Skip to main content
Top
Published in: Microsystem Technologies 9/2020

13-06-2020 | Technical Paper

Designing a novel model of 2-DOF large displacement with a stepwise piezoelectric-actuated microgripper

Authors: Xiaodong Chen, Zilong Deng, Siya Hu, Jinhai Gao, Xingjun Gao

Published in: Microsystem Technologies | Issue 9/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Expanding the gripping stroke is the key problem in the research of microgripper. Generally, the magnification of the multi-stage amplifier is larger than that of the single-stage amplifier, but the multi-stage amplifier has a certain inhibition effect on the single-stage amplifier. The effect of simply increasing the number of the amplification mechanism on increasing the magnification is lower. To solve the above problems, a two-degree-of-freedom large displacement stepwise microgripper from the perspective of multiple degrees of freedom is designed, which improves the gripping displacement and stability of the microgripper. The relationship between theoretical input variables and output variables is calculated based on pseudo-rigid-body method; the gripping performance of microgripper is analyzed by finite element analysis (FEA); The piezo-driven is used as the input drive of the microgripper, and the actual output displacement are 5.21 and 8.06% respectively compared with the theoretical and simulated output displacement, which proves the correctness of theoretical calculation and simulation analysis. Under the maximum driving voltage of 150 V, the maximum output displacement is 924 μm, which can grip micro-parts of arbitrary size and shape in the range of 0–1724 μm; the displacement amplification of microgripper is 23.1 times on one side, and the total amplification is 46.2 times. The validity of the design is verified by the successful parallel and stable grasping of micro-parts with various shapes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ai W, Xu Q (2014) New structural design of a compliant gripper based on the scott-russell mechanism. Int J Adv Robot Syst 11(192):1–10 Ai W, Xu Q (2014) New structural design of a compliant gripper based on the scott-russell mechanism. Int J Adv Robot Syst 11(192):1–10
go back to reference Alogla AF, Amalou F, Balmer C et al (2015) Micro-tweezers: design, fabrication, simulation and testing of a pneumatically actuated micro-gripper for micromanipulation and microtactile sensing[J]. Sens Actuators A 236:394–404CrossRef Alogla AF, Amalou F, Balmer C et al (2015) Micro-tweezers: design, fabrication, simulation and testing of a pneumatically actuated micro-gripper for micromanipulation and microtactile sensing[J]. Sens Actuators A 236:394–404CrossRef
go back to reference Blideran MM, Bertsche G, Henschel W et al (2006) A mechanically actuated silicon microgripper for handling micro- and nanoparticles [J]. Microelectron Eng 83(4–9):1382–1385CrossRef Blideran MM, Bertsche G, Henschel W et al (2006) A mechanically actuated silicon microgripper for handling micro- and nanoparticles [J]. Microelectron Eng 83(4–9):1382–1385CrossRef
go back to reference Cauchi M, Grech I, Mallia B et al (2018) Analytical, numerical and experimental study of a horizontal electrothermal MEMS microgripper for the deformability characterisation of human red blood cells[J]. Micromachines 9(3):108CrossRef Cauchi M, Grech I, Mallia B et al (2018) Analytical, numerical and experimental study of a horizontal electrothermal MEMS microgripper for the deformability characterisation of human red blood cells[J]. Micromachines 9(3):108CrossRef
go back to reference Chen W, Shi X, Chen W et al (2013) A two degree of freedom micro-gripper with grasping and rotating functions for optical fibers assembling [J]. Rev Sci Instrum 84(11):115111CrossRef Chen W, Shi X, Chen W et al (2013) A two degree of freedom micro-gripper with grasping and rotating functions for optical fibers assembling [J]. Rev Sci Instrum 84(11):115111CrossRef
go back to reference Choi A, Gultepe E, Gracias DH (2017) Pneumatic delivery of untethered microgrippers for minimally invasive biopsy[C]//2017. In: 13th IEEE international conference on control & automation (ICCA). IEEE, pp 857–860 Choi A, Gultepe E, Gracias DH (2017) Pneumatic delivery of untethered microgrippers for minimally invasive biopsy[C]//2017. In: 13th IEEE international conference on control & automation (ICCA). IEEE, pp 857–860
go back to reference Choudhary N, Kaur D (2016) Shape memory alloy thin films and heterostructures for MEMS applications: a review [J]. Sens Actuators A 242:162–181CrossRef Choudhary N, Kaur D (2016) Shape memory alloy thin films and heterostructures for MEMS applications: a review [J]. Sens Actuators A 242:162–181CrossRef
go back to reference Dodd LE, Ward SC, Cooke MD et al (2015) The static and dynamic response of SU-8 electrothermal microgrippers of varying thickness [J]. Microelectron Eng 145:82–85CrossRef Dodd LE, Ward SC, Cooke MD et al (2015) The static and dynamic response of SU-8 electrothermal microgrippers of varying thickness [J]. Microelectron Eng 145:82–85CrossRef
go back to reference Guo Z, Tian Y, Liu X, Wang F, Zhou C, Zhang D (2017) Experimental investigation of the tip based micro/nano machining. Appl Surf Sci 426:406–417CrossRef Guo Z, Tian Y, Liu X, Wang F, Zhou C, Zhang D (2017) Experimental investigation of the tip based micro/nano machining. Appl Surf Sci 426:406–417CrossRef
go back to reference Hao G, Hand RB (2016) Design and static testing of a compact distributed-compliance gripper based on flexure motion [J]. Arch Civ Mech Eng 16(4):708–716CrossRef Hao G, Hand RB (2016) Design and static testing of a compact distributed-compliance gripper based on flexure motion [J]. Arch Civ Mech Eng 16(4):708–716CrossRef
go back to reference Jain RK, Majumder S, Ghosh B et al (2016) Micro manipulation by a compliant piezoelectric micro gripper towards robotic micro assembly[J]. Int J Mechatron Manuf Syst 9(1):3–23 Jain RK, Majumder S, Ghosh B et al (2016) Micro manipulation by a compliant piezoelectric micro gripper towards robotic micro assembly[J]. Int J Mechatron Manuf Syst 9(1):3–23
go back to reference Jouaneh M, Yang R (2003) Modeling of flexure-hinge type lever mechanisms [J]. Precis Eng 27(4):407–418CrossRef Jouaneh M, Yang R (2003) Modeling of flexure-hinge type lever mechanisms [J]. Precis Eng 27(4):407–418CrossRef
go back to reference Koo BW, Hong SP, Kim SI et al (2015) Design and application of a novel in situ nano-manipulation stage for transmission electron microscopy [J]. Microsc Microanal 21(2):298–306CrossRef Koo BW, Hong SP, Kim SI et al (2015) Design and application of a novel in situ nano-manipulation stage for transmission electron microscopy [J]. Microsc Microanal 21(2):298–306CrossRef
go back to reference Liang C, Wang F, Shi B et al (2018) Design and control of a novel asymmetrical piezoelectric actuated microgripper for micromanipulation[J]. Sens Actuators A 269:227–237CrossRef Liang C, Wang F, Shi B et al (2018) Design and control of a novel asymmetrical piezoelectric actuated microgripper for micromanipulation[J]. Sens Actuators A 269:227–237CrossRef
go back to reference Lining Sun, Liguo Chen, Weibin Rong et al (2008) Key technologies of micromanipulation equipment for microelectromechanical system assembly and packaging [J]. J Mech Eng 44(11):13–19CrossRef Lining Sun, Liguo Chen, Weibin Rong et al (2008) Key technologies of micromanipulation equipment for microelectromechanical system assembly and packaging [J]. J Mech Eng 44(11):13–19CrossRef
go back to reference Liu CH, Jywe WY, Jeng YR et al (2010) Design and control of a long-traveling nano-positioning stage [J]. Precis Eng 34(3):497–506CrossRef Liu CH, Jywe WY, Jeng YR et al (2010) Design and control of a long-traveling nano-positioning stage [J]. Precis Eng 34(3):497–506CrossRef
go back to reference Mingxiang LING, Junyi CAO, Minghua ZENG et al (2016) Enhance mathematical modeling of the dis-placement amplification ratio for piezoelectric compliant mechanisms[J]. Smart Mater Struct 25:075022CrossRef Mingxiang LING, Junyi CAO, Minghua ZENG et al (2016) Enhance mathematical modeling of the dis-placement amplification ratio for piezoelectric compliant mechanisms[J]. Smart Mater Struct 25:075022CrossRef
go back to reference Nkoonbin A, Hassani Niaki M (2012) Deriving and analyzing the effective parameters in microgrippers performance. Scientia Iranica Trans B Mech Eng 19(6):1554–1563CrossRef Nkoonbin A, Hassani Niaki M (2012) Deriving and analyzing the effective parameters in microgrippers performance. Scientia Iranica Trans B Mech Eng 19(6):1554–1563CrossRef
go back to reference Pevec S, Donlagic D (2019) Optically controlled fiber-optic micro-gripper for sub-millimeter objects [J]. Opt Lett 44(9):2177–2180CrossRef Pevec S, Donlagic D (2019) Optically controlled fiber-optic micro-gripper for sub-millimeter objects [J]. Opt Lett 44(9):2177–2180CrossRef
go back to reference Raparelli T, Beomonte Zobel P, Durante F (2018) A proposed methodology for the development of microgrippers: an application to a silicon device actuated by shape memory alloy wires[J]. Int J Mech Eng Technol 9(2):235–249 Raparelli T, Beomonte Zobel P, Durante F (2018) A proposed methodology for the development of microgrippers: an application to a silicon device actuated by shape memory alloy wires[J]. Int J Mech Eng Technol 9(2):235–249
go back to reference Ruiz D, Sigmund O (2018) Optimal design of robust piezoelectric microgrippers undergoing large displacements [J]. Struct Multidiscip Optim 57(1):71–82MathSciNetCrossRef Ruiz D, Sigmund O (2018) Optimal design of robust piezoelectric microgrippers undergoing large displacements [J]. Struct Multidiscip Optim 57(1):71–82MathSciNetCrossRef
go back to reference Shi C, Luu DK, Yang Q et al (2016) Recent advances in nanorobotic manipulation inside scanning electron microscopes [J]. Microsyst Nanoeng 2:16024CrossRef Shi C, Luu DK, Yang Q et al (2016) Recent advances in nanorobotic manipulation inside scanning electron microscopes [J]. Microsyst Nanoeng 2:16024CrossRef
go back to reference Sun X, Chen W, Fatikow S et al (2015) A Novel Piezo-driven microgripper with a large jaw displacement[J]. Microsyst Technol 21(4):931–942CrossRef Sun X, Chen W, Fatikow S et al (2015) A Novel Piezo-driven microgripper with a large jaw displacement[J]. Microsyst Technol 21(4):931–942CrossRef
go back to reference Wang F et al (2014) Design of a piezoelectric-actuated microgripper with a three-stage flexure-based amplification. IEEE/ASME Trans Mechatron 20(5):2205–2213CrossRef Wang F et al (2014) Design of a piezoelectric-actuated microgripper with a three-stage flexure-based amplification. IEEE/ASME Trans Mechatron 20(5):2205–2213CrossRef
go back to reference Wang Z, Shen X, Chen X (2015) Design, modeling, and characterization of a MEMS electrothermal microgripper[J]. Microsyst Technol 21(11):2307–2314CrossRef Wang Z, Shen X, Chen X (2015) Design, modeling, and characterization of a MEMS electrothermal microgripper[J]. Microsyst Technol 21(11):2307–2314CrossRef
go back to reference Wang F, Liang C, Tian Y et al (2016) Design and control of a compliant microgripper with a large amplification ratio for high-speed micro manipulation[J]. IEEE/ASME Trans Mechatron 21(3):1262–1271CrossRef Wang F, Liang C, Tian Y et al (2016) Design and control of a compliant microgripper with a large amplification ratio for high-speed micro manipulation[J]. IEEE/ASME Trans Mechatron 21(3):1262–1271CrossRef
go back to reference Xing Q, Ge Y (2015) Parametric study of a novel asymmetric micro-gripper mechanism [J]. J Adv Mech Des Syst Manuf 9(5):JAMDSM0075CrossRef Xing Q, Ge Y (2015) Parametric study of a novel asymmetric micro-gripper mechanism [J]. J Adv Mech Des Syst Manuf 9(5):JAMDSM0075CrossRef
go back to reference Xu Q (2013) Adaptive discrete-time sliding mode impedance control of a piezoelectric microgripper[J]. IEEE Trans Rob 29(3):663–673CrossRef Xu Q (2013) Adaptive discrete-time sliding mode impedance control of a piezoelectric microgripper[J]. IEEE Trans Rob 29(3):663–673CrossRef
go back to reference Xu Q (2017) Design of a constant-force microgripper mechanism for biological micromanipulation[C]//2017. In: IEEE 12th international conference on nano/micro engineered and molecular systems (NEMS). IEEE, pp 418–421 Xu Q (2017) Design of a constant-force microgripper mechanism for biological micromanipulation[C]//2017. In: IEEE 12th international conference on nano/micro engineered and molecular systems (NEMS). IEEE, pp 418–421
go back to reference Yong YK, Bhikkaji B, Moheimani SOR (2013) Design, modeling, and FPAA-based control of a high-speed atomic force microscope nanopositioner. IEEE/ASME Trans Mechatron 18(3):1060–1071CrossRef Yong YK, Bhikkaji B, Moheimani SOR (2013) Design, modeling, and FPAA-based control of a high-speed atomic force microscope nanopositioner. IEEE/ASME Trans Mechatron 18(3):1060–1071CrossRef
go back to reference Yuguo Cui, Yaoxiang Zhu, Junqiang Lou, Fengyi Feng (2015) Detection of finger displacement and clamping force of piezoelectric micro-clamp [J]. Opt Precis Eng 23(05):1372–1379CrossRef Yuguo Cui, Yaoxiang Zhu, Junqiang Lou, Fengyi Feng (2015) Detection of finger displacement and clamping force of piezoelectric micro-clamp [J]. Opt Precis Eng 23(05):1372–1379CrossRef
go back to reference Zubir MNM, Shirinzadeh B, Tian Y (2009) Development of a novel flexure-based microgripper for high precision micro-object manipulation [J]. Sens Actuators A 150(2):257–266CrossRef Zubir MNM, Shirinzadeh B, Tian Y (2009) Development of a novel flexure-based microgripper for high precision micro-object manipulation [J]. Sens Actuators A 150(2):257–266CrossRef
Metadata
Title
Designing a novel model of 2-DOF large displacement with a stepwise piezoelectric-actuated microgripper
Authors
Xiaodong Chen
Zilong Deng
Siya Hu
Jinhai Gao
Xingjun Gao
Publication date
13-06-2020
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 9/2020
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-020-04915-5

Other articles of this Issue 9/2020

Microsystem Technologies 9/2020 Go to the issue