Skip to main content
Top

2019 | OriginalPaper | Chapter

11. Diamond Probes Technology

Authors : Thomas Hantschel, Thierry Conard, Jason Kilpatrick, Graham Cross

Published in: Electrical Atomic Force Microscopy for Nanoelectronics

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The superior properties of diamond being the hardest, best thermally conductive, high chemical inert and low friction material makes it very attractive for use as a tip material in scanning probe microscopy (SPM). The commercial availability of micromachined Si probes at the beginning of the 1990s triggered soon the interest and need for different tip coatings such as diamond which was first wanted for increasing the tip lifetime. Although first reports on diamond growth from the wafer phase were first reported in the 1980s, it took until the early 1990s before first applications using diamond grown by chemical vapor deposition (CVD) appeared on the market. Therefore, the development of fabrication processes for diamond tips, especially for electrically conductive ones, required also substantial efforts on the development of the diamond coating knowhow itself. As commercial probe companies considered diamond probes as specialty probes with a small market size in the early days, it explains well why most diamond tip innovations were established by universities and research centers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference P. De Wolf, J. Snauwaert, L. Hellemans, T. Clarysse, W. Vandervorst, M. D’Olieslaeger, D. Quaeyhaegens, Lateral and vertical dopant profiling in semiconductors by atomic force microscopy using conducting tips. J. Vac. Sci. Technol., A 13, 1699–1704 (1995)ADSCrossRef P. De Wolf, J. Snauwaert, L. Hellemans, T. Clarysse, W. Vandervorst, M. D’Olieslaeger, D. Quaeyhaegens, Lateral and vertical dopant profiling in semiconductors by atomic force microscopy using conducting tips. J. Vac. Sci. Technol., A 13, 1699–1704 (1995)ADSCrossRef
2.
go back to reference P. Niedermann, W. Hänni, N. Blanc, R. Christoph, J. Burger, Chemical vapor deposition diamond for tips in nanoprobe experiments. J. Vac. Sci. Technol. A 14, 1233–1236 (1996)ADSCrossRef P. Niedermann, W. Hänni, N. Blanc, R. Christoph, J. Burger, Chemical vapor deposition diamond for tips in nanoprobe experiments. J. Vac. Sci. Technol. A 14, 1233–1236 (1996)ADSCrossRef
4.
go back to reference T. Hantschel, P. Niedermann, T. Trenkler, W. Vandervorst, Highly conductive diamond probes for scanning spreading resistance microscopy. Appl. Phys. Lett. 76, 1603–1605 (2000)ADSCrossRef T. Hantschel, P. Niedermann, T. Trenkler, W. Vandervorst, Highly conductive diamond probes for scanning spreading resistance microscopy. Appl. Phys. Lett. 76, 1603–1605 (2000)ADSCrossRef
5.
7.
go back to reference N. Moldovan, Z. Dai, H. Zeng, J.A. Carlisle, T.D.B. Jacobs, V. Vahdat, D.S. Grierson, J. Liu, K.T. Turner, R.W. Carpick, Advances in manufacturing of molded tips for scanning probe microscopy. J. Microelectromech. Syst. 21, 431 (2012)CrossRef N. Moldovan, Z. Dai, H. Zeng, J.A. Carlisle, T.D.B. Jacobs, V. Vahdat, D.S. Grierson, J. Liu, K.T. Turner, R.W. Carpick, Advances in manufacturing of molded tips for scanning probe microscopy. J. Microelectromech. Syst. 21, 431 (2012)CrossRef
8.
go back to reference T.R. Albrecht, S. Akamine, T.E. Carver, C.F. Quate, Microfabrication of cantilever styli for the atomic force microscope. J. Vat. Sci. Technol. A 8, 3386 (1990)ADSCrossRef T.R. Albrecht, S. Akamine, T.E. Carver, C.F. Quate, Microfabrication of cantilever styli for the atomic force microscope. J. Vat. Sci. Technol. A 8, 3386 (1990)ADSCrossRef
9.
go back to reference O.A. Williams, O. Douheret, M. Daenen, K. Haenen, E. Osawa, M. Takahashi, Enhanced diamond nucleation on monodispersed nanocrystalline diamond. Chem. Phys. Lett. 445(4–6):255–258 (2007)ADSCrossRef O.A. Williams, O. Douheret, M. Daenen, K. Haenen, E. Osawa, M. Takahashi, Enhanced diamond nucleation on monodispersed nanocrystalline diamond. Chem. Phys. Lett. 445(4–6):255–258 (2007)ADSCrossRef
10.
go back to reference M. Tsigkourakos, T. Hantschel, K. Arstila, W. Vandervorst, Diamond nano-particle seeding for tip moulding application. Diam. Relat. Mater. 35, 14–18 (2013)ADSCrossRef M. Tsigkourakos, T. Hantschel, K. Arstila, W. Vandervorst, Diamond nano-particle seeding for tip moulding application. Diam. Relat. Mater. 35, 14–18 (2013)ADSCrossRef
11.
go back to reference S. Heyer, W. Janssen, S. Turner, Y. Lu, W.S. Yeap, J. Verbeeck, K. Haenen, A. Krueger, Toward deep blue nano hope diamonds: heavily boron-doped diamond nanoparticles. ACS Nano 8, 5757–5764 (2014)CrossRef S. Heyer, W. Janssen, S. Turner, Y. Lu, W.S. Yeap, J. Verbeeck, K. Haenen, A. Krueger, Toward deep blue nano hope diamonds: heavily boron-doped diamond nanoparticles. ACS Nano 8, 5757–5764 (2014)CrossRef
13.
go back to reference A. Afandi, A. Howkins, I.W. Boyd, R.B. Jackman, Nanodiamonds for device applications: an investigation of the properties of boron-doped detonation nanodiamonds. Sci. Rep. 8, 3270 (2018) A. Afandi, A. Howkins, I.W. Boyd, R.B. Jackman, Nanodiamonds for device applications: an investigation of the properties of boron-doped detonation nanodiamonds. Sci. Rep. 8, 3270 (2018)
14.
go back to reference J. Zimmer, T. Hantschel, G. Chandler, W. Vandervorst, M. Peralta, Boron doping in hot filament MCD and NCD diamond films. Mater. Res. Soc. Symp. Proc. 1203 (1203-J12-01) (2010) J. Zimmer, T. Hantschel, G. Chandler, W. Vandervorst, M. Peralta, Boron doping in hot filament MCD and NCD diamond films. Mater. Res. Soc. Symp. Proc. 1203 (1203-J12-01) (2010)
15.
go back to reference J.G. Buijnsters, M. Tsigkourakos, T. Hantschel, F.O.V. Gomes, T. Nuytten, P. Favia, H. Bender, K. Arstila, J.-P. Celis, W. Vandervorst, Effect of boron doping on the wear behavior of the growth and nucleation surfaces of micro- and nanocrystalline diamond films. ACS Appl. Mater. Interfaces 8, 26381–26391 (2016). https://doi.org/10.1021/acsami.6b08083CrossRef J.G. Buijnsters, M. Tsigkourakos, T. Hantschel, F.O.V. Gomes, T. Nuytten, P. Favia, H. Bender, K. Arstila, J.-P. Celis, W. Vandervorst, Effect of boron doping on the wear behavior of the growth and nucleation surfaces of micro- and nanocrystalline diamond films. ACS Appl. Mater. Interfaces 8, 26381–26391 (2016). https://​doi.​org/​10.​1021/​acsami.​6b08083CrossRef
16.
go back to reference J.P. Rasmussen, P.T. Tang, C. Sander, O. Hansen, P. Møller, M.J. Beeson, Fabrication of an all-metal atomic force microscope probe, in Proceedings of the Transducers 1997, Chicago, USA (June 1997), pp. 463–466 J.P. Rasmussen, P.T. Tang, C. Sander, O. Hansen, P. Møller, M.J. Beeson, Fabrication of an all-metal atomic force microscope probe, in Proceedings of the Transducers 1997, Chicago, USA (June 1997), pp. 463–466
17.
go back to reference S. Koelling, T. Hantschel, W. Vandervorst, Conductive diamond probes with electroplated holder chips. Microelectron. Eng. 84, 1178–1181 (2007)CrossRef S. Koelling, T. Hantschel, W. Vandervorst, Conductive diamond probes with electroplated holder chips. Microelectron. Eng. 84, 1178–1181 (2007)CrossRef
18.
go back to reference T. Hantschel, S. Slesazeck, W. Vandervorst, The peel-off probe: a cost-effective probe for electrical atomic force microscopy. Proc. SPIE 4175, 50 (2000)ADSCrossRef T. Hantschel, S. Slesazeck, W. Vandervorst, The peel-off probe: a cost-effective probe for electrical atomic force microscopy. Proc. SPIE 4175, 50 (2000)ADSCrossRef
19.
go back to reference T. Hantschel, U. Pape, S. Slesazeck, P. Niedermann, W. Vandervorst, Mounting of moulded AFM probes by soldering. Proc. SPIE 4175, 62 (2000)ADSCrossRef T. Hantschel, U. Pape, S. Slesazeck, P. Niedermann, W. Vandervorst, Mounting of moulded AFM probes by soldering. Proc. SPIE 4175, 62 (2000)ADSCrossRef
21.
go back to reference T. Hantschel, T. Trenkler, W. Vandervorst, A. Malave, D. Buechel, W. Kulisch, E. Oesterschulze, Tip-on-tip: a novel AFM tip configuration for the electrical characterization of semiconductor devices. Microelectron. Eng. 46, 113 (1999)CrossRef T. Hantschel, T. Trenkler, W. Vandervorst, A. Malave, D. Buechel, W. Kulisch, E. Oesterschulze, Tip-on-tip: a novel AFM tip configuration for the electrical characterization of semiconductor devices. Microelectron. Eng. 46, 113 (1999)CrossRef
22.
go back to reference S. Akamine, C.F. Quate, Low temperature thermal oxidation sharpening of microcast tips. J. Vac. Sci. Technol. B 10, 2307 (1992)CrossRef S. Akamine, C.F. Quate, Low temperature thermal oxidation sharpening of microcast tips. J. Vac. Sci. Technol. B 10, 2307 (1992)CrossRef
23.
go back to reference T. Hantschel, T. Clarysse, A. Ajaykumar, F. Seidel, M. Tsigkourakos, T. Nuytten, K. Paredis, P. Eyben, B. Majeed, D.S. Tezcan, D.S. Tezcan, W. Vandervorst, Diamond nanoprobes for electrical probing of nanoelectronics device structures. Microelectron. Eng. 121, 19 (2014)CrossRef T. Hantschel, T. Clarysse, A. Ajaykumar, F. Seidel, M. Tsigkourakos, T. Nuytten, K. Paredis, P. Eyben, B. Majeed, D.S. Tezcan, D.S. Tezcan, W. Vandervorst, Diamond nanoprobes for electrical probing of nanoelectronics device structures. Microelectron. Eng. 121, 19 (2014)CrossRef
24.
go back to reference T. Hantschel, M. Tsigkourakos, J. Kluge, T. Werner, L. Zha, K. Paredis, P. Eyben, T. Nuytten, Z. Xu, W. Vandervorst, Overcoated diamond tips for nanometer-scale semiconductor device characterization. Microelectron. Eng. 141, 1 (2015)CrossRef T. Hantschel, M. Tsigkourakos, J. Kluge, T. Werner, L. Zha, K. Paredis, P. Eyben, T. Nuytten, Z. Xu, W. Vandervorst, Overcoated diamond tips for nanometer-scale semiconductor device characterization. Microelectron. Eng. 141, 1 (2015)CrossRef
25.
go back to reference E. Oesterschulze, A. Malave, U.F. Keyser, M. Paesler, R.J. Haug, Diamond cantilever with integrated tip for nanomachining. Diam. Relat. Mater. 11, 667–671 (2002)ADSCrossRef E. Oesterschulze, A. Malave, U.F. Keyser, M. Paesler, R.J. Haug, Diamond cantilever with integrated tip for nanomachining. Diam. Relat. Mater. 11, 667–671 (2002)ADSCrossRef
26.
go back to reference C. Beuret, T. Akiyama, U. Staufer, N.F. de Rooij, P. Niedermann, W. Hanni, Conical diamond tips realized by a double-molding process for high-resolution profilometry and atomic force microscopy applications. Appl. Phys. Lett. 76, 1621 (2000)ADSCrossRef C. Beuret, T. Akiyama, U. Staufer, N.F. de Rooij, P. Niedermann, W. Hanni, Conical diamond tips realized by a double-molding process for high-resolution profilometry and atomic force microscopy applications. Appl. Phys. Lett. 76, 1621 (2000)ADSCrossRef
27.
go back to reference P. Eyben, W. Vandervorst, D. Alvarez, M. Xu, M. Fouchier, in Scanning Probe Microscopy, vol. 31, ed. by S. Kalinin, A. Gruverman (Springer, New York, 2007) P. Eyben, W. Vandervorst, D. Alvarez, M. Xu, M. Fouchier, in Scanning Probe Microscopy, vol. 31, ed. by S. Kalinin, A. Gruverman (Springer, New York, 2007)
28.
go back to reference M. Tsigkourakos, T. Hantschel, D.K. Simon, T. Nuytten, A.S. Verhulst, B. Douhard, W. Vandervorst, On the local conductivity of individual diamond seeds and their impact on the interfacial resistance of boron-doped diamond films. Carbon 79, 103 (2014)CrossRef M. Tsigkourakos, T. Hantschel, D.K. Simon, T. Nuytten, A.S. Verhulst, B. Douhard, W. Vandervorst, On the local conductivity of individual diamond seeds and their impact on the interfacial resistance of boron-doped diamond films. Carbon 79, 103 (2014)CrossRef
29.
go back to reference M. Tsigkourakos, T. Hantschel, S.D. Janssens, K. Haenen, W. Vandervorst, Spin-seeding approach for diamond growth on large area silicon-wafer substrates. Phys. Status Solidi A 209, 1659 (2012)ADSCrossRef M. Tsigkourakos, T. Hantschel, S.D. Janssens, K. Haenen, W. Vandervorst, Spin-seeding approach for diamond growth on large area silicon-wafer substrates. Phys. Status Solidi A 209, 1659 (2012)ADSCrossRef
30.
go back to reference P. De Wolf, Ph.D. thesis, University of Leuven, Belgium, 1998, 120 P. De Wolf, Ph.D. thesis, University of Leuven, Belgium, 1998, 120
31.
go back to reference Y.-S. Lo, N.D. Huefner, W.S. Chan, P. Dryden, B. Hagenhoff, T.P. Beebe, Organic and inorganic contamination on commercial AFM cantilevers. Langmuir 15, 6522 (1999)CrossRef Y.-S. Lo, N.D. Huefner, W.S. Chan, P. Dryden, B. Hagenhoff, T.P. Beebe, Organic and inorganic contamination on commercial AFM cantilevers. Langmuir 15, 6522 (1999)CrossRef
32.
go back to reference T. Hantschel, T. Trenkler, M. Xu, W. Vandervorst, The fabrication of a full metal AFM probe and its applications for Si and InP device analysis. Proc. of SPIE 3875, 20–31 (1999)ADSCrossRef T. Hantschel, T. Trenkler, M. Xu, W. Vandervorst, The fabrication of a full metal AFM probe and its applications for Si and InP device analysis. Proc. of SPIE 3875, 20–31 (1999)ADSCrossRef
33.
go back to reference P. Niedermann, R.F. Christoph, Components manufacturing method micromechanical having a diamond portion consisting at least of a tip, and micromechanical components having at least one diamond tip. FR:2739494:A1 (1997) P. Niedermann, R.F. Christoph, Components manufacturing method micromechanical having a diamond portion consisting at least of a tip, and micromechanical components having at least one diamond tip. FR:2739494:A1 (1997)
34.
go back to reference L. Li, I. Bayn, M. Lu, C.-Y. Nam, T. Schröder, A. Stein, N.C. Harris, D. Englund, Nanofabrication on unconventional substrates using transferred hard masks. Sci. Rep. 5, 7802 (2015)CrossRef L. Li, I. Bayn, M. Lu, C.-Y. Nam, T. Schröder, A. Stein, N.C. Harris, D. Englund, Nanofabrication on unconventional substrates using transferred hard masks. Sci. Rep. 5, 7802 (2015)CrossRef
35.
go back to reference W. McKenzie, J. Pethica, G. Cross, A direct-write, resistless hard mask for rapid nanoscale patterning of diamond. Diam. Relat. Mater. 20, 707–710 (2011)ADSCrossRef W. McKenzie, J. Pethica, G. Cross, A direct-write, resistless hard mask for rapid nanoscale patterning of diamond. Diam. Relat. Mater. 20, 707–710 (2011)ADSCrossRef
36.
go back to reference Y. Martin, H. Kumar Wickramasinghe, Method for imaging sidewalls by atomic force microscopy. Appl. Phys. Lett. 64, 2498–2500 (1994)ADSCrossRef Y. Martin, H. Kumar Wickramasinghe, Method for imaging sidewalls by atomic force microscopy. Appl. Phys. Lett. 64, 2498–2500 (1994)ADSCrossRef
37.
go back to reference G. Dai, H. Wolff, F. Pohlenz, H.-U. Danzebrink, G. Wilkening, Atomic force probe for sidewall scanning of nano- and microstructures. Appl. Phys. Lett. 88, 171908 (2006)ADSCrossRef G. Dai, H. Wolff, F. Pohlenz, H.-U. Danzebrink, G. Wilkening, Atomic force probe for sidewall scanning of nano- and microstructures. Appl. Phys. Lett. 88, 171908 (2006)ADSCrossRef
38.
go back to reference M. Shikida, K.-I. Nanbara, T. Koizumi, H. Sasaki, M. Odagaki, K. Sato, M. Ando, S. Furuta, K. Asaumi, in Transducers ’01 Eurosensors XV, ed. by E. Obermeier (Springer Berlin Heidelberg, 2001), pp. 648–651 M. Shikida, K.-I. Nanbara, T. Koizumi, H. Sasaki, M. Odagaki, K. Sato, M. Ando, S. Furuta, K. Asaumi, in Transducers ’01 Eurosensors XV, ed. by E. Obermeier (Springer Berlin Heidelberg, 2001), pp. 648–651
39.
go back to reference M. Usman, J. Bocquel, J. Salfi, B. Voisin, A. Tankasala, R. Rahman, M.Y. Simmons, S. Rogge, L.C.L. Hollenberg, Spatial metrology of dopants in silicon with exact lattice site precision. Nat. Nanotechnol. 11, 763–768 (2016)ADSCrossRef M. Usman, J. Bocquel, J. Salfi, B. Voisin, A. Tankasala, R. Rahman, M.Y. Simmons, S. Rogge, L.C.L. Hollenberg, Spatial metrology of dopants in silicon with exact lattice site precision. Nat. Nanotechnol. 11, 763–768 (2016)ADSCrossRef
40.
go back to reference L. Gross, F. Mohn, N. Moll, P. Liljeroth, G. Meyer, The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009)ADSCrossRef L. Gross, F. Mohn, N. Moll, P. Liljeroth, G. Meyer, The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009)ADSCrossRef
41.
go back to reference L. Gross, N. Moll, F. Mohn, A. Curioni, G. Meyer, F. Hanke, M. Persson, High-resolution molecular orbital imaging using a p-wave STM tip. Phys. Rev. Lett. 107, 086101 (2011)ADSCrossRef L. Gross, N. Moll, F. Mohn, A. Curioni, G. Meyer, F. Hanke, M. Persson, High-resolution molecular orbital imaging using a p-wave STM tip. Phys. Rev. Lett. 107, 086101 (2011)ADSCrossRef
42.
go back to reference D. Ebeling, Q. Zhong, S. Ahles, L. Chi, H.A. Wegner, A. Schirmeisen, Chemical bond imaging using higher eigenmodes of tuning fork sensors in atomic force microscopy. Appl. Phys. Lett. 110, 183102 (2017)ADSCrossRef D. Ebeling, Q. Zhong, S. Ahles, L. Chi, H.A. Wegner, A. Schirmeisen, Chemical bond imaging using higher eigenmodes of tuning fork sensors in atomic force microscopy. Appl. Phys. Lett. 110, 183102 (2017)ADSCrossRef
43.
go back to reference R.J. Colton, S.M. Baker, R.J. Driscoll, M.G. Youngquist, J.D. Baldeschwieler, W.J. Kaiser, Imaging graphite in air by scanning tunneling microscopy: role of the tip. J. Vac. Sci. Technol., A 6, 349–353 (1988)ADSCrossRef R.J. Colton, S.M. Baker, R.J. Driscoll, M.G. Youngquist, J.D. Baldeschwieler, W.J. Kaiser, Imaging graphite in air by scanning tunneling microscopy: role of the tip. J. Vac. Sci. Technol., A 6, 349–353 (1988)ADSCrossRef
44.
go back to reference O. Marti, M. Amrein, STM and SFM in Biology. (Academic Press, London, 2012) O. Marti, M. Amrein, STM and SFM in Biology. (Academic Press, London, 2012)
45.
go back to reference D. Stiévenard, in Stress and Strain in Epitaxy, ed. by M. Hanbücken, J.-P. Deville (Elsevier, Amsterdam, 2001), pp. 243–286 D. Stiévenard, in Stress and Strain in Epitaxy, ed. by M. Hanbücken, J.-P. Deville (Elsevier, Amsterdam, 2001), pp. 243–286
46.
go back to reference T.-H. Kim, X.G. Zhang, D.M. Nicholson, B.M. Evans, N.S. Kulkarni, B. Radhakrishnan, E.A. Kenik, A.-P. Li, Large discrete resistance jump at grain boundary in copper nanowire. Nano Lett. 10, 3096–3100 (2010)ADSCrossRef T.-H. Kim, X.G. Zhang, D.M. Nicholson, B.M. Evans, N.S. Kulkarni, B. Radhakrishnan, E.A. Kenik, A.-P. Li, Large discrete resistance jump at grain boundary in copper nanowire. Nano Lett. 10, 3096–3100 (2010)ADSCrossRef
47.
go back to reference A. Bietsch, B. Michel, Size and grain-boundary effects of a gold nanowire measured by conducting atomic force microscopy. Appl. Phys. Lett. 80, 3346–3348 (2002)ADSCrossRef A. Bietsch, B. Michel, Size and grain-boundary effects of a gold nanowire measured by conducting atomic force microscopy. Appl. Phys. Lett. 80, 3346–3348 (2002)ADSCrossRef
51.
go back to reference A. Schulze, T. Hantschel, A. Dathe, P. Eyben, X. Ke, W. Vandervorst, Electrical tomography using atomic force microscopy and its application towards carbon nanotube-based interconnects. Nanotechnology 23, 305707 (2012)CrossRef A. Schulze, T. Hantschel, A. Dathe, P. Eyben, X. Ke, W. Vandervorst, Electrical tomography using atomic force microscopy and its application towards carbon nanotube-based interconnects. Nanotechnology 23, 305707 (2012)CrossRef
52.
go back to reference K. Atamanuk, J. Luria, B.D. Huey, Direct AFM-based nanoscale mapping and tomography of open-circuit voltages for photovoltaics. Beilstein J. Nanotechnol. 9, 1802–1808 (2018)CrossRef K. Atamanuk, J. Luria, B.D. Huey, Direct AFM-based nanoscale mapping and tomography of open-circuit voltages for photovoltaics. Beilstein J. Nanotechnol. 9, 1802–1808 (2018)CrossRef
53.
go back to reference N. Nakagiri, T. Yamamoto, H. Sugimura, Y. Suzuki et al., Application of scanning capacitance microscopy to semiconductor devices (1997) N. Nakagiri, T. Yamamoto, H. Sugimura, Y. Suzuki et al., Application of scanning capacitance microscopy to semiconductor devices (1997)
54.
go back to reference M.L. O’Malley, G.L. Timp, S.V. Moccio, J.P. Garno, R.N. Kleiman, Quantification of scanning capacitance microscopy imaging of the pn junction through electrical simulation. Appl. Phys. Lett. 74, 272–274 (1999)ADSCrossRef M.L. O’Malley, G.L. Timp, S.V. Moccio, J.P. Garno, R.N. Kleiman, Quantification of scanning capacitance microscopy imaging of the pn junction through electrical simulation. Appl. Phys. Lett. 74, 272–274 (1999)ADSCrossRef
56.
go back to reference W. Vandervorst, M. Meuris, Method for resistance measurements on a semiconductor element with controlled probe pressure. 5369372 (1994) W. Vandervorst, M. Meuris, Method for resistance measurements on a semiconductor element with controlled probe pressure. 5369372 (1994)
57.
go back to reference P. De Wolf, Two-dimension carrier profiling of semiconductor structures with nm resolution (1998) P. De Wolf, Two-dimension carrier profiling of semiconductor structures with nm resolution (1998)
58.
go back to reference W. Hänni, N. Blanc, R. Christoph, J. Burger, Chemical vapor deposition diamond for tips in nanoprobe experiments. J. Vac. Sci. Technol. A Vac. Surf. Films (1996) W. Hänni, N. Blanc, R. Christoph, J. Burger, Chemical vapor deposition diamond for tips in nanoprobe experiments. J. Vac. Sci. Technol. A Vac. Surf. Films (1996)
59.
go back to reference P. De Wolf, T. Clarysse, W. Vandervorst, L. Hellemans, P. Niedermann, W. Hänni, Cross-sectional nano-spreading resistance profiling. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 16, 355–361 (1998)ADSCrossRef P. De Wolf, T. Clarysse, W. Vandervorst, L. Hellemans, P. Niedermann, W. Hänni, Cross-sectional nano-spreading resistance profiling. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 16, 355–361 (1998)ADSCrossRef
60.
go back to reference M. Fouchier, P. Eyben, D. Alvarez, N. Duhayon, M. Xu, S. Brongersma, J. Lisoni, W. Vandervorst, in Smart Sensors, Actuators, and MEMS, vol. 5116 (International Society for Optics and Photonics, 2003), pp. 607–617 M. Fouchier, P. Eyben, D. Alvarez, N. Duhayon, M. Xu, S. Brongersma, J. Lisoni, W. Vandervorst, in Smart Sensors, Actuators, and MEMS, vol. 5116 (International Society for Optics and Photonics, 2003), pp. 607–617
62.
go back to reference N.G. Orji, R.G. Dixson, 3D-AFM measurements for semiconductor structures and devices, in Metrology and Diagnostic Techniques for Nanoelectronics, vol. 109 (2017) N.G. Orji, R.G. Dixson, 3D-AFM measurements for semiconductor structures and devices, in Metrology and Diagnostic Techniques for Nanoelectronics, vol. 109 (2017)
63.
go back to reference R. Courtland, Transistors could stop shrinking in 2021. IEEE Spectr. 53, 9–11 (2016) R. Courtland, Transistors could stop shrinking in 2021. IEEE Spectr. 53, 9–11 (2016)
64.
go back to reference J.P. Pelz, R.H. Koch, Tip-related artifacts in scanning tunneling potentiometry. Phys. Rev. B: Condens. Matter 41, 1212–1215 (1990)ADSCrossRef J.P. Pelz, R.H. Koch, Tip-related artifacts in scanning tunneling potentiometry. Phys. Rev. B: Condens. Matter 41, 1212–1215 (1990)ADSCrossRef
65.
go back to reference D. Keller, Reconstruction of STM and AFM images distorted by finite-size tips. Surf. Sci. 253, 353–364 (1991)ADSCrossRef D. Keller, Reconstruction of STM and AFM images distorted by finite-size tips. Surf. Sci. 253, 353–364 (1991)ADSCrossRef
66.
go back to reference J.S. Villarrubia, Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation. J. Res. Natl. Inst. Stand. Technol. 102, 425–454 (1997)CrossRef J.S. Villarrubia, Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation. J. Res. Natl. Inst. Stand. Technol. 102, 425–454 (1997)CrossRef
67.
go back to reference G.J. Germann, G.M. McClelland, Y. Mitsuda, M. Buck, H. Seki, Diamond force microscope tips fabricated by chemical vapor deposition. Rev. Sci. Instrum. 63, 4053–4055 (1992)ADSCrossRef G.J. Germann, G.M. McClelland, Y. Mitsuda, M. Buck, H. Seki, Diamond force microscope tips fabricated by chemical vapor deposition. Rev. Sci. Instrum. 63, 4053–4055 (1992)ADSCrossRef
68.
go back to reference M.C. Salvadori, W.W.R. Araújo, F.S. Teixeira, M. Cattani, A. Pasquarelli, E.M. Oks, I.G. Brown, Termination of diamond surfaces with hydrogen, oxygen and fluorine using a small, simple plasma gun. Diam. Relat. Mater. 19, 324–328 (2010)ADSCrossRef M.C. Salvadori, W.W.R. Araújo, F.S. Teixeira, M. Cattani, A. Pasquarelli, E.M. Oks, I.G. Brown, Termination of diamond surfaces with hydrogen, oxygen and fluorine using a small, simple plasma gun. Diam. Relat. Mater. 19, 324–328 (2010)ADSCrossRef
69.
go back to reference S. Miyake, Tribological improvements of polished chemically vapor deposited diamond films by fluorination. Appl. Phys. Lett. 65, 1109–1111 (1994)ADSCrossRef S. Miyake, Tribological improvements of polished chemically vapor deposited diamond films by fluorination. Appl. Phys. Lett. 65, 1109–1111 (1994)ADSCrossRef
71.
go back to reference D. Nečas, P. Klapetek, Gwyddion: an open-source software for SPM data analysis. Cent. Eur. J. Phys. 10, 181–188 (2012) D. Nečas, P. Klapetek, Gwyddion: an open-source software for SPM data analysis. Cent. Eur. J. Phys. 10, 181–188 (2012)
72.
go back to reference Y. Wang, D.W. van der Weide, Microfabrication and application of high-aspect-ratio silicon tips. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 23, 1582–1584 (2005)ADSCrossRef Y. Wang, D.W. van der Weide, Microfabrication and application of high-aspect-ratio silicon tips. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 23, 1582–1584 (2005)ADSCrossRef
73.
go back to reference H. Dai, J.H. Hafner, A.G. Rinzler, D.T. Colbert, R.E. Smalley, Nanotubes as nanoprobes in scanning probe microscopy. Nature 384, 147 (1996)ADSCrossRef H. Dai, J.H. Hafner, A.G. Rinzler, D.T. Colbert, R.E. Smalley, Nanotubes as nanoprobes in scanning probe microscopy. Nature 384, 147 (1996)ADSCrossRef
74.
go back to reference C.V. Nguyen, Q. Ye, M. Meyyappan, Carbon nanotube tips for scanning probe microscopy: fabrication and high aspect ratio nanometrology. Meas. Sci. Technol. 16, 2138 (2005)CrossRef C.V. Nguyen, Q. Ye, M. Meyyappan, Carbon nanotube tips for scanning probe microscopy: fabrication and high aspect ratio nanometrology. Meas. Sci. Technol. 16, 2138 (2005)CrossRef
75.
go back to reference J. Foucher, P. Filippov, C. Penzkofer, B. Irmer, S.W. Schmidt, in SPIE Advanced Lithography, vol. 8681 (International Society for Optics and Photonics, 2013), pp. 86811I-86816 J. Foucher, P. Filippov, C. Penzkofer, B. Irmer, S.W. Schmidt, in SPIE Advanced Lithography, vol. 8681 (International Society for Optics and Photonics, 2013), pp. 86811I-86816
76.
go back to reference A.V. Sumant, D.S. Grierson, J.E. Gerbi, J. Birrell, U.D. Lanke, O. Auciello, J.A. Carlisle, R.W. Carpick, Toward the ultimate tribological interface: surface chemistry and nanotribology of ultrananocrystalline diamond. Adv. Mater. 17, 1039–1045 (2005)CrossRef A.V. Sumant, D.S. Grierson, J.E. Gerbi, J. Birrell, U.D. Lanke, O. Auciello, J.A. Carlisle, R.W. Carpick, Toward the ultimate tribological interface: surface chemistry and nanotribology of ultrananocrystalline diamond. Adv. Mater. 17, 1039–1045 (2005)CrossRef
77.
go back to reference R. Schirhagl, K. Chang, M. Loretz, C.L. Degen, Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu. Rev. Phys. Chem. 65, 83–105 (2014)ADSCrossRef R. Schirhagl, K. Chang, M. Loretz, C.L. Degen, Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu. Rev. Phys. Chem. 65, 83–105 (2014)ADSCrossRef
78.
go back to reference C.L. Degen, Scanning magnetic field microscope with a diamond single-spin sensor. Appl. Phys. Lett. 92, 243111 (2008)ADSCrossRef C.L. Degen, Scanning magnetic field microscope with a diamond single-spin sensor. Appl. Phys. Lett. 92, 243111 (2008)ADSCrossRef
79.
go back to reference J.-P. Tetienne, A. Lombard, D.A. Simpson, C. Ritchie, J. Lu, P. Mulvaney, L.C.L. Hollenberg, Scanning nanospin ensemble microscope for nanoscale magnetic and thermal imaging. Nano Lett. 16, 326–333 (2016)ADSCrossRef J.-P. Tetienne, A. Lombard, D.A. Simpson, C. Ritchie, J. Lu, P. Mulvaney, L.C.L. Hollenberg, Scanning nanospin ensemble microscope for nanoscale magnetic and thermal imaging. Nano Lett. 16, 326–333 (2016)ADSCrossRef
80.
go back to reference D. McCloskey, D. Fox, N. O’Hara, V. Usov, D. Scanlan, N. McEvoy, G.S. Duesberg, G.L.W. Cross, H.Z. Zhang, J.F. Donegan, Helium ion microscope generated nitrogen-vacancy centres in type Ib diamond. Appl. Phys. Lett. 104, 031109 (2014)ADSCrossRef D. McCloskey, D. Fox, N. O’Hara, V. Usov, D. Scanlan, N. McEvoy, G.S. Duesberg, G.L.W. Cross, H.Z. Zhang, J.F. Donegan, Helium ion microscope generated nitrogen-vacancy centres in type Ib diamond. Appl. Phys. Lett. 104, 031109 (2014)ADSCrossRef
Metadata
Title
Diamond Probes Technology
Authors
Thomas Hantschel
Thierry Conard
Jason Kilpatrick
Graham Cross
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-15612-1_11