Skip to main content
Top
Published in: Mechanics of Composite Materials 2/2020

25-05-2020

Determining the Tensile Properties and Dispersion Characterization of CNTs in Epoxy Using Tem and Raman Spectroscopy

Authors: M. Bourchak, K. A. Juhany, N. Salah, R. Ajaj, A. Algarni, F. Scarpa

Published in: Mechanics of Composite Materials | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, transmission electron microscopy (TEM) and Raman spectroscopy were used to assess the dispersion quality of carbon nanotubes (CNTs) in an epoxy matrix. Its ultimate tensile strength (UTS), engineering strain, local strain, and the elastic tensile modulus were determined experimentally. The effect of CNT sonication time in an ethanol medium was also evaluated. A statistical analysis using the t-test approach was employed to clarify how the use of CNTs affects the mechanical properties of the matrix. An increase in the UTS by 10 and 7% was observed in the cases of 0.1 wt.% single-walled carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWCNTs), respectively, but the elastic modulus increased significantly when using MWCNTs. A TEM analysis indicated that the dispersion quality was proportional to the content of CNTs. It is concluded that a CNT-reinforced epoxy matrix is highly sensitive to the amount of CNTs, which can explain the conflicting properties reported for such matrices in the literature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Bourchak, A. Algarni, A. Khan, and U. Khashaba, “Effect of SWCNTs and graphene on the fatigue behavior of antisymmetric GFRP laminate,” Compos. Sci. Technol., 167, 164–173 (2018).CrossRef M. Bourchak, A. Algarni, A. Khan, and U. Khashaba, “Effect of SWCNTs and graphene on the fatigue behavior of antisymmetric GFRP laminate,” Compos. Sci. Technol., 167, 164–173 (2018).CrossRef
2.
go back to reference A. Kausar, I. Rafique, and B. Muhammad, “Review of applications of polymer/carbon nanotubes and epoxy/cnt composites,” Polym–Plast. Technol., 55, No. 11, 1167–1191 (2016).CrossRef A. Kausar, I. Rafique, and B. Muhammad, “Review of applications of polymer/carbon nanotubes and epoxy/cnt composites,” Polym–Plast. Technol., 55, No. 11, 1167–1191 (2016).CrossRef
3.
go back to reference W. Khan, R. Sharma, and P. Saini, in : M. Berber and I. H. Hafez (eds.), Carbon Nanotubes – Current Progress of their Polymer Composites, Ch. 1, InTech, Rijeka, Croatia (2016). W. Khan, R. Sharma, and P. Saini, in : M. Berber and I. H. Hafez (eds.), Carbon Nanotubes – Current Progress of their Polymer Composites, Ch. 1, InTech, Rijeka, Croatia (2016).
4.
go back to reference Y. Jiang, H. Song, and R. Xu, “Research on the dispersion of carbon nanotubes by ultrasonic oscillation, surfactant and centrifugation respectively and fiscal policies for its industrial development,” Ultrason. Sonochem., 48, 30–38 (2018).CrossRef Y. Jiang, H. Song, and R. Xu, “Research on the dispersion of carbon nanotubes by ultrasonic oscillation, surfactant and centrifugation respectively and fiscal policies for its industrial development,” Ultrason. Sonochem., 48, 30–38 (2018).CrossRef
5.
go back to reference K. Almuhammadi, M. Alfano, Y. Yang, and G. Lubineau, “Analysis of interlaminar fracture toughness and damage mechanisms in composite laminates reinforced with sprayed multi–walled carbon nanotubes,” Mater. Des., 53, 921–927 (2014).CrossRef K. Almuhammadi, M. Alfano, Y. Yang, and G. Lubineau, “Analysis of interlaminar fracture toughness and damage mechanisms in composite laminates reinforced with sprayed multi–walled carbon nanotubes,” Mater. Des., 53, 921–927 (2014).CrossRef
6.
go back to reference A. Montazeri, J. Javadpour, A. Khavandi, A. Tcharkhtchi, and A. Mohajeri, “Mechanical properties of multi–walled carbon nanotube/epoxy composites,” Mater. Des., 31, No. 9, 4202–4208 (2010).CrossRef A. Montazeri, J. Javadpour, A. Khavandi, A. Tcharkhtchi, and A. Mohajeri, “Mechanical properties of multi–walled carbon nanotube/epoxy composites,” Mater. Des., 31, No. 9, 4202–4208 (2010).CrossRef
7.
go back to reference U. Khan, K. Ryan, W. J. Blau, and J. N. Coleman, “The effect of solvent choice on the mechanical properties of carbon nanotube–polymer composites,” Compos. Sci. Technol., 67, No. 15–16, 3158–3167 (2007).CrossRef U. Khan, K. Ryan, W. J. Blau, and J. N. Coleman, “The effect of solvent choice on the mechanical properties of carbon nanotube–polymer composites,” Compos. Sci. Technol., 67, No. 15–16, 3158–3167 (2007).CrossRef
8.
go back to reference I. Alig, P. Pötschke, D. Lellinger, T. Skipa, S. Pegel, G. R. Kasaliwal, and T. Villmow, “Establishment, morphology and properties of carbon nanotube networks in polymer melts,” Polymer, 53, No. 1, 4–28 (2012).CrossRef I. Alig, P. Pötschke, D. Lellinger, T. Skipa, S. Pegel, G. R. Kasaliwal, and T. Villmow, “Establishment, morphology and properties of carbon nanotube networks in polymer melts,” Polymer, 53, No. 1, 4–28 (2012).CrossRef
9.
go back to reference A. Algarni, “Enhancing the mechanical properties of aerospace fiber reinforced polymer composite materials using nanoparticles,” PhD Thesis, King Abdulaziz University, KSA (2018). A. Algarni, “Enhancing the mechanical properties of aerospace fiber reinforced polymer composite materials using nanoparticles,” PhD Thesis, King Abdulaziz University, KSA (2018).
10.
go back to reference P.–C. Ma, N. A. Siddiqui, G. Marom, and J.–K. Kim, “Dispersion and functionalization of carbon nanotubes for polymer–based nanocomposites: A review,” Compos. Part A–Appl. S., 41, No. 10, 1345–1367 (2010). P.–C. Ma, N. A. Siddiqui, G. Marom, and J.–K. Kim, “Dispersion and functionalization of carbon nanotubes for polymer–based nanocomposites: A review,” Compos. Part A–Appl. S., 41, No. 10, 1345–1367 (2010).
11.
go back to reference S. Bose, R.A. Khare, and P. Moldenaers, “Assessing the strengths and weaknesses of various types of pre–treatments of carbon nanotubes on the properties of polymer/carbon nanotubes composites: a critical review,” Polymer, 51, No. 5, 975–993 (2010). S. Bose, R.A. Khare, and P. Moldenaers, “Assessing the strengths and weaknesses of various types of pre–treatments of carbon nanotubes on the properties of polymer/carbon nanotubes composites: a critical review,” Polymer, 51, No. 5, 975–993 (2010).
12.
go back to reference L.–J. Cui, Y.–B. Wang, W.–J. Xiu, W.–Y. Wang, L.–H. Xu, X.–B. Xu, Y. Meng, L.–Y. Li, J. Gao, L.–T. Chen, and H.–Z. Geng, “Effect of functionalization of multi–walled carbon nanotube on the curing behavior and mechanical property of multi–walled carbon nanotube/epoxy composites,” Mater. Des., 49, 279–284 (2013). L.–J. Cui, Y.–B. Wang, W.–J. Xiu, W.–Y. Wang, L.–H. Xu, X.–B. Xu, Y. Meng, L.–Y. Li, J. Gao, L.–T. Chen, and H.–Z. Geng, “Effect of functionalization of multi–walled carbon nanotube on the curing behavior and mechanical property of multi–walled carbon nanotube/epoxy composites,” Mater. Des., 49, 279–284 (2013).
13.
go back to reference A. Tugrul Seyhan, M. Tanoglu, and K. Schulte, “Mode I and mode II fracture toughness of e–glass non–crimp fabric/ carbon nanotube (CNT) modified polymer based composites,” Eng. Fract. Mech., 75, No. 18, 5151–5162 (2008).CrossRef A. Tugrul Seyhan, M. Tanoglu, and K. Schulte, “Mode I and mode II fracture toughness of e–glass non–crimp fabric/ carbon nanotube (CNT) modified polymer based composites,” Eng. Fract. Mech., 75, No. 18, 5151–5162 (2008).CrossRef
14.
go back to reference S. Rahmanian, A. R. Suraya, M. A Shazed, R. Zahari, and E. S. Zainudin, “Mechanical characterization of epoxy composite with multiscale reinforcements: carbon nanotubes and short carbon fibers,” Mater. Des., 60, 34–40 (2014).CrossRef S. Rahmanian, A. R. Suraya, M. A Shazed, R. Zahari, and E. S. Zainudin, “Mechanical characterization of epoxy composite with multiscale reinforcements: carbon nanotubes and short carbon fibers,” Mater. Des., 60, 34–40 (2014).CrossRef
15.
go back to reference I. O’Connor, H. Hayden, S. O’Connor , J. N. Coleman, and Y. K. Gun’ko, “Polymer reinforcement with kevlar–coated carbon nanotubes,” J. Phys. Chem. C., 113, No. 47, 20184–20192 (2009)CrossRef I. O’Connor, H. Hayden, S. O’Connor , J. N. Coleman, and Y. K. Gun’ko, “Polymer reinforcement with kevlar–coated carbon nanotubes,” J. Phys. Chem. C., 113, No. 47, 20184–20192 (2009)CrossRef
16.
go back to reference K. J . Green, D. R. Dean, U. K. Vaidya, and E. Nyairo, “Multiscale fiber reinforced composites based on a carbon nanofiber/epoxy nanophased polymer matrix: synthesis, mechanical, and thermomechanical behavior,” Compos. Part A–Appl. S., 40, No. 9, 1470–1475 (2009). K. J . Green, D. R. Dean, U. K. Vaidya, and E. Nyairo, “Multiscale fiber reinforced composites based on a carbon nanofiber/epoxy nanophased polymer matrix: synthesis, mechanical, and thermomechanical behavior,” Compos. Part A–Appl. S., 40, No. 9, 1470–1475 (2009).
17.
go back to reference E. N. Ganesh, “Single walled and multi walled carbon nanotube structure, synthesis and applications,” IJITEE, 2, No. 4, 2278–3075 (2013). E. N. Ganesh, “Single walled and multi walled carbon nanotube structure, synthesis and applications,” IJITEE, 2, No. 4, 2278–3075 (2013).
18.
go back to reference M. R. Ayatollahi, S. Shadlou, M. M. Shokrieh, and M. Chitsazzadeh, “Effect of multi–walled carbon nanotube aspect ratio on mechanical and electrical properties of epoxy–based nanocomposites,” Polym. Test., 30, No. 5, 548–556 (2011).CrossRef M. R. Ayatollahi, S. Shadlou, M. M. Shokrieh, and M. Chitsazzadeh, “Effect of multi–walled carbon nanotube aspect ratio on mechanical and electrical properties of epoxy–based nanocomposites,” Polym. Test., 30, No. 5, 548–556 (2011).CrossRef
19.
go back to reference M. Kumar and Y. Ando, “Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production,” J. Nanosci. Nanotechno., 10, No. 6, 3739–3758 (2010).CrossRef M. Kumar and Y. Ando, “Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production,” J. Nanosci. Nanotechno., 10, No. 6, 3739–3758 (2010).CrossRef
20.
go back to reference R. Xiang, E. Einarsson, J. Okawa, Y. Miyauchi, and S. Maruyama, “Acetylene–accelerated alcohol catalytic chemical vapor deposition growth of vertically aligned single–walled carbon nanotubes,” J. Phys. Chem. C, 113, No. 18, 7511–7515 (2009).CrossRef R. Xiang, E. Einarsson, J. Okawa, Y. Miyauchi, and S. Maruyama, “Acetylene–accelerated alcohol catalytic chemical vapor deposition growth of vertically aligned single–walled carbon nanotubes,” J. Phys. Chem. C, 113, No. 18, 7511–7515 (2009).CrossRef
21.
go back to reference D.–J. Yun, K. Hong, S. hyun Kim, W.–M. Yun, J. Jang, W.–S. Kwon, C.–E. Park, and S.–W. Rhee, “Multiwall carbon nanotube and poly(3,4–ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) composite films for transistor and inverter devices,” ACS. Appl. Mater. Inter., 3, No. 1, 43–49 (2011).CrossRef D.–J. Yun, K. Hong, S. hyun Kim, W.–M. Yun, J. Jang, W.–S. Kwon, C.–E. Park, and S.–W. Rhee, “Multiwall carbon nanotube and poly(3,4–ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) composite films for transistor and inverter devices,” ACS. Appl. Mater. Inter., 3, No. 1, 43–49 (2011).CrossRef
22.
go back to reference Q. Zhang, J. Wu, L. Gao, T. Liu, W. Zhong, G. Sui, G. Zheng, W. Fang, and X. Yang, “Dispersion stability of functionalized MWCNT in the epoxy–amine system and its effects on mechanical and interfacial properties of carbon fiber composites,” Mater. Des., 94, 392–402 (2016).CrossRef Q. Zhang, J. Wu, L. Gao, T. Liu, W. Zhong, G. Sui, G. Zheng, W. Fang, and X. Yang, “Dispersion stability of functionalized MWCNT in the epoxy–amine system and its effects on mechanical and interfacial properties of carbon fiber composites,” Mater. Des., 94, 392–402 (2016).CrossRef
23.
go back to reference K. Jagadish, S. Srikantaswamy, K. Byrappa, L. Shruthi, and M. R. Abhilash, “Dispersion of multiwall carbon nanotubes in organic solvents through hydrothermal supercritical condition,” J. Nanomater., 2015, 1–6 (2015).CrossRef K. Jagadish, S. Srikantaswamy, K. Byrappa, L. Shruthi, and M. R. Abhilash, “Dispersion of multiwall carbon nanotubes in organic solvents through hydrothermal supercritical condition,” J. Nanomater., 2015, 1–6 (2015).CrossRef
24.
go back to reference J. Zhou, J. Cheiftz, R. Li, F. Wang, X. Zhou, T.–K. Sham, X. Sun, and Z. Ding, “Tailoring multi–wall carbon nanotubes for smaller nanostructures,” Carbon, 47, No. 3, 829–838 (2009).CrossRef J. Zhou, J. Cheiftz, R. Li, F. Wang, X. Zhou, T.–K. Sham, X. Sun, and Z. Ding, “Tailoring multi–wall carbon nanotubes for smaller nanostructures,” Carbon, 47, No. 3, 829–838 (2009).CrossRef
25.
go back to reference C.–X. Liu and J.–W. Choi, “Improved dispersion of carbon nanotubes in polymers at high concentrations,” Nanomaterials, 2, No. 4, 329–347 (2012).CrossRef C.–X. Liu and J.–W. Choi, “Improved dispersion of carbon nanotubes in polymers at high concentrations,” Nanomaterials, 2, No. 4, 329–347 (2012).CrossRef
26.
go back to reference S. Manivannan, I. O. Jeong, J. H. Ryu, C. S. Lee, K. S. Kim, J. Jang, and K. C. Park, “Dispersion of single–walled carbon nanotubes in aqueous and organic solvents through a polymer wrapping functionalization, “ J. Mater. Sci. Mater. Electron., 20, No. 3, 223–229 (2009).CrossRef S. Manivannan, I. O. Jeong, J. H. Ryu, C. S. Lee, K. S. Kim, J. Jang, and K. C. Park, “Dispersion of single–walled carbon nanotubes in aqueous and organic solvents through a polymer wrapping functionalization, “ J. Mater. Sci. Mater. Electron., 20, No. 3, 223–229 (2009).CrossRef
27.
go back to reference Q. Li, M. Zaiser, and V. Koutsos, “Carbon nanotube/epoxy resin composites using a block copolymer as a dispersing agent,” Phys. Status. Solidi., 201, No. 13, R89–91 (2004).CrossRef Q. Li, M. Zaiser, and V. Koutsos, “Carbon nanotube/epoxy resin composites using a block copolymer as a dispersing agent,” Phys. Status. Solidi., 201, No. 13, R89–91 (2004).CrossRef
28.
go back to reference X. C. Zhang, H. X. Peng, A. P. Limmack, and F. Scarpa, “Viscoelastic damping behaviour of cup stacked carbon nanotube modified epoxy nanocomposites with tailored interfacial condition and re–agglomeration,” Compos. Sci. Technol., 105, 66–72 (2014).CrossRef X. C. Zhang, H. X. Peng, A. P. Limmack, and F. Scarpa, “Viscoelastic damping behaviour of cup stacked carbon nanotube modified epoxy nanocomposites with tailored interfacial condition and re–agglomeration,” Compos. Sci. Technol., 105, 66–72 (2014).CrossRef
29.
go back to reference F. H. Gojny, M. H. G. Wichmann, B. Fiedler, and K. Schulte, “Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – a comparative study,” Compos. Sci. Technol., 65, No. 15–16, 2300–2313 (2005).CrossRef F. H. Gojny, M. H. G. Wichmann, B. Fiedler, and K. Schulte, “Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – a comparative study,” Compos. Sci. Technol., 65, No. 15–16, 2300–2313 (2005).CrossRef
30.
go back to reference M. Kim, Y.–B. Park, O. I. Okoli, and C. Zhang, “Processing, characterization, and modeling of carbon nanotube–reinforced multiscale composites,” Compos. Sci. Technol., 69, No. 3–4, 335–342 (2009). M. Kim, Y.–B. Park, O. I. Okoli, and C. Zhang, “Processing, characterization, and modeling of carbon nanotube–reinforced multiscale composites,” Compos. Sci. Technol., 69, No. 3–4, 335–342 (2009).
31.
go back to reference M. Jamal–Omidi and M. ShayanMehr, “Improving the dispersion of SWNT in epoxy resin through a simple Multi–Stage method,” J. King Saud Univ. – Sci., 31, No. 2, 202–208 (2019). M. Jamal–Omidi and M. ShayanMehr, “Improving the dispersion of SWNT in epoxy resin through a simple Multi–Stage method,” J. King Saud Univ. – Sci., 31, No. 2, 202–208 (2019).
32.
go back to reference M. Yourdkhani and P. Hubert, “A systematic study on dispersion stability of carbon nanotube–modified epoxy resins,” Carbon, 81, No. 1, 251–259 (2015).CrossRef M. Yourdkhani and P. Hubert, “A systematic study on dispersion stability of carbon nanotube–modified epoxy resins,” Carbon, 81, No. 1, 251–259 (2015).CrossRef
33.
go back to reference L. Bokobza and J. Zhang, “Raman spectroscopic characterization of multiwall carbon nanotubes and of composites,” Express Polym. Lett., 6, No. 7, 601–608 (2012).CrossRef L. Bokobza and J. Zhang, “Raman spectroscopic characterization of multiwall carbon nanotubes and of composites,” Express Polym. Lett., 6, No. 7, 601–608 (2012).CrossRef
34.
go back to reference C. Vix–Guterl, M. Couzi, J. Dentzer, M. Trinquecoste, and P. Delhaes, “Surface characterizations of carbon multiwall nanotubes: comparison between surface active sites and raman spectroscopy,” J. Phys. Chem. B, 108, No. 50, 19361–19367 (2004).CrossRef C. Vix–Guterl, M. Couzi, J. Dentzer, M. Trinquecoste, and P. Delhaes, “Surface characterizations of carbon multiwall nanotubes: comparison between surface active sites and raman spectroscopy,” J. Phys. Chem. B, 108, No. 50, 19361–19367 (2004).CrossRef
35.
go back to reference ASTM, D638–02a. Standard Test Method for Tensile Properties of Plastics. ASTM International, West Conshohocken, PA, USA (2002). ASTM, D638–02a. Standard Test Method for Tensile Properties of Plastics. ASTM International, West Conshohocken, PA, USA (2002).
36.
go back to reference D. Ren, “Understanding statistical hypothesis testing,” J. Emerg. Nurs., 35, No. 1, 57–59 (2009).CrossRef D. Ren, “Understanding statistical hypothesis testing,” J. Emerg. Nurs., 35, No. 1, 57–59 (2009).CrossRef
37.
go back to reference S. M. C. Pereira and G. Leslie, “Hypothesis testing,” Aust. Crit. Care, 22, No. 4, 187–191 (2009).CrossRef S. M. C. Pereira and G. Leslie, “Hypothesis testing,” Aust. Crit. Care, 22, No. 4, 187–191 (2009).CrossRef
Metadata
Title
Determining the Tensile Properties and Dispersion Characterization of CNTs in Epoxy Using Tem and Raman Spectroscopy
Authors
M. Bourchak
K. A. Juhany
N. Salah
R. Ajaj
A. Algarni
F. Scarpa
Publication date
25-05-2020
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 2/2020
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-020-09874-6

Other articles of this Issue 2/2020

Mechanics of Composite Materials 2/2020 Go to the issue

Premium Partners