Skip to main content
Top
Published in: Polymer Bulletin 9/2021

24-08-2020 | Original Paper

Development of chitosan membrane using non-toxic crosslinkers for potential wound dressing applications

Authors: Babak Moghadas, Atefeh Solouk, Davoud Sadeghi

Published in: Polymer Bulletin | Issue 9/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

There is a myriad of ways to crosslink hydrogel wound dressings; however, they require additional steps to remove the residue of the crosslinking agents, or their byproducts in biological environments are toxic. In this study, we studied and characterized the crosslinking of the chitosan hydrogels by various dicarboxylic acids, including oxalic acid, adipic acid, and sebacic acid under vacuum at 90 °C. The concentrations of the crosslinkers in the crosslinked hydrogels are tolerable for the cells, and the membranes can be used after crosslinking without complicated additional steps to remove the unreacted residues. The molar ratio of the crosslinkers was calculated based on the stoichiometry of the chitosan amine groups. Attenuated total reflectance Fourier transform infrared spectroscopy revealed amide linkage formation between amine groups of the chitosan and carboxyl groups of the dicarboxylic acids at 90 °C. The results showed that the chitosan membranes crosslinked with oxalic acid had higher Young's modulus (~ 1042 N/mm2) and ultimate tensile strength (~ 75 N/mm2) in comparison with the other dicarboxylic acids. Moreover, the membranes crosslinked with oxalic acid showed a weight loss of ~ 5.4% after 24 h at double-distilled water, which was drastically lower than that of the others. Thus, oxalic acid was selected as the most effective crosslinker. Cell viability assay, using mouse fibroblast (L929) cells, was conducted on the mechanically optimized membranes. The fibroblast cells successfully attached and spread well on the surface of the membranes. In conclusion, the obtained results suggested oxalic acid as an effective and non-toxic crosslinker for chitosan-based membranes for wound dressing applications.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Campos MG, Satsangi N, Rawls HR, Mei LH (2009) Chitosan cross‐linked films for drug delivery application. Paper presented at: macromolecular symposia Campos MG, Satsangi N, Rawls HR, Mei LH (2009) Chitosan cross‐linked films for drug delivery application. Paper presented at: macromolecular symposia
2.
go back to reference Zuo P-P, Feng H-F, Xu Z-Z et al (2013) fabrication of biocompatible and mechanically reinforced graphene oxide–chitosan nanocomposite films. Chem Cent J 7(1):39–39CrossRef Zuo P-P, Feng H-F, Xu Z-Z et al (2013) fabrication of biocompatible and mechanically reinforced graphene oxide–chitosan nanocomposite films. Chem Cent J 7(1):39–39CrossRef
3.
go back to reference Hsiao Y-C, Chen C-N, Chen Y-T, Yang T-L (2013) Controlling branching structure formation of the salivary gland by the degree of chitosan deacetylation. Acta Biomater 9(9):8214–8223CrossRef Hsiao Y-C, Chen C-N, Chen Y-T, Yang T-L (2013) Controlling branching structure formation of the salivary gland by the degree of chitosan deacetylation. Acta Biomater 9(9):8214–8223CrossRef
4.
go back to reference Chien R-C, Yen M-T, Mau J-L (2016) Antimicrobial and antitumor activities of chitosan from shiitake stipes, compared to commercial chitosan from crab shells. Carbohydr Polym 138:259–264CrossRef Chien R-C, Yen M-T, Mau J-L (2016) Antimicrobial and antitumor activities of chitosan from shiitake stipes, compared to commercial chitosan from crab shells. Carbohydr Polym 138:259–264CrossRef
5.
go back to reference Tachaboonyakiat W, Sukpaiboon E, Pinyakong O (2014) Development of an antibacterial chitin betainate wound dressing. Polym J 46(8):505–510CrossRef Tachaboonyakiat W, Sukpaiboon E, Pinyakong O (2014) Development of an antibacterial chitin betainate wound dressing. Polym J 46(8):505–510CrossRef
6.
go back to reference Liu Z, Ge X, Lu Y, Dong S, Zhao Y, Zeng M (2012) Effects of chitosan molecular weight and degree of deacetylation on the properties of gelatine-based films. Food Hydrocolloids 26(1):311–317CrossRef Liu Z, Ge X, Lu Y, Dong S, Zhao Y, Zeng M (2012) Effects of chitosan molecular weight and degree of deacetylation on the properties of gelatine-based films. Food Hydrocolloids 26(1):311–317CrossRef
7.
go back to reference Hattori H, Ishihara M (2015) Changes in blood aggregation with differences in molecular weight and degree of deacetylation of chitosan. Biomed Mater 10(1):015014CrossRef Hattori H, Ishihara M (2015) Changes in blood aggregation with differences in molecular weight and degree of deacetylation of chitosan. Biomed Mater 10(1):015014CrossRef
8.
go back to reference Dashtimoghadam E, Mirzadeh H, Taromi FA, Nyström B (2013) Microfluidic self-assembly of polymeric nanoparticles with tunable compactness for controlled drug delivery. Polymer 54(18):4972–4979CrossRef Dashtimoghadam E, Mirzadeh H, Taromi FA, Nyström B (2013) Microfluidic self-assembly of polymeric nanoparticles with tunable compactness for controlled drug delivery. Polymer 54(18):4972–4979CrossRef
9.
go back to reference Majedi FS, Hasani-Sadrabadi MM, VanDersarl JJ et al (2014) On-chip fabrication of paclitaxel-loaded chitosan nanoparticles for cancer therapeutics. Adv Funct Mater 24(4):432–441CrossRef Majedi FS, Hasani-Sadrabadi MM, VanDersarl JJ et al (2014) On-chip fabrication of paclitaxel-loaded chitosan nanoparticles for cancer therapeutics. Adv Funct Mater 24(4):432–441CrossRef
10.
go back to reference Meng X, Tian F, Yang J, He C-N, Xing N, Li F (2010) Chitosan and alginate polyelectrolyte complex membranes and their properties for wound dressing application. J Mater Sci Mater Med 21(5):1751–1759CrossRef Meng X, Tian F, Yang J, He C-N, Xing N, Li F (2010) Chitosan and alginate polyelectrolyte complex membranes and their properties for wound dressing application. J Mater Sci Mater Med 21(5):1751–1759CrossRef
11.
go back to reference Karbasi S, Khorasani SN, Ebrahimi S, Khalili S, Fekrat F, Sadeghi D (2016) Preparation and characterization of poly(hydroxy butyrate)/chitosan blend scaffolds for tissue engineering applications. Adv Biomed Res 5:177CrossRef Karbasi S, Khorasani SN, Ebrahimi S, Khalili S, Fekrat F, Sadeghi D (2016) Preparation and characterization of poly(hydroxy butyrate)/chitosan blend scaffolds for tissue engineering applications. Adv Biomed Res 5:177CrossRef
12.
go back to reference Kojima K, Okamoto Y, Miyatake K, Kitamura Y, Minami S (1998) Collagen typing of granulation tissue induced by chitin and chitosan. Carbohydr Polym 37(2):109–113CrossRef Kojima K, Okamoto Y, Miyatake K, Kitamura Y, Minami S (1998) Collagen typing of granulation tissue induced by chitin and chitosan. Carbohydr Polym 37(2):109–113CrossRef
13.
go back to reference Ueno H, Mori T, Fujinaga T (2001) Topical formulations and wound healing applications of chitosan. Adv Drug Deliv Rev 52(2):105–115CrossRef Ueno H, Mori T, Fujinaga T (2001) Topical formulations and wound healing applications of chitosan. Adv Drug Deliv Rev 52(2):105–115CrossRef
14.
go back to reference Benhabiles M, Salah R, Lounici H, Drouiche N, Goosen M, Mameri N (2012) Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocolloids 29(1):48–56CrossRef Benhabiles M, Salah R, Lounici H, Drouiche N, Goosen M, Mameri N (2012) Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocolloids 29(1):48–56CrossRef
15.
go back to reference Dragostin OM, Samal SK, Dash M et al (2016) New antimicrobial chitosan derivatives for wound dressing applications. Carbohydr Polym 141:28–40CrossRef Dragostin OM, Samal SK, Dash M et al (2016) New antimicrobial chitosan derivatives for wound dressing applications. Carbohydr Polym 141:28–40CrossRef
16.
go back to reference Moghadas B, Dashtimoghadam E, Mirzadeh H, Seidi F, Hasani-Sadrabadi MM (2016) Novel chitosan-based nanobiohybrid membranes for wound dressing applications. RSC Adv 6(10):7701–7711CrossRef Moghadas B, Dashtimoghadam E, Mirzadeh H, Seidi F, Hasani-Sadrabadi MM (2016) Novel chitosan-based nanobiohybrid membranes for wound dressing applications. RSC Adv 6(10):7701–7711CrossRef
17.
go back to reference Je J-Y, Kim S-K (2006) Chitosan derivatives killed bacteria by disrupting the outer and inner membrane. J Agric Food Chem 54(18):6629–6633CrossRef Je J-Y, Kim S-K (2006) Chitosan derivatives killed bacteria by disrupting the outer and inner membrane. J Agric Food Chem 54(18):6629–6633CrossRef
18.
go back to reference Helander IM, Nurmiaho-Lassila EL, Ahvenainen R, Rhoades J, Roller S (2001) Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. Int J Food Microbiol 71(2):235–244CrossRef Helander IM, Nurmiaho-Lassila EL, Ahvenainen R, Rhoades J, Roller S (2001) Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. Int J Food Microbiol 71(2):235–244CrossRef
19.
go back to reference Kim S-K (2010) Chitin, chitosan, oligosaccharides and their derivatives: biological activities and applications. CRC Press, Boca RatonCrossRef Kim S-K (2010) Chitin, chitosan, oligosaccharides and their derivatives: biological activities and applications. CRC Press, Boca RatonCrossRef
20.
go back to reference López-Mata MA, Ruiz-Cruz S, Silva-Beltrán NP, Ornelas-Paz JJ, Zamudio-Flores PB, Burruel-Ibarra SE (2013) Physicochemical, antimicrobial and antioxidant properties of chitosan films incorporated with carvacrol. Molecules 18(11):13735–13753CrossRef López-Mata MA, Ruiz-Cruz S, Silva-Beltrán NP, Ornelas-Paz JJ, Zamudio-Flores PB, Burruel-Ibarra SE (2013) Physicochemical, antimicrobial and antioxidant properties of chitosan films incorporated with carvacrol. Molecules 18(11):13735–13753CrossRef
21.
go back to reference Fernandez-Saiz P, Lagaron J, Ocio M (2009) Optimization of the film-forming and storage conditions of chitosan as an antimicrobial agent. J Agric Food Chem 57(8):3298–3307CrossRef Fernandez-Saiz P, Lagaron J, Ocio M (2009) Optimization of the film-forming and storage conditions of chitosan as an antimicrobial agent. J Agric Food Chem 57(8):3298–3307CrossRef
22.
go back to reference Li Q, Dunn E, Grandmaison E, Goosen M (1992) Applications and properties of chitosan. J Bioact Compat Polym 7(4):370–397CrossRef Li Q, Dunn E, Grandmaison E, Goosen M (1992) Applications and properties of chitosan. J Bioact Compat Polym 7(4):370–397CrossRef
23.
go back to reference Kamoun EA, Chen X, Eldin MSM, Kenawy E-RS (2015) Crosslinked poly(vinyl alcohol) hydrogels for wound dressing applications: a review of remarkably blended polymers. Arab J Chem 8(1):1–14CrossRef Kamoun EA, Chen X, Eldin MSM, Kenawy E-RS (2015) Crosslinked poly(vinyl alcohol) hydrogels for wound dressing applications: a review of remarkably blended polymers. Arab J Chem 8(1):1–14CrossRef
24.
go back to reference Elsner JJ, Shefy-Peleg A, Zilberman M (2010) Novel biodegradable composite wound dressings with controlled release of antibiotics: microstructure, mechanical and physical properties. J Biomed Mater Res B Appl Biomater 93(2):425–435CrossRef Elsner JJ, Shefy-Peleg A, Zilberman M (2010) Novel biodegradable composite wound dressings with controlled release of antibiotics: microstructure, mechanical and physical properties. J Biomed Mater Res B Appl Biomater 93(2):425–435CrossRef
25.
go back to reference Cai M, Gong J, Cao J, Chen Y, Luo X (2013) In situ chemically crosslinked chitosan membrane by adipic acid. J Appl Polym Sci 128(5):3308–3314CrossRef Cai M, Gong J, Cao J, Chen Y, Luo X (2013) In situ chemically crosslinked chitosan membrane by adipic acid. J Appl Polym Sci 128(5):3308–3314CrossRef
26.
go back to reference Muzzarelli RA (2009) Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydr Polym 77(1):1–9CrossRef Muzzarelli RA (2009) Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydr Polym 77(1):1–9CrossRef
27.
go back to reference Chen P-H, Kuo T-Y, Liu F-H et al (2008) Use of dicarboxylic acids to improve and diversify the material properties of porous chitosan membranes. J Agric Food Chem 56(19):9015–9021CrossRef Chen P-H, Kuo T-Y, Liu F-H et al (2008) Use of dicarboxylic acids to improve and diversify the material properties of porous chitosan membranes. J Agric Food Chem 56(19):9015–9021CrossRef
29.
go back to reference Jamalpoor Z, Mirzadeh H, Joghataei MT, Zeini D, Bagheri-Khoulenjani S, Nourani MR (2015) Fabrication of cancellous biomimetic chitosan-based nanocomposite scaffolds applying a combinational method for bone tissue engineering. J Biomed Mater Res Part A 103(5):1882–1892CrossRef Jamalpoor Z, Mirzadeh H, Joghataei MT, Zeini D, Bagheri-Khoulenjani S, Nourani MR (2015) Fabrication of cancellous biomimetic chitosan-based nanocomposite scaffolds applying a combinational method for bone tissue engineering. J Biomed Mater Res Part A 103(5):1882–1892CrossRef
30.
go back to reference Bonakdar S, Emami SH, Shokrgozar MA, Farhadi A, Ahmadi SAH, Amanzadeh A (2010) Preparation and characterization of polyvinyl alcohol hydrogels crosslinked by biodegradable polyurethane for tissue engineering of cartilage. Mater Sci Eng C 30(4):636–643CrossRef Bonakdar S, Emami SH, Shokrgozar MA, Farhadi A, Ahmadi SAH, Amanzadeh A (2010) Preparation and characterization of polyvinyl alcohol hydrogels crosslinked by biodegradable polyurethane for tissue engineering of cartilage. Mater Sci Eng C 30(4):636–643CrossRef
31.
go back to reference ISO B. 10993-5 (1999) Biological evaluation of medical devices. Tests for in vitro cytotoxicity ISO B. 10993-5 (1999) Biological evaluation of medical devices. Tests for in vitro cytotoxicity
33.
go back to reference Mansouri M, Nazarpak MH, Solouk A, Akbari S, Hasani-Sadrabadi MM (2017) Magnetic responsive of paclitaxel delivery system based on SPION and palmitoyl chitosan. J Magn Magn Mater 421:316–325CrossRef Mansouri M, Nazarpak MH, Solouk A, Akbari S, Hasani-Sadrabadi MM (2017) Magnetic responsive of paclitaxel delivery system based on SPION and palmitoyl chitosan. J Magn Magn Mater 421:316–325CrossRef
34.
go back to reference Yalçınkaya S, Demetgül C, Timur M, Çolak N (2010) Electrochemical synthesis and characterization of polypyrrole/chitosan composite on platinum electrode: its electrochemical and thermal behaviors. Carbohydr Polym 79(4):908–913CrossRef Yalçınkaya S, Demetgül C, Timur M, Çolak N (2010) Electrochemical synthesis and characterization of polypyrrole/chitosan composite on platinum electrode: its electrochemical and thermal behaviors. Carbohydr Polym 79(4):908–913CrossRef
35.
go back to reference Ritthidej GC, Phaechamud T, Koizumi T (2002) Moist heat treatment on physicochemical change of chitosan salt films. Int J Pharm 232(1):11–22CrossRef Ritthidej GC, Phaechamud T, Koizumi T (2002) Moist heat treatment on physicochemical change of chitosan salt films. Int J Pharm 232(1):11–22CrossRef
36.
go back to reference Ghosh A, Ali MA (2012) Studies on physicochemical characteristics of chitosan derivatives with dicarboxylic acids. J Mater Sci 47(3):1196–1204CrossRef Ghosh A, Ali MA (2012) Studies on physicochemical characteristics of chitosan derivatives with dicarboxylic acids. J Mater Sci 47(3):1196–1204CrossRef
37.
go back to reference Tsao CT, Chang CH, Li YD et al (2011) Development of chitosan/dicarboxylic acid hydrogels as wound dressing materials. J Bioact Compat Polym 26(5):519–536CrossRef Tsao CT, Chang CH, Li YD et al (2011) Development of chitosan/dicarboxylic acid hydrogels as wound dressing materials. J Bioact Compat Polym 26(5):519–536CrossRef
38.
go back to reference Szymańska E, Winnicka K (2015) Stability of chitosan—a challenge for pharmaceutical and biomedical applications. Mar Drugs 13(4):1819–1846CrossRef Szymańska E, Winnicka K (2015) Stability of chitosan—a challenge for pharmaceutical and biomedical applications. Mar Drugs 13(4):1819–1846CrossRef
39.
go back to reference Güneş S, Tıhmınlıoğlu F (2017) Hypericum perforatum incorporated chitosan films as potential bioactive wound dressing material. Int J Biol Macromol 102:933–943CrossRef Güneş S, Tıhmınlıoğlu F (2017) Hypericum perforatum incorporated chitosan films as potential bioactive wound dressing material. Int J Biol Macromol 102:933–943CrossRef
40.
go back to reference Tığlı RS, Karakeçili A, Gümüşderelioğlu M (2007) In vitro characterization of chitosan scaffolds: influence of composition and deacetylation degree. J Mater Sci Mater Med 18(9):1665–1674CrossRef Tığlı RS, Karakeçili A, Gümüşderelioğlu M (2007) In vitro characterization of chitosan scaffolds: influence of composition and deacetylation degree. J Mater Sci Mater Med 18(9):1665–1674CrossRef
41.
go back to reference Ma J, Wang H, He B, Chen J (2001) A preliminary in vitro study on the fabrication and tissue engineering applications of a novel chitosan bilayer material as a scaffold of human neofetal dermal fibroblasts. Biomaterials 22(4):331–336CrossRef Ma J, Wang H, He B, Chen J (2001) A preliminary in vitro study on the fabrication and tissue engineering applications of a novel chitosan bilayer material as a scaffold of human neofetal dermal fibroblasts. Biomaterials 22(4):331–336CrossRef
42.
go back to reference Tyliszczak B, Drabczyk A, Kudłacik-Kramarczyk S, Bialik-Wąs K, Sobczak-Kupiec A (2017) In vitro cytotoxicity of hydrogels based on chitosan and modified with gold nanoparticles. J Polym Res 24(10):153CrossRef Tyliszczak B, Drabczyk A, Kudłacik-Kramarczyk S, Bialik-Wąs K, Sobczak-Kupiec A (2017) In vitro cytotoxicity of hydrogels based on chitosan and modified with gold nanoparticles. J Polym Res 24(10):153CrossRef
43.
go back to reference Tyliszczak B, Drabczyk A, Kudłacik-Kramarczyk S, Bialik-Wąs K, Kijkowska R, Sobczak-Kupiec A (2017) Preparation and cytotoxicity of chitosan-based hydrogels modified with silver nanoparticles. Colloids Surf B 160:325–330CrossRef Tyliszczak B, Drabczyk A, Kudłacik-Kramarczyk S, Bialik-Wąs K, Kijkowska R, Sobczak-Kupiec A (2017) Preparation and cytotoxicity of chitosan-based hydrogels modified with silver nanoparticles. Colloids Surf B 160:325–330CrossRef
Metadata
Title
Development of chitosan membrane using non-toxic crosslinkers for potential wound dressing applications
Authors
Babak Moghadas
Atefeh Solouk
Davoud Sadeghi
Publication date
24-08-2020
Publisher
Springer Berlin Heidelberg
Published in
Polymer Bulletin / Issue 9/2021
Print ISSN: 0170-0839
Electronic ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-020-03352-8

Other articles of this Issue 9/2021

Polymer Bulletin 9/2021 Go to the issue

Premium Partners