18(11), 1085–97 Nov (1999) Kwan, R.K.-S., Evans, A.C., and Pike, G.B.: MRI simulation-based evaluation of image-processing and classification methods IEEE Transactions on Medical Imaging. 18(11), 1085–97 Nov (1999)
19.
go back to reference Lorenz, E.N.: Deterministic non-periodic flow. J. Atmos. Sci., 20, 130–141 (1963)CrossRef Lorenz, E.N.: Deterministic non-periodic flow. J. Atmos. Sci., 20, 130–141 (1963)CrossRef
20.
go back to reference Lorenz, E.N.: A study of the predictability of a 28-variable atmospheric model. Tellus, 17, 321–333 (1965)CrossRef Lorenz, E.N.: A study of the predictability of a 28-variable atmospheric model. Tellus, 17, 321–333 (1965)CrossRef
21.
go back to reference Marino, S., Hogue, I.B., Ray, C.J., and Kirschner, D.E.: A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol., 254, 178-196 (2008)CrossRef Marino, S., Hogue, I.B., Ray, C.J., and Kirschner, D.E.: A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol., 254, 178-196 (2008)CrossRef
22.
go back to reference Mohamed A., and Davatzikos, C.: Finite element modeling of brain tumor mass-effect from 3D medical images. In: Duncan J.S., Gerig, G. (eds) 8th International Conference on Medical Image Computing and Computer Assisted Intervention(MICCAI). Springer, Palm Springs CA 400–408 (2005) Mohamed A., and Davatzikos, C.: Finite element modeling of brain tumor mass-effect from 3D medical images. In: Duncan J.S., Gerig, G. (eds) 8th International Conference on Medical Image Computing and Computer Assisted Intervention(MICCAI). Springer, Palm Springs CA 400–408 (2005)
23.
go back to reference Norden, A.D., and Wen, P.Y.: Glioma therapy in adults. Neurologist. 12, 279–292 (2006)CrossRef Norden, A.D., and Wen, P.Y.: Glioma therapy in adults. Neurologist. 12, 279–292 (2006)CrossRef
24.
go back to reference Patil, D.J., Hunt, B.R., Kalnay, E., Yorke, J.A., and Ott E.: Local low dimensionality of atmospheric dynamics. Phys. Rev. Lett., 86, 5878–5881 (2001)CrossRef Patil, D.J., Hunt, B.R., Kalnay, E., Yorke, J.A., and Ott E.: Local low dimensionality of atmospheric dynamics. Phys. Rev. Lett., 86, 5878–5881 (2001)CrossRef
25.
go back to reference Rijpkema, M., Kaanders, J.H., Joosten, F.B., van der Kogel, A.J., and Heerschap, A.: Method for quantitative mapping of dynamic MRI contrast agent uptake in human tumors. J. Magn. Reson. Imaging, 14, 457–463 (2001)CrossRef Rijpkema, M., Kaanders, J.H., Joosten, F.B., van der Kogel, A.J., and Heerschap, A.: Method for quantitative mapping of dynamic MRI contrast agent uptake in human tumors. J. Magn. Reson. Imaging, 14, 457–463 (2001)CrossRef
26.
go back to reference Stein A.M., Demuth T., Mobley D., Berens M., and Sander L.: A mathematical model of glioblastoma tumor spheroid invasion in a 3D in vitro experiment. Biophys. J., 92, 356–365 (2007)CrossRef Stein A.M., Demuth T., Mobley D., Berens M., and Sander L.: A mathematical model of glioblastoma tumor spheroid invasion in a 3D in vitro experiment. Biophys. J., 92, 356–365 (2007)CrossRef
27.
go back to reference Swanson, K.R., Alvord, Jr., E.C., and Murray, J.D.: A quantitative model of differential motility of gliomas in white and grey matter. Cell Prolif., 33, 317–329 (2000)CrossRef Swanson, K.R., Alvord, Jr., E.C., and Murray, J.D.: A quantitative model of differential motility of gliomas in white and grey matter. Cell Prolif., 33, 317–329 (2000)CrossRef
28.
go back to reference Swanson, K.R., Bridge C., Murray, J.D., and Alvord, E.C.: Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J. Neurol. Sci., 216, 1–10 (2003)CrossRef Swanson, K.R., Bridge C., Murray, J.D., and Alvord, E.C.: Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J. Neurol. Sci., 216, 1–10 (2003)CrossRef
29.
go back to reference Swanson, K.R., Rostomily, R.C., and Alvord, Jr., E.C.: A mathematical modeling tool for predicting survival of individual patients following resection of glioblastoma: A proof of principle. Brit. J. Cancer, 98, 113–119 (2008)CrossRef Swanson, K.R., Rostomily, R.C., and Alvord, Jr., E.C.: A mathematical modeling tool for predicting survival of individual patients following resection of glioblastoma: A proof of principle. Brit. J. Cancer, 98, 113–119 (2008)CrossRef
30.
go back to reference Szunyogh, I., Kostelich, E.J., Gyarmati, G., Kalnay, E., Hunt, B.R., Ott, E., Satterfield, E., and Yorke, J.A.: A local ensemble Kalman filter data assimilation system for the NCEP global model. Tellus A, 60, 113–130 (2008) Szunyogh, I., Kostelich, E.J., Gyarmati, G., Kalnay, E., Hunt, B.R., Ott, E., Satterfield, E., and Yorke, J.A.: A local ensemble Kalman filter data assimilation system for the NCEP global model. Tellus A, 60, 113–130 (2008)
31.
go back to reference Talairach, J. and Tournoux, P.: Co-Planar Stereotaxic Atlas of the Human Brain: 3-D Proportional System: An Approach to Cerebral Imaging. Thieme Medical Publishers, New York (1988) Talairach, J. and Tournoux, P.: Co-Planar Stereotaxic Atlas of the Human Brain: 3-D Proportional System: An Approach to Cerebral Imaging. Thieme Medical Publishers, New York (1988)
32.
go back to reference Tian, J.P., Friedman, A., Wang, J., and Chiocca, E.A.: Modeling the effects of resection, radiation and chemotherapy. J. Neurooncol, 91, 287–293 (2009)CrossRef Tian, J.P., Friedman, A., Wang, J., and Chiocca, E.A.: Modeling the effects of resection, radiation and chemotherapy. J. Neurooncol, 91, 287–293 (2009)CrossRef
33.
go back to reference Vose, M.D.: The Simple Genetic Algorithm: Foundations and Theory. The MIT Press, Cambridge, MA (1999)MATH Vose, M.D.: The Simple Genetic Algorithm: Foundations and Theory. The MIT Press, Cambridge, MA (1999)MATH
34.
go back to reference Wang, X., Bishop, C.H., and Julier, S.J.: Which is better, an ensemble of positive negative pairs or a centered spherical simplex ensemble?. Mon. Wea. Rev., 132, 1590–1605 (2004)CrossRef Wang, X., Bishop, C.H., and Julier, S.J.: Which is better, an ensemble of positive negative pairs or a centered spherical simplex ensemble?. Mon. Wea. Rev., 132, 1590–1605 (2004)CrossRef
Metadata
Title
Data Assimilation in Brain Tumor Models
Authors
Joshua McDaniel
Eric Kostelich
Yang Kuang
John Nagy
Mark C. Preul
Nina Z. Moore
Nikolay L. Matirosyan
Copyright Year
2013
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-4178-6_9

Premium Partner