Skip to main content
Top
Published in: Neural Computing and Applications 20/2020

21-10-2019 | Recent Advances in Deep Learning for Medical Image Processing

Deep architectures for high-resolution multi-organ chest X-ray image segmentation

Authors: Oscar Gómez, Pablo Mesejo, Oscar Ibáñez, Andrea Valsecchi, Oscar Cordón

Published in: Neural Computing and Applications | Issue 20/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Chest X-ray images (CXRs) are the most common radiological examination tool for screening and diagnosis of cardiac and pulmonary diseases. The automatic segmentation of anatomical structures in CXRs is critical for many clinical applications. However, existing deep models work on severely down-sampled images (commonly \(256\times 256\) pixels), reducing the quality of the contours of the resulting segmentation and negatively affecting the possibilities of such methods to be effectively used in a real environment. In this paper, we study multi-organ (clavicles, lungs, and hearts) segmentation, one of the most important problems in semantic understanding of CXRs. We completely avoid down-sampling in images up to \(1024\times 1024\) (as in the JSRT dataset), and we diminish its impact in higher resolutions via network architecture simplification without a significant loss in the accuracy. To do so, we propose four different convolutional models by introducing structural changes to the baselines employed (U-Net and InvertedNet) as well as by integrating several techniques barely used by CXRs segmentation algorithms, such as instance normalization and atrous convolution. We also compare single-class and multi-class strategies to elucidate which approach is the most convenient for this problem. Our best proposal, X-Net+, outperforms nine state-of-the-art methods on clavicles and lungs obtaining a Dice similarity coefficient of 0.938 and 0.978, respectively, employing a tenfold cross-validation protocol. The same architecture yields comparable results to the state of the art in heart segmentation with a Dice value of 0.938. Finally, its reduced version, RX-Net+, obtains similar results but with a significant reduction in memory usage and training time.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Footnotes
1
Search performed the September 8, 2018, using the keywords [TITLE-ABS-KEY (chest AND X-ray AND segmentation) OR TITLE-ABS-KEY (chest AND radiograph AND segmentation) AND NOT TITLE-ABS-KEY (computed AND tomography)].
 
2
According to the International Agency for Research on Cancer, lung cancer was the most common cause of cancer death in 2015 with 1.69 million deaths.
 
Literature
1.
go back to reference Staffan S, Ostensen H, Pettersson H (2003) The WHO manual of diagnostic imaging: radiographic technique and projections, vol 2. World Health Organization, Geneva Staffan S, Ostensen H, Pettersson H (2003) The WHO manual of diagnostic imaging: radiographic technique and projections, vol 2. World Health Organization, Geneva
2.
go back to reference Daffner RH, Hartman M (2013) Clinical radiology: the essentials. Lippincott Williams & Wilkins, Philadelphia Daffner RH, Hartman M (2013) Clinical radiology: the essentials. Lippincott Williams & Wilkins, Philadelphia
3.
go back to reference Rigby D-M, Hacking L (2018) Interpreting the chest radiograph. Anaesth Intensive Care 19(2):50–54 Rigby D-M, Hacking L (2018) Interpreting the chest radiograph. Anaesth Intensive Care 19(2):50–54
4.
go back to reference Van Ginneken B, Ter Haar Romeny BM, Viergever MA (2001) Computer-aided diagnosis in chest radiography: a survey. IEEE Trans Med Imaging 20(12):1228–1241 Van Ginneken B, Ter Haar Romeny BM, Viergever MA (2001) Computer-aided diagnosis in chest radiography: a survey. IEEE Trans Med Imaging 20(12):1228–1241
5.
go back to reference NHS England (2016) Diagnostic imaging dataset annual statistical release 2015/2016 NHS England (2016) Diagnostic imaging dataset annual statistical release 2015/2016
6.
go back to reference Laserson J, Lantsman CD, Cohen-Sfady M, Tamir I, Goz E, Brestel C, Bar S, Atar M, Elnekave E (2018) TextRay: mining clinical reports to gain a broad understanding of chest X-rays. In: MICCAI, pp 553–561 Laserson J, Lantsman CD, Cohen-Sfady M, Tamir I, Goz E, Brestel C, Bar S, Atar M, Elnekave E (2018) TextRay: mining clinical reports to gain a broad understanding of chest X-rays. In: MICCAI, pp 553–561
7.
go back to reference Schilham AMR, van Ginneken B, Loog M (2006) A computer-aided diagnosis system for detection of lung nodules in chest radiographs with an evaluation on a public database. Med Image Anal 10(2):247–258 Schilham AMR, van Ginneken B, Loog M (2006) A computer-aided diagnosis system for detection of lung nodules in chest radiographs with an evaluation on a public database. Med Image Anal 10(2):247–258
8.
go back to reference Mittal A, Hooda R, Sofat S (2017) Lung field segmentation in chest radiographs: a historical review, current status, and expectations from deep learning. IET Image Process 11(11):937–952 Mittal A, Hooda R, Sofat S (2017) Lung field segmentation in chest radiographs: a historical review, current status, and expectations from deep learning. IET Image Process 11(11):937–952
9.
go back to reference Tsakok MT, Gleeson FV (2018) The chest radiograph in heart disease. Medicine 46(8):453–457 Tsakok MT, Gleeson FV (2018) The chest radiograph in heart disease. Medicine 46(8):453–457
10.
go back to reference Kapoor S, Tiwari A, Kapoor S (2008) Primary tumours and tumorous lesions of clavicle. Int Orthop 32(6):829 Kapoor S, Tiwari A, Kapoor S (2008) Primary tumours and tumorous lesions of clavicle. Int Orthop 32(6):829
11.
go back to reference Gómez O, Ibáñez O, Valsecchi A, Cordón O, Kahana T (2018) 3D–2D silhouette-based image registration for comparative radiography-based forensic identification. Pattern Recognit 83:469–480 Gómez O, Ibáñez O, Valsecchi A, Cordón O, Kahana T (2018) 3D–2D silhouette-based image registration for comparative radiography-based forensic identification. Pattern Recognit 83:469–480
12.
go back to reference Bruno MA, Walker EA, Abujudeh HH (2015) Understanding and confronting our mistakes: the epidemiology of error in radiology and strategies for error reduction. Radiographics 35(6):1668–1676 Bruno MA, Walker EA, Abujudeh HH (2015) Understanding and confronting our mistakes: the epidemiology of error in radiology and strategies for error reduction. Radiographics 35(6):1668–1676
13.
go back to reference Robinson PJ, Wilson D, Coral A, Murphy A, Verow P (1999) Variation between experienced observers in the interpretation of accident and emergency radiographs. Br J Radiol 72(856):323–330 Robinson PJ, Wilson D, Coral A, Murphy A, Verow P (1999) Variation between experienced observers in the interpretation of accident and emergency radiographs. Br J Radiol 72(856):323–330
14.
go back to reference Brady A, Laoide RÓ, McCarthy P, McDermott R (2012) Discrepancy and error in radiology: concepts, causes and consequences. Ulst Med J 81(1):3 Brady A, Laoide RÓ, McCarthy P, McDermott R (2012) Discrepancy and error in radiology: concepts, causes and consequences. Ulst Med J 81(1):3
15.
go back to reference Toriwaki J-I, Suenaga Y, Negoro T, Fukumura T (1973) Pattern recognition of chest X-ray images. Comput Vis Graph 2(3):252–271 Toriwaki J-I, Suenaga Y, Negoro T, Fukumura T (1973) Pattern recognition of chest X-ray images. Comput Vis Graph 2(3):252–271
16.
go back to reference Wechsler H, Sklansky J (1977) Finding the rib cage in chest radiographs. Pattern Recognit 9(1):21–30 Wechsler H, Sklansky J (1977) Finding the rib cage in chest radiographs. Pattern Recognit 9(1):21–30
17.
go back to reference Zhu Y, Prummer S, Wang P, Chen T, Comaniciu D, Ostermeier M (2009) Dynamic layer separation for coronary DSA and enhancement in fluoroscopic sequences. In: MICCAI, pp 877–884 Zhu Y, Prummer S, Wang P, Chen T, Comaniciu D, Ostermeier M (2009) Dynamic layer separation for coronary DSA and enhancement in fluoroscopic sequences. In: MICCAI, pp 877–884
18.
go back to reference Ronneberger O, Fischer P, Brox T(2015) U-Net: convolutional networks for biomedical image segmentation. In: MICCAI, pp 234–241 Ronneberger O, Fischer P, Brox T(2015) U-Net: convolutional networks for biomedical image segmentation. In: MICCAI, pp 234–241
19.
go back to reference Ter Bram Van Ginneken BM, Romeny H, Viergever MA (2001) Computer-aided diagnosis in chest radiography: a survey. IEEE Trans Med Imaging 20(12):1228–1241 Ter Bram Van Ginneken BM, Romeny H, Viergever MA (2001) Computer-aided diagnosis in chest radiography: a survey. IEEE Trans Med Imaging 20(12):1228–1241
20.
go back to reference Shao Y, Gao Y, Guo Y, Shi Y, Yang X, Shen D (2014) Hierarchical lung field segmentation with joint shape and appearance sparse learning. IEEE Trans Med Imaging 33(9):1761–1780 Shao Y, Gao Y, Guo Y, Shi Y, Yang X, Shen D (2014) Hierarchical lung field segmentation with joint shape and appearance sparse learning. IEEE Trans Med Imaging 33(9):1761–1780
21.
go back to reference Yang W, Liu Y, Lin L, Yun Z, Zhentai L, Feng Q, Chen W (2018) Lung field segmentation in chest radiographs from boundary maps by a structured edge detector. IEEE J Biomed Health Inform 22(3):842–851 Yang W, Liu Y, Lin L, Yun Z, Zhentai L, Feng Q, Chen W (2018) Lung field segmentation in chest radiographs from boundary maps by a structured edge detector. IEEE J Biomed Health Inform 22(3):842–851
22.
go back to reference Boussaid H, Kokkinos I, Paragios N (2014) Discriminative learning of deformable contour models. In: ISBI, IEEE, pp 624–628 Boussaid H, Kokkinos I, Paragios N (2014) Discriminative learning of deformable contour models. In: ISBI, IEEE, pp 624–628
23.
go back to reference Hogeweg L, Sánchez CI, de Jong PA, Maduskar P, van Ginneken B (2012) Clavicle segmentation in chest radiographs. Med Image Anal 16(8):1490–1502 Hogeweg L, Sánchez CI, de Jong PA, Maduskar P, van Ginneken B (2012) Clavicle segmentation in chest radiographs. Med Image Anal 16(8):1490–1502
24.
go back to reference Novikov AA, Lenis D, Major D, Hladuvka J, Wimmer M, Bühler K (2018) Fully convolutional architectures for multiclass segmentation in chest radiographs. IEEE Trans Med Imaging 37(8):1865–1876 Novikov AA, Lenis D, Major D, Hladuvka J, Wimmer M, Bühler K (2018) Fully convolutional architectures for multiclass segmentation in chest radiographs. IEEE Trans Med Imaging 37(8):1865–1876
25.
go back to reference Shiraishi J, Katsuragawa S, Ikezoe J, Matsumoto T, Kobayashi T, Komatsu K, Matsui M, Fujita H, Kodera Y, Doi K (2000) Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. AJR Am J Roentgenol 174(1):71–74 Shiraishi J, Katsuragawa S, Ikezoe J, Matsumoto T, Kobayashi T, Komatsu K, Matsui M, Fujita H, Kodera Y, Doi K (2000) Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. AJR Am J Roentgenol 174(1):71–74
26.
go back to reference Van Ginneken B, Stegmann MB, Loog M (2006) Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database. Med Image Anal 10(1):19–40 Van Ginneken B, Stegmann MB, Loog M (2006) Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database. Med Image Anal 10(1):19–40
27.
28.
go back to reference Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2016) DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. arxiv:1606.00915, Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2016) DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. arxiv:​1606.​00915,
29.
go back to reference Withey DJ, Koles ZJ (2007) Medical image segmentation: methods and software. In: NFSI-ICFBI, pp 140–143 Withey DJ, Koles ZJ (2007) Medical image segmentation: methods and software. In: NFSI-ICFBI, pp 140–143
30.
go back to reference Waseem Khan M (2014) A survey: image segmentation techniques. Int J Future Comput Commun 3(2):89 Waseem Khan M (2014) A survey: image segmentation techniques. Int J Future Comput Commun 3(2):89
31.
go back to reference Smistad E, Falch TL, Bozorgi M, Elster AC, Lindseth F (2015) Medical image segmentation on GPUs: a comprehensive review. Med Image Anal 20(1):1–18 Smistad E, Falch TL, Bozorgi M, Elster AC, Lindseth F (2015) Medical image segmentation on GPUs: a comprehensive review. Med Image Anal 20(1):1–18
32.
go back to reference Mesejo P, Ibáñez O, Cordón O, Cagnoni S (2016) A survey on image segmentation using metaheuristic-based deformable models: state of the art and critical analysis. Appl Soft Comput 44:1–29 Mesejo P, Ibáñez O, Cordón O, Cagnoni S (2016) A survey on image segmentation using metaheuristic-based deformable models: state of the art and critical analysis. Appl Soft Comput 44:1–29
33.
go back to reference Cabezas M, Oliver A, Lladó X, Freixenet J, Cuadra MB (2011) A review of atlas-based segmentation for magnetic resonance brain images. Comput Methods Programs Biomed 104(3):e158–e177 Cabezas M, Oliver A, Lladó X, Freixenet J, Cuadra MB (2011) A review of atlas-based segmentation for magnetic resonance brain images. Comput Methods Programs Biomed 104(3):e158–e177
34.
go back to reference Peng B, Zhang L, Zhang D (2013) A survey of graph theoretical approaches to image segmentation. Pattern Recognit 46(3):1020–1038 Peng B, Zhang L, Zhang D (2013) A survey of graph theoretical approaches to image segmentation. Pattern Recognit 46(3):1020–1038
35.
go back to reference Garcia-Garcia A, Orts-Escolano S, Oprea S, Villena-Martinez V, Garcia-Rodriguez J (2017) A review on deep learning techniques applied to semantic segmentation. arXiv:1704.06857 Garcia-Garcia A, Orts-Escolano S, Oprea S, Villena-Martinez V, Garcia-Rodriguez J (2017) A review on deep learning techniques applied to semantic segmentation. arXiv:​1704.​06857
36.
go back to reference Chondro P, Yao C-Y, Ruan S-J, Chien L-C (2018) Low order adaptive region growing for lung segmentation on plain chest radiographs. Neurocomputing 275:1002–1011 Chondro P, Yao C-Y, Ruan S-J, Chien L-C (2018) Low order adaptive region growing for lung segmentation on plain chest radiographs. Neurocomputing 275:1002–1011
37.
go back to reference Siang Tan K, Mat Isa NA (2011) Color image segmentation using histogram thresholding: fuzzy C-means hybrid approach. Pattern Recognit 44(1):1–15MATH Siang Tan K, Mat Isa NA (2011) Color image segmentation using histogram thresholding: fuzzy C-means hybrid approach. Pattern Recognit 44(1):1–15MATH
38.
go back to reference Bi L, Feng D, Kim J (2018) Dual-path adversarial learning for fully convolutional network (FCN)-based medical image segmentation. Vis Comput 34(6):1043–1052 Bi L, Feng D, Kim J (2018) Dual-path adversarial learning for fully convolutional network (FCN)-based medical image segmentation. Vis Comput 34(6):1043–1052
39.
go back to reference Goh SK, Abbass HA, Tan KC, Al-Mamun A, Thakor N, Bezerianos A, Li J (2018) Spatio-spectral representation learning for electroencephalographic gait-pattern classification. IEEE Trans Neural Syst Rehabilit Eng 26(9):1858–1867 Goh SK, Abbass HA, Tan KC, Al-Mamun A, Thakor N, Bezerianos A, Li J (2018) Spatio-spectral representation learning for electroencephalographic gait-pattern classification. IEEE Trans Neural Syst Rehabilit Eng 26(9):1858–1867
40.
go back to reference Pang S, José J, del Coz Z, Yu OL, Díez J (2018) Deep learning and preference learning for object tracking: a combined approach. Neural Process Lett 47(3):859–876 Pang S, José J, del Coz Z, Yu OL, Díez J (2018) Deep learning and preference learning for object tracking: a combined approach. Neural Process Lett 47(3):859–876
41.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105
42.
go back to reference Li J, Struzik Z, Zhang L, Cichocki A (2015) Feature learning from incomplete EEG with denoising autoencoder. Neurocomputing 165:23–31 Li J, Struzik Z, Zhang L, Cichocki A (2015) Feature learning from incomplete EEG with denoising autoencoder. Neurocomputing 165:23–31
43.
44.
go back to reference Wang C (2017) Segmentation of multiple structures in chest radiographs using multi-task fully convolutional networks. In: Sharma P, Bianchi FM (eds) SCIA, pp 282–289 Wang C (2017) Segmentation of multiple structures in chest radiographs using multi-task fully convolutional networks. In: Sharma P, Bianchi FM (eds) SCIA, pp 282–289
45.
go back to reference Mittal A, Hooda R, Sofat S (2018) LF-SegNet: a fully convolutional encoder–decoder network for segmenting lung fields from chest radiographs. Wirel Pers Commun 101(1):511–529 Mittal A, Hooda R, Sofat S (2018) LF-SegNet: a fully convolutional encoder–decoder network for segmenting lung fields from chest radiographs. Wirel Pers Commun 101(1):511–529
46.
go back to reference Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. ICML 1:448–456 Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. ICML 1:448–456
47.
go back to reference Jaeger S, Candemir S, Antani S, Wáng Y-XJ, Pu-Xuan L, Thoma G (2014) Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quant Imaging Med Surg 4(6):475 Jaeger S, Candemir S, Antani S, Wáng Y-XJ, Pu-Xuan L, Thoma G (2014) Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quant Imaging Med Surg 4(6):475
48.
go back to reference Hooda R, Mittal A, Sofat S (2018) An efficient variant of fully-convolutional network for segmenting lung fields from chest radiographs. Wirel Pers Commun 101(3):1559–1579 Hooda R, Mittal A, Sofat S (2018) An efficient variant of fully-convolutional network for segmenting lung fields from chest radiographs. Wirel Pers Commun 101(3):1559–1579
49.
go back to reference Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958MathSciNetMATH Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958MathSciNetMATH
50.
go back to reference Sørensen T (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. K Dan Vidensk Selsk 5:1–34 Sørensen T (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. K Dan Vidensk Selsk 5:1–34
51.
go back to reference Denil M, Shakibi B, Dinh L, De Freitas N et al (2013) Predicting parameters in deep learning. In: Advances in neural information processing systems, pp 2148–2156 Denil M, Shakibi B, Dinh L, De Freitas N et al (2013) Predicting parameters in deep learning. In: Advances in neural information processing systems, pp 2148–2156
52.
go back to reference Han S, Liu X, Mao H, Pu J, Pedram A, Horowitz MA, Dally WJ (2016) EIE: efficient inference engine on compressed deep neural network. In: ISCA, pp 243–254 Han S, Liu X, Mao H, Pu J, Pedram A, Horowitz MA, Dally WJ (2016) EIE: efficient inference engine on compressed deep neural network. In: ISCA, pp 243–254
53.
go back to reference Kim Y-D, Park E, Yoo S, Choi T, Yang L, Shin D (2015) Compression of deep convolutional neural networks for fast and low power mobile applications. arXiv:1511.06530 Kim Y-D, Park E, Yoo S, Choi T, Yang L, Shin D (2015) Compression of deep convolutional neural networks for fast and low power mobile applications. arXiv:​1511.​06530
54.
go back to reference Baiying L, Shan H, Ran L, Cheng B, Hang L, Yi-Hong C, Jie-Zhi C (2018) Segmentation of breast anatomy for automated whole breast ultrasound images with boundary regularized convolutional encoder–decoder network. Neurocomputing 321:178–186 Baiying L, Shan H, Ran L, Cheng B, Hang L, Yi-Hong C, Jie-Zhi C (2018) Segmentation of breast anatomy for automated whole breast ultrasound images with boundary regularized convolutional encoder–decoder network. Neurocomputing 321:178–186
55.
go back to reference Liu J, Cai J, Chellamuthu K, Bagheri M, Lu L, Summers RM (2018) Cascaded coarse-to-fine convolutional neural networks for pericardial effusion localization and segmentation on ct scans. In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018), pp 1092–1095 Liu J, Cai J, Chellamuthu K, Bagheri M, Lu L, Summers RM (2018) Cascaded coarse-to-fine convolutional neural networks for pericardial effusion localization and segmentation on ct scans. In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018), pp 1092–1095
56.
57.
go back to reference Grana C, Borghesani D, Cucchiara R (2010) Optimized block-based connected components labeling with decision trees. IEEE Trans Image Process 19(6):1596–1609MathSciNetMATH Grana C, Borghesani D, Cucchiara R (2010) Optimized block-based connected components labeling with decision trees. IEEE Trans Image Process 19(6):1596–1609MathSciNetMATH
58.
go back to reference Simonyan K, Vedaldi A, Zisserman A (2013) Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv:1312.6034 Simonyan K, Vedaldi A, Zisserman A (2013) Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv:​1312.​6034
59.
go back to reference Litjens G, Sánchez CI, Timofeeva N, Hermsen M, Nagtegaal I, Kovacs I, Kaa CH-VD, Bult P, Van Ginneken B, Van Der Laak J (2016) Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci Rep 6:26286 Litjens G, Sánchez CI, Timofeeva N, Hermsen M, Nagtegaal I, Kovacs I, Kaa CH-VD, Bult P, Van Ginneken B, Van Der Laak J (2016) Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci Rep 6:26286
60.
go back to reference Qi CR, Hao S, Mo K, Guibas LJ (2017) Pointnet: deep learning on point sets for 3d classification and segmentation. Proc Comput Vis Pattern Recognit IEEE 1(2):4 Qi CR, Hao S, Mo K, Guibas LJ (2017) Pointnet: deep learning on point sets for 3d classification and segmentation. Proc Comput Vis Pattern Recognit IEEE 1(2):4
61.
go back to reference Beauchemin M, Thomson KPB, Edwards G (1998) On the Hausdorff distance used for the evaluation of segmentation results. Can J Remote Sens 24(1):3–8 Beauchemin M, Thomson KPB, Edwards G (1998) On the Hausdorff distance used for the evaluation of segmentation results. Can J Remote Sens 24(1):3–8
62.
go back to reference Jaccard P (1912) The distribution of the flora in the alpine zone. 1. New Phytol 11(2):37–50 Jaccard P (1912) The distribution of the flora in the alpine zone. 1. New Phytol 11(2):37–50
64.
go back to reference Gehan EA (1965) A generalized Wilcoxon test for comparing arbitrarily singly-censored samples. Biometrika 52(1–2):203–223MathSciNetMATH Gehan EA (1965) A generalized Wilcoxon test for comparing arbitrarily singly-censored samples. Biometrika 52(1–2):203–223MathSciNetMATH
65.
go back to reference Zhang Z, Luo P, Loy CC, Tang X (2014) Facial landmark detection by deep multi-task learning. In: ECCV, pp 94–108 Zhang Z, Luo P, Loy CC, Tang X (2014) Facial landmark detection by deep multi-task learning. In: ECCV, pp 94–108
66.
go back to reference Wu Z, Valentini-Botinhao C, Watts O, King S (2015) Deep neural networks employing multi-task learning and stacked bottleneck features for speech synthesis. In: ICASSP, pp 4460–4464 Wu Z, Valentini-Botinhao C, Watts O, King S (2015) Deep neural networks employing multi-task learning and stacked bottleneck features for speech synthesis. In: ICASSP, pp 4460–4464
67.
go back to reference Myles H, Douglas AW (1999) Nonparametric statistical methods. Wiley, New YorkMATH Myles H, Douglas AW (1999) Nonparametric statistical methods. Wiley, New YorkMATH
68.
go back to reference Xiong J, Shao Y, Ma J, Ren Y, Wang Q, Zhao J (2017) Lung field segmentation using weighted sparse shape composition with robust initialization. Med Phys 44(11):5916–5929 Xiong J, Shao Y, Ma J, Ren Y, Wang Q, Zhao J (2017) Lung field segmentation using weighted sparse shape composition with robust initialization. Med Phys 44(11):5916–5929
69.
go back to reference Milletari F, Navab N, Ahmadi S-A (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 3DV, IEEE, pp 565–571 Milletari F, Navab N, Ahmadi S-A (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 3DV, IEEE, pp 565–571
70.
go back to reference Luo J, Zhang H, Zhou H, Xie C, Wu J, Lin W (2019) ThiNet: pruning CNN filters for a thinner net. IEEE Trans Pattern Anal Mach Intell 41(10):2525–2538 Luo J, Zhang H, Zhou H, Xie C, Wu J, Lin W (2019) ThiNet: pruning CNN filters for a thinner net. IEEE Trans Pattern Anal Mach Intell 41(10):2525–2538
Metadata
Title
Deep architectures for high-resolution multi-organ chest X-ray image segmentation
Authors
Oscar Gómez
Pablo Mesejo
Oscar Ibáñez
Andrea Valsecchi
Oscar Cordón
Publication date
21-10-2019
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 20/2020
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-019-04532-y

Other articles of this Issue 20/2020

Neural Computing and Applications 20/2020 Go to the issue

S.I. : Applying Artificial Intelligence to the Internet of Things

A deep neural network-based model for named entity recognition for Hindi language

S.I. : Applying Artificial Intelligence to the Internet of Things

A hybrid classifier combination for home automation using EEG signals

Recent Advances in Deep Learning for Medical Image Processing

Detection of shockable ventricular arrhythmia using optimal orthogonal wavelet filters

Premium Partner