Skip to main content
Top
Published in: Microsystem Technologies 7/2017

16-06-2016 | Technical Paper

Design, modeling and test of a novel compliant orthogonal displacement amplification mechanism for the compact micro-grasping system

Authors: Weilin Chen, Xianmin Zhang, Sergej Fatikow

Published in: Microsystem Technologies | Issue 7/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the compact micro-grasping system, the combination of precisely orthogonal movement transformation, displacement amplification and simple structure is important. The typical solution of the combination issue requires bidirectional symmetric input forces/displacements. However, under a certain driving condition, numerous actuators used in micro-manipulation only supply unidirectional input froce/displacement for the driven mechanism, which makes the typical solution infeasible. In this study, a novel compliant orthogonal displacement amplification mechanism (DAM) is proposed to solve the combination issue for numerous actuators used in micro-grasping. The proposed mechanism is a triangulation amplification-based mechanism with undetermined structural parameters. The number of the undetermined parameters and the solution principle are analyzed. The design process is presented. Finite element analysis (FEA) is used to verify the design method. The FEA results show that, for the design examples, the errors evaluating the orthogonal movement transformation are smaller than 0.56 % and 0.15 % respectively, and the displacement amplification ratios are larger than 4.6. The orthogonal displacement amplification is realized. A precise model of the displacement amplification ratio is derived. The dynamic performances of the proposed orthogonal DAM are modeled and FEA verified. Furthermore, a microgripper utilizing the proposed mechanism is presented. The performances of the gripper, including the displacement amplification and the parallel movement of the jaws, are verified by FEA and experiments.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Agnus J, Chaillet N, Clevy C, Dembele S, Gauthier M, Haddab Y, Laurent G, Lutz P, Piat N, Rabenorosoa K (2013) Robotic microassembly and micromanipulation at femto-st. J Micro Bio Robot 8(2):91–106CrossRef Agnus J, Chaillet N, Clevy C, Dembele S, Gauthier M, Haddab Y, Laurent G, Lutz P, Piat N, Rabenorosoa K (2013) Robotic microassembly and micromanipulation at femto-st. J Micro Bio Robot 8(2):91–106CrossRef
go back to reference Arunkumar G, Srinivasan P (2006) Design of displacement amplifying compliant mechanisms with integrated strain actuator using topology optimization. Proc Inst Mech Eng Part C J Mech Eng Sci 220(8):1219–1228CrossRef Arunkumar G, Srinivasan P (2006) Design of displacement amplifying compliant mechanisms with integrated strain actuator using topology optimization. Proc Inst Mech Eng Part C J Mech Eng Sci 220(8):1219–1228CrossRef
go back to reference Bazaz SA, Khan F, Shakoor RI (2011) Design, simulation and testing of electrostatic soi mumps based microgripper integrated with capacitive contact sensor. Sens Actuators A Phys 167:44–53CrossRef Bazaz SA, Khan F, Shakoor RI (2011) Design, simulation and testing of electrostatic soi mumps based microgripper integrated with capacitive contact sensor. Sens Actuators A Phys 167:44–53CrossRef
go back to reference Bell DJ, Lu TJ, Fleck NA, Spearing SM (2005) Mems actuators and sensors: observations on their performance and selection for purpose. J Micromech Microeng 15(7):S153–S164CrossRef Bell DJ, Lu TJ, Fleck NA, Spearing SM (2005) Mems actuators and sensors: observations on their performance and selection for purpose. J Micromech Microeng 15(7):S153–S164CrossRef
go back to reference Bohringer KF, Donald BR, MacDonald NC (1996) Single-crystal silicon actuator arrays for micro manipulation tasks. In: Micro electro mechanical systems, 1996, MEMS ’96, proceedings. An investigation of micro structures, sensors, actuators, machines and systems. IEEE, the ninth annual international workshop on, micro electro mechanical systems, 1996, MEMS ’96, proceedings. An investigation of micro structures, sensors, actuators, machines and systems. IEEE, the ninth annual international workshop on, pp 7–12 Bohringer KF, Donald BR, MacDonald NC (1996) Single-crystal silicon actuator arrays for micro manipulation tasks. In: Micro electro mechanical systems, 1996, MEMS ’96, proceedings. An investigation of micro structures, sensors, actuators, machines and systems. IEEE, the ninth annual international workshop on, micro electro mechanical systems, 1996, MEMS ’96, proceedings. An investigation of micro structures, sensors, actuators, machines and systems. IEEE, the ninth annual international workshop on, pp 7–12
go back to reference Carlson K, Andersen KN, Eichhorn V, Petersen DH, Molhave K, Bu IYY, Teo KBK, Milne WI, Fatikow S, Boggild P (2007) A carbon nanofibre scanning probe assembled using an electrothermal microgripper. Nanotechnology 18:1–7 Carlson K, Andersen KN, Eichhorn V, Petersen DH, Molhave K, Bu IYY, Teo KBK, Milne WI, Fatikow S, Boggild P (2007) A carbon nanofibre scanning probe assembled using an electrothermal microgripper. Nanotechnology 18:1–7
go back to reference Cecil J, Powell D, Vasquez D (2007) Assembly and manipulation of micro devicesa state of the art survey. Robot Comput Integr Manuf 23(5):580–588CrossRef Cecil J, Powell D, Vasquez D (2007) Assembly and manipulation of micro devicesa state of the art survey. Robot Comput Integr Manuf 23(5):580–588CrossRef
go back to reference Chang SH, Du BC (1998) A precision piezodriven micropositioner mechanism with large travel range. Rev Sci Instrum 69(4):1785–1791CrossRef Chang SH, Du BC (1998) A precision piezodriven micropositioner mechanism with large travel range. Rev Sci Instrum 69(4):1785–1791CrossRef
go back to reference Howell LL (2001) Compliant Mechanisms. Wiley, New York Howell LL (2001) Compliant Mechanisms. Wiley, New York
go back to reference Hoxhold B, Buttgenbach S (2010) Easily manageable, electrothermally actuated silicon micro gripper. Microsyst Technol 16:1609–1617CrossRef Hoxhold B, Buttgenbach S (2010) Easily manageable, electrothermally actuated silicon micro gripper. Microsyst Technol 16:1609–1617CrossRef
go back to reference Huang H, Zhao H, Yang Z, Mi J, Fan Z, Wan S, Shi C, Ma Z (2012) A novel driving principle by means of the parasitic motion of the microgripper and its preliminary application in the design of the linear actuator. Rev Sci Instrum 83(5):055002CrossRef Huang H, Zhao H, Yang Z, Mi J, Fan Z, Wan S, Shi C, Ma Z (2012) A novel driving principle by means of the parasitic motion of the microgripper and its preliminary application in the design of the linear actuator. Rev Sci Instrum 83(5):055002CrossRef
go back to reference Huang Z, Li QC (2002) General methodology for type synthesis of symmetrical lower-mobility parallel manipulators and several novel manipulators. Int J Robot Res 21(2):131–145CrossRef Huang Z, Li QC (2002) General methodology for type synthesis of symmetrical lower-mobility parallel manipulators and several novel manipulators. Int J Robot Res 21(2):131–145CrossRef
go back to reference Jouaneh M, Yang R (2003) Modeling of flexure-hinge type lever mechanisms. Precis Eng 27(4):407–418CrossRef Jouaneh M, Yang R (2003) Modeling of flexure-hinge type lever mechanisms. Precis Eng 27(4):407–418CrossRef
go back to reference Kim DH, Kim B, Kang H (2004) Development of a piezoelectric polymer-based sensorized microgripper for microassembly and micromanipulation. Microsyst Technol 10(4):275–280CrossRef Kim DH, Kim B, Kang H (2004) Development of a piezoelectric polymer-based sensorized microgripper for microassembly and micromanipulation. Microsyst Technol 10(4):275–280CrossRef
go back to reference Kim DH, Lee MG, Kim B, Sun Y (2005) A superelastic alloy microgripper with embedded electromagnetic actuators and piezoelectric force sensors: a numerical and experimental study. Smart Materials Struct 14:1265–1272CrossRef Kim DH, Lee MG, Kim B, Sun Y (2005) A superelastic alloy microgripper with embedded electromagnetic actuators and piezoelectric force sensors: a numerical and experimental study. Smart Materials Struct 14:1265–1272CrossRef
go back to reference Lee YT, Lin JJ (2007) Structural synthesis of compliant translational mechanisms. In: 12th IFToMM world congress, Besancon, France Lee YT, Lin JJ (2007) Structural synthesis of compliant translational mechanisms. In: 12th IFToMM world congress, Besancon, France
go back to reference Liang C, Wang F, Tian Y, Zhao X, Zhang H, Cui L, Zhang D, Ferreira P (2015) A novel monolithic piezoelectric actuated flexure-mechanism based wire clamp for microelectronic device packaging. Rev Sci Inst 86(4):045106CrossRef Liang C, Wang F, Tian Y, Zhao X, Zhang H, Cui L, Zhang D, Ferreira P (2015) A novel monolithic piezoelectric actuated flexure-mechanism based wire clamp for microelectronic device packaging. Rev Sci Inst 86(4):045106CrossRef
go back to reference Lobontiu N, Garcia E (2003) Analytical model of displacement amplification and stiffness optimization for a class of flexure-based compliant mechanisms. Comput Struct 81(32):2797–2810CrossRef Lobontiu N, Garcia E (2003) Analytical model of displacement amplification and stiffness optimization for a class of flexure-based compliant mechanisms. Comput Struct 81(32):2797–2810CrossRef
go back to reference Millet O, Bernardoni P, Regnier S, Bidaud P, Collard D, Buchaillot L (2003) Micro gripper driven by sdas coupled to an amplification mechanism. In: TRANSDUCERS, solid-state sensors, actuators and microsystems, 12th international conference on, 2003, IEEE, TRANSDUCERS, solid-state sensors, actuators and microsystems, 12th international conference on, 2003, vol 1, pp 280–283 Millet O, Bernardoni P, Regnier S, Bidaud P, Collard D, Buchaillot L (2003) Micro gripper driven by sdas coupled to an amplification mechanism. In: TRANSDUCERS, solid-state sensors, actuators and microsystems, 12th international conference on, 2003, IEEE, TRANSDUCERS, solid-state sensors, actuators and microsystems, 12th international conference on, 2003, vol 1, pp 280–283
go back to reference Nah S, Zhong Z (2007) A microgripper using piezoelectric actuation for micro-object manipulation. Sens Actuators A Phys 133:218–224CrossRef Nah S, Zhong Z (2007) A microgripper using piezoelectric actuation for micro-object manipulation. Sens Actuators A Phys 133:218–224CrossRef
go back to reference Shie CF, Huang SC (2010) Design and fabrication of a compliant mechanism for cell gripping. J Eng Technol Educ 7(4):595–606 Shie CF, Huang SC (2010) Design and fabrication of a compliant mechanism for cell gripping. J Eng Technol Educ 7(4):595–606
go back to reference Shivhare P, Uma G, Umapathy M (2015) Design enhancement of a chevron electrothermally actuated microgripper for improved gripping performance. Microsyst Technol. doi:10.1007/s00542-015-2561-0 Shivhare P, Uma G, Umapathy M (2015) Design enhancement of a chevron electrothermally actuated microgripper for improved gripping performance. Microsyst Technol. doi:10.​1007/​s00542-015-2561-0
go back to reference Sun X, Chen W, Fatikow S, Tian Y, Zhou R, Zhang J, Mikczinski M (2014) A novel piezo-driven microgripper with a large jaw displacement. Microsyst Technol 21(4):931–942CrossRef Sun X, Chen W, Fatikow S, Tian Y, Zhou R, Zhang J, Mikczinski M (2014) A novel piezo-driven microgripper with a large jaw displacement. Microsyst Technol 21(4):931–942CrossRef
go back to reference Waldron KJ (1967) A family of overconstrained linkages. J Mech 2(2):201–211CrossRef Waldron KJ (1967) A family of overconstrained linkages. J Mech 2(2):201–211CrossRef
go back to reference Wang DH, Yang Q, Dong HM (2013) A monolithic compliant piezoelectric-driven microgripper design, modeling, and testing. IEEE/ASME Trans Mechatron 18(1):138–147CrossRef Wang DH, Yang Q, Dong HM (2013) A monolithic compliant piezoelectric-driven microgripper design, modeling, and testing. IEEE/ASME Trans Mechatron 18(1):138–147CrossRef
go back to reference Woern H, Seyfried J, Buerkle A, Schmoeckel F (2000) Flexible microrobots for micro assembly tasks. In: Micromechatronics and human science, 2000. MHS 2000. Proceedings of 2000 International Symposium on, IEEE, micromechatronics and human science, 2000. MHS 2000. Proceedings of 2000 international symposium on, pp 135–143 Woern H, Seyfried J, Buerkle A, Schmoeckel F (2000) Flexible microrobots for micro assembly tasks. In: Micromechatronics and human science, 2000. MHS 2000. Proceedings of 2000 International Symposium on, IEEE, micromechatronics and human science, 2000. MHS 2000. Proceedings of 2000 international symposium on, pp 135–143
go back to reference Xiao S, Li Y, Zhao X (2011) Optimal design of a novel micro-gripper with completely parallel movement of gripping arms. In: 2011 IEEE Conference on Robotics, automation and mechatronics (RAM), 2011 IEEE conference on IEEE, robotics, automation and mechatronics (RAM), pp 35–40 Xiao S, Li Y, Zhao X (2011) Optimal design of a novel micro-gripper with completely parallel movement of gripping arms. In: 2011 IEEE Conference on Robotics, automation and mechatronics (RAM), 2011 IEEE conference on IEEE, robotics, automation and mechatronics (RAM), pp 35–40
go back to reference Yong YK, Lu TF, Handley DC (2008) Review of circular flexure hinge design equations and derivation of empirical formulations. Precis Eng 32(2):63–70CrossRef Yong YK, Lu TF, Handley DC (2008) Review of circular flexure hinge design equations and derivation of empirical formulations. Precis Eng 32(2):63–70CrossRef
go back to reference Zhao H, Bi S, Yu J (2012) A novel compliant linear-motion mechanism based on parasitic motion compensation. Mech Mach Theory 50:15–28CrossRef Zhao H, Bi S, Yu J (2012) A novel compliant linear-motion mechanism based on parasitic motion compensation. Mech Mach Theory 50:15–28CrossRef
go back to reference Zubir MNM, Shirinzadeh B, Tian Y (2009) A new design of piezoelectric driven compliant-based microgripper for micromanipulation. Mech Mach Theory 44:2248–2264CrossRefMATH Zubir MNM, Shirinzadeh B, Tian Y (2009) A new design of piezoelectric driven compliant-based microgripper for micromanipulation. Mech Mach Theory 44:2248–2264CrossRefMATH
Metadata
Title
Design, modeling and test of a novel compliant orthogonal displacement amplification mechanism for the compact micro-grasping system
Authors
Weilin Chen
Xianmin Zhang
Sergej Fatikow
Publication date
16-06-2016
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 7/2017
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-016-2989-x

Other articles of this Issue 7/2017

Microsystem Technologies 7/2017 Go to the issue