Skip to main content
Top

2019 | OriginalPaper | Chapter

12. Scanning Microwave Impedance Microscopy (sMIM) in Electronic and Quantum Materials

Authors : Kurt A. Rubin, Yongliang Yang, Oskar Amster, David A. Scrymgeour, Shashank Misra

Published in: Electrical Atomic Force Microscopy for Nanoelectronics

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Scanning Microwave Impedance Microscopy (sMIM) is a sensitive electrical measurement technique which can characterize local static and temporal variations of electrical permittivity, and conductivity of materials and devices as well as for failure analysis. It is being used to characterize dielectrics, semiconductors and their doping response, and metals. Measurements can be made at room temperature down to cryogenic temperatures where quantum effects become important. Leveraging near-field electrical interactions between a probe and the sample, sMIM can measure and image electrical properties and operation at the nanoscale to micron scale by incorporation into an atomic force microscope. sMIM is being applied to a wide range of industrial and scientific applications to improve fundamental and functional understanding and operational performance of advanced, exploratory and quantum electronic devices and materials and their fabrication.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K. Lai et al., Modeling and characterization of a cantilever-based near-field scanning microwave impedance microscope. Rev. Sci. Instrum. 79(6) (2008)ADSCrossRef K. Lai et al., Modeling and characterization of a cantilever-based near-field scanning microwave impedance microscope. Rev. Sci. Instrum. 79(6) (2008)ADSCrossRef
2.
go back to reference Z. Y. Wang et al., Quantitative measurement of sheet resistance by evanescent microwave probe. Appl. Phys. Lett. 86(15) (2005)ADSCrossRef Z. Y. Wang et al., Quantitative measurement of sheet resistance by evanescent microwave probe. Appl. Phys. Lett. 86(15) (2005)ADSCrossRef
3.
go back to reference H. P. Huber et al., Calibrated nanoscale dopant profiling using a scanning microwave microscope. J. Appl. Phys. 111(1), 014301 (2012)ADSCrossRef H. P. Huber et al., Calibrated nanoscale dopant profiling using a scanning microwave microscope. J. Appl. Phys. 111(1), 014301 (2012)ADSCrossRef
4.
go back to reference O. Amster et al., Practical quantitative scanning microwave impedance microscopy of semiconductor devices. in 2017 IEEE 24th International Symposium on the Physical and Failure Analysis of Integrated Circuits (2017) O. Amster et al., Practical quantitative scanning microwave impedance microscopy of semiconductor devices. in 2017 IEEE 24th International Symposium on the Physical and Failure Analysis of Integrated Circuits (2017)
5.
go back to reference T. Monti et al., High-resolution dielectric characterization of minerals: a step towards understanding the basic interactions between microwaves and rocks. Int. J. Miner. Process. 151, 8–21 (2016)CrossRef T. Monti et al., High-resolution dielectric characterization of minerals: a step towards understanding the basic interactions between microwaves and rocks. Int. J. Miner. Process. 151, 8–21 (2016)CrossRef
6.
go back to reference Z. Y. Wang et al., Evanescent microwave probe measurement of low-k dielectric films. J. Appl. Phys. 92(2), 808–811 (2002)ADSCrossRef Z. Y. Wang et al., Evanescent microwave probe measurement of low-k dielectric films. J. Appl. Phys. 92(2), 808–811 (2002)ADSCrossRef
7.
go back to reference Y. T. Cui et al., Unconventional correlation between quantum hall transport quantization and bulk state filling in gated graphene devices. Phys. Rev. Lett. 117(18) (2016) Y. T. Cui et al., Unconventional correlation between quantum hall transport quantization and bulk state filling in gated graphene devices. Phys. Rev. Lett. 117(18) (2016)
8.
go back to reference K. J. Lai et al., Mesoscopic percolating resistance network in a strained manganite thin film. Science 329(5988), 190–193 (2010)ADSCrossRef K. J. Lai et al., Mesoscopic percolating resistance network in a strained manganite thin film. Science 329(5988), 190–193 (2010)ADSCrossRef
9.
go back to reference E. Y. Ma et al., Charge-order domain walls with enhanced conductivity in a layered manganite. Nat. Commun. 6, 7595 (2015)ADSCrossRef E. Y. Ma et al., Charge-order domain walls with enhanced conductivity in a layered manganite. Nat. Commun. 6, 7595 (2015)ADSCrossRef
10.
go back to reference S. R. Johnston et al., Measurement of surface acoustic wave resonances in ferroelectric domains by microwave microscopy. J. Appl. Phys. 122(7) (2017)ADSCrossRef S. R. Johnston et al., Measurement of surface acoustic wave resonances in ferroelectric domains by microwave microscopy. J. Appl. Phys. 122(7) (2017)ADSCrossRef
11.
go back to reference S. M. Anlage et al., Near-Field Microwave Microscopy of Materials Properties, in Microwave Superconductivity, eds. by H. Weinstock, M. Nisenoff (Springer Netherlands, Dordrecht, 2001), pp. 239–269 S. M. Anlage et al., Near-Field Microwave Microscopy of Materials Properties, in Microwave Superconductivity, eds. by H. Weinstock, M. Nisenoff (Springer Netherlands, Dordrecht, 2001), pp. 239–269
12.
go back to reference A. Imtiaz, T. M. Wallace, P. Kabos, Near-field scanning microwave microscopy. IEEE Microwave Mag. 15(1), 52–64 (2014)CrossRef A. Imtiaz, T. M. Wallace, P. Kabos, Near-field scanning microwave microscopy. IEEE Microwave Mag. 15(1), 52–64 (2014)CrossRef
13.
go back to reference B. T. Rosner, D. W. van der Weide, High-frequency near-field microscopy. Rev. Sci. Instrum. 73(7), 2505–2525 (2002)ADSCrossRef B. T. Rosner, D. W. van der Weide, High-frequency near-field microscopy. Rev. Sci. Instrum. 73(7), 2505–2525 (2002)ADSCrossRef
14.
go back to reference A. Imtiaz et al., Nanometer-scale material contrast imaging with a near-field microwave microscope. Appl. Phys. Lett. 90(14), 143106 (2007)ADSCrossRef A. Imtiaz et al., Nanometer-scale material contrast imaging with a near-field microwave microscope. Appl. Phys. Lett. 90(14), 143106 (2007)ADSCrossRef
15.
go back to reference Q. Zhang, P. J. McGinn, Imaging of oxide dielectrics by near-field microwave microscopy. J. Eur. Ceram. Soc. 25(4), 407–416 (2005)CrossRef Q. Zhang, P. J. McGinn, Imaging of oxide dielectrics by near-field microwave microscopy. J. Eur. Ceram. Soc. 25(4), 407–416 (2005)CrossRef
16.
go back to reference J. Smoliner et al., Scanning microwave microscopy/spectroscopy on metal-oxide-semiconductor systems. J. Appl. Phys. 108(6), 064315 (2010)ADSCrossRef J. Smoliner et al., Scanning microwave microscopy/spectroscopy on metal-oxide-semiconductor systems. J. Appl. Phys. 108(6), 064315 (2010)ADSCrossRef
17.
go back to reference K. Lai et al., Atomic-force-microscope-compatible near-field scanning microwave microscope with separated excitation and sensing probes. Rev. Sci. Instrum. 78(6) (2007)ADSCrossRef K. Lai et al., Atomic-force-microscope-compatible near-field scanning microwave microscope with separated excitation and sensing probes. Rev. Sci. Instrum. 78(6) (2007)ADSCrossRef
18.
go back to reference D. E. Steinhauer et al., Quantitative imaging of dielectric permittivity and tunability with a near-field scanning microwave microscope. Rev. Sci. Instrum. 71(7), 2751–2758 (2000)ADSCrossRef D. E. Steinhauer et al., Quantitative imaging of dielectric permittivity and tunability with a near-field scanning microwave microscope. Rev. Sci. Instrum. 71(7), 2751–2758 (2000)ADSCrossRef
19.
go back to reference A. N. Reznik, V. V. Talanov, Quantitative model for near-field scanning microwave microscopy: application to metrology of thin film dielectrics. Rev. Sci. Instrum. 79(11), 113708 (2008)ADSCrossRef A. N. Reznik, V. V. Talanov, Quantitative model for near-field scanning microwave microscopy: application to metrology of thin film dielectrics. Rev. Sci. Instrum. 79(11), 113708 (2008)ADSCrossRef
20.
go back to reference A. P. Gregory et al., Measurement of the permittivity and loss of high-loss a near-field scanning microwave microscope. Ultramicroscopy 161, 137–145 (2016)CrossRef A. P. Gregory et al., Measurement of the permittivity and loss of high-loss a near-field scanning microwave microscope. Ultramicroscopy 161, 137–145 (2016)CrossRef
21.
go back to reference Y. Cho, Scanning nonlinear dielectric microscopy. J. Mater. Res. 26(16), 2007–2016 (2011)ADSCrossRef Y. Cho, Scanning nonlinear dielectric microscopy. J. Mater. Res. 26(16), 2007–2016 (2011)ADSCrossRef
22.
go back to reference H.P. Huber et al., Calibrated nanoscale capacitance measurements using a scanning microwave microscope. Rev. Sci. Instrum. 81(11) (2010)ADSCrossRef H.P. Huber et al., Calibrated nanoscale capacitance measurements using a scanning microwave microscope. Rev. Sci. Instrum. 81(11) (2010)ADSCrossRef
23.
go back to reference C. Gao et al., Quantitative scanning evanescent microwave microscopy and its applications in characterization of functional materials libraries. Meas. Sci. Technol. 16(1), 248–260 (2005)ADSCrossRef C. Gao et al., Quantitative scanning evanescent microwave microscopy and its applications in characterization of functional materials libraries. Meas. Sci. Technol. 16(1), 248–260 (2005)ADSCrossRef
24.
go back to reference Q. Zhang, P. J. McGinn, Characterization of Calcium Titanate-Magnesium Titanate Eutectic by Scanning Microwave Microscopy. J. Am. Ceram. Soc. 89(12), 3817–3823 (2006)CrossRef Q. Zhang, P. J. McGinn, Characterization of Calcium Titanate-Magnesium Titanate Eutectic by Scanning Microwave Microscopy. J. Am. Ceram. Soc. 89(12), 3817–3823 (2006)CrossRef
25.
go back to reference H. F. Cheng, Y. C. Chen, L. N. Lin, Evanescent microwave probe study on dielectric properties of materials. J. Eur. Ceram. Soc. 26(10–11), 1801–1805 (2006)CrossRef H. F. Cheng, Y. C. Chen, L. N. Lin, Evanescent microwave probe study on dielectric properties of materials. J. Eur. Ceram. Soc. 26(10–11), 1801–1805 (2006)CrossRef
26.
go back to reference Y. Qi et al., Local dielectric measurements of BaTiO3–CoFe2O4 nanocomposites through microwave microscopy. J. Mater. Res. 22(5), 1193–1199 (2011)ADSCrossRef Y. Qi et al., Local dielectric measurements of BaTiO3–CoFe2O4 nanocomposites through microwave microscopy. J. Mater. Res. 22(5), 1193–1199 (2011)ADSCrossRef
27.
go back to reference K. Lai et al., Tapping mode microwave impedance microscopy. Rev. Sci. Instrum. 80(4) (2009)ADSCrossRef K. Lai et al., Tapping mode microwave impedance microscopy. Rev. Sci. Instrum. 80(4) (2009)ADSCrossRef
28.
go back to reference T. Dargent et al., An interferometric scanning microwave microscope and calibration method for sub-fF microwave measurements. Rev. Sci. Instrum. 84(12), 123705 (2013)ADSCrossRef T. Dargent et al., An interferometric scanning microwave microscope and calibration method for sub-fF microwave measurements. Rev. Sci. Instrum. 84(12), 123705 (2013)ADSCrossRef
29.
go back to reference J.S. McMurray, J. Kim, C. C. Williams, Quantitative measurement of two-dimensional dopant profile by cross-sectional scanning capacitance microscopy. J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. Process., Measur., and Phenom. 15(4), 1011–1014 (1997)ADSCrossRef J.S. McMurray, J. Kim, C. C. Williams, Quantitative measurement of two-dimensional dopant profile by cross-sectional scanning capacitance microscopy. J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. Process., Measur., and Phenom. 15(4), 1011–1014 (1997)ADSCrossRef
30.
go back to reference J.J. Kopanski et al., Towards reproducible scanning capacitance microscope image interpretation. J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. 22(1), 399 (2004)ADSCrossRef J.J. Kopanski et al., Towards reproducible scanning capacitance microscope image interpretation. J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. 22(1), 399 (2004)ADSCrossRef
31.
go back to reference R. Stephenson et al., Nonmonotonic behavior of the scanning capacitance microscope for large dynamic range samples. J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. 18(1), 405 (2000)ADSCrossRef R. Stephenson et al., Nonmonotonic behavior of the scanning capacitance microscope for large dynamic range samples. J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. 18(1), 405 (2000)ADSCrossRef
32.
go back to reference A. Imtiaz, S. M. Anlage, A novel STM-assisted microwave microscope with capacitance and loss imaging capability. Ultramicroscopy 94(3–4), 209–216 (2003)CrossRef A. Imtiaz, S. M. Anlage, A novel STM-assisted microwave microscope with capacitance and loss imaging capability. Ultramicroscopy 94(3–4), 209–216 (2003)CrossRef
33.
go back to reference W. Kundhikanjana et al., Unexpected surface implanted layer in static random access memory devices observed by microwave impedance microscope. Semicond. Sci. Technol. 28(2) (2013)ADSCrossRef W. Kundhikanjana et al., Unexpected surface implanted layer in static random access memory devices observed by microwave impedance microscope. Semicond. Sci. Technol. 28(2) (2013)ADSCrossRef
34.
go back to reference G. Gramse et al., Calibrated complex impedance and permittivity measurements with scanning microwave microscopy. Nanotechnology. 25(14) (2014) G. Gramse et al., Calibrated complex impedance and permittivity measurements with scanning microwave microscopy. Nanotechnology. 25(14) (2014)
35.
go back to reference E. Brinciotti et al., Probing resistivity and doping concentration of semiconductors at the nanoscale using scanning microwave microscopy. Nanoscale 7(35), 14715–14722 (2015)ADSCrossRef E. Brinciotti et al., Probing resistivity and doping concentration of semiconductors at the nanoscale using scanning microwave microscopy. Nanoscale 7(35), 14715–14722 (2015)ADSCrossRef
36.
go back to reference M. Kasper et al., Metal-oxide-semiconductor capacitors and Schottky diodes studied with scanning microwave microscopy at 18 GHz. J. Appl. Phys. 116(18), 184301 (2014)ADSCrossRef M. Kasper et al., Metal-oxide-semiconductor capacitors and Schottky diodes studied with scanning microwave microscopy at 18 GHz. J. Appl. Phys. 116(18), 184301 (2014)ADSCrossRef
37.
go back to reference F. Wang et al., Quantitative impedance characterization of sub-10 nm scale capacitors and tunnel junctions with an interferometric scanning microwave microscope. Nanotechnology 25(40), 405703 (2014)CrossRef F. Wang et al., Quantitative impedance characterization of sub-10 nm scale capacitors and tunnel junctions with an interferometric scanning microwave microscope. Nanotechnology 25(40), 405703 (2014)CrossRef
38.
go back to reference A. Buchter et al., Scanning microwave microscopy applied to semiconducting GaAs structures. Rev. Sci. Instrum. 89(2) (2018)ADSCrossRef A. Buchter et al., Scanning microwave microscopy applied to semiconducting GaAs structures. Rev. Sci. Instrum. 89(2) (2018)ADSCrossRef
39.
go back to reference D. P. Adams, T. M. Mayer, B. S. Swartzentruber, Nanometer-scale lithography on Si(001) using adsorbed H as an atomic layer resist. J. Vac. Sci. Technol., B 14(3), 1642–1649 (1996)CrossRef D. P. Adams, T. M. Mayer, B. S. Swartzentruber, Nanometer-scale lithography on Si(001) using adsorbed H as an atomic layer resist. J. Vac. Sci. Technol., B 14(3), 1642–1649 (1996)CrossRef
40.
go back to reference J. B. Ballard et al., Multimode hydrogen depassivation lithography A method for optimizing atomically precise write times. J. Vac. Sci. Technol. B, 31(6) (2013)CrossRef J. B. Ballard et al., Multimode hydrogen depassivation lithography A method for optimizing atomically precise write times. J. Vac. Sci. Technol. B, 31(6) (2013)CrossRef
41.
go back to reference M. Rudolph et al., Probing the limits of Si:P delta-doped devices patterned by a scanning tunneling microscope in a field-emission mode. Appl. Phys. Lett. 105(16) (2014)ADSCrossRef M. Rudolph et al., Probing the limits of Si:P delta-doped devices patterned by a scanning tunneling microscope in a field-emission mode. Appl. Phys. Lett. 105(16) (2014)ADSCrossRef
42.
go back to reference T. C. Shen et al., Ultradense phosphorous delta layers grown into silicon from PH3 molecular precursors. Appl. Phys. Lett. 80(9), 1580–1582 (2002)ADSCrossRef T. C. Shen et al., Ultradense phosphorous delta layers grown into silicon from PH3 molecular precursors. Appl. Phys. Lett. 80(9), 1580–1582 (2002)ADSCrossRef
43.
go back to reference G. Gramse et al., Nondestructive imaging of atomically thin nanostructures buried in silicon. Sci. Adv. 3(6) (2017)ADSCrossRef G. Gramse et al., Nondestructive imaging of atomically thin nanostructures buried in silicon. Sci. Adv. 3(6) (2017)ADSCrossRef
44.
go back to reference D. A. Scrymgeour et al., Determining the resolution of scanning microwave impedance microscopy using atomic-precision buried donor structures. Appl. Surf. Sci. 423, 1097–1102 (2017)ADSCrossRef D. A. Scrymgeour et al., Determining the resolution of scanning microwave impedance microscopy using atomic-precision buried donor structures. Appl. Surf. Sci. 423, 1097–1102 (2017)ADSCrossRef
45.
go back to reference A. Imtiaz et al., Imaging the p-n junction in a gallium nitride nanowire with a scanning microwave microscope. Appl. Phys. Lett. 104(26), 263107 (2014)ADSCrossRef A. Imtiaz et al., Imaging the p-n junction in a gallium nitride nanowire with a scanning microwave microscope. Appl. Phys. Lett. 104(26), 263107 (2014)ADSCrossRef
46.
go back to reference S. Berweger et al., Near-field microwave microscopy of one-dimensional nanostructures, in 2016 IEEE Mtt-S International Microwave Symposium (2016) S. Berweger et al., Near-field microwave microscopy of one-dimensional nanostructures, in 2016 IEEE Mtt-S International Microwave Symposium (2016)
47.
go back to reference J. C. Weber et al., A near-field scanning microwave microscope for characterization of inhomogeneous photovoltaics. Rev. Sci. Instrum. 83(8), 083702 (2012)ADSCrossRef J. C. Weber et al., A near-field scanning microwave microscope for characterization of inhomogeneous photovoltaics. Rev. Sci. Instrum. 83(8), 083702 (2012)ADSCrossRef
48.
go back to reference M. Tuteja et al., Direct observation of electrical properties of grain boundaries in sputter-deposited CdTe using scan-probe microwave reflectivity based capacitance measurements. Appl. Phys. Lett. 107(14) (2015)ADSCrossRef M. Tuteja et al., Direct observation of electrical properties of grain boundaries in sputter-deposited CdTe using scan-probe microwave reflectivity based capacitance measurements. Appl. Phys. Lett. 107(14) (2015)ADSCrossRef
49.
go back to reference K. J. Lai et al., Nanoscale electronic inhomogeneity in In2Se3 nanoribbons revealed by microwave impedance microscopy. Nano Lett. 9(3), 1265–1269 (2009)ADSCrossRef K. J. Lai et al., Nanoscale electronic inhomogeneity in In2Se3 nanoribbons revealed by microwave impedance microscopy. Nano Lett. 9(3), 1265–1269 (2009)ADSCrossRef
50.
go back to reference S. Z. Butler et al., Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7(4), 2898–2926 (2013)CrossRef S. Z. Butler et al., Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7(4), 2898–2926 (2013)CrossRef
51.
52.
go back to reference W. Kundhikanjana et al., Hierarchy of electronic properties of chemically derived and pristine graphene probed by microwave imaging. Nano Lett. 9(11), 3762–3765 (2009)ADSCrossRef W. Kundhikanjana et al., Hierarchy of electronic properties of chemically derived and pristine graphene probed by microwave imaging. Nano Lett. 9(11), 3762–3765 (2009)ADSCrossRef
53.
go back to reference S. S. Hong et al., Ultrathin topological insulator Bi2Se3 nanoribbons exfoliated by atomic force microscopy. Nano Lett. 10(8), 3118–3122 (2010)ADSCrossRef S. S. Hong et al., Ultrathin topological insulator Bi2Se3 nanoribbons exfoliated by atomic force microscopy. Nano Lett. 10(8), 3118–3122 (2010)ADSCrossRef
54.
go back to reference D. Wu et al., Thickness-dependent dielectric constant of few-layer In2Se3 nanoflakes. Nano Lett. 15(12), 8136–8140 (2015)ADSCrossRef D. Wu et al., Thickness-dependent dielectric constant of few-layer In2Se3 nanoflakes. Nano Lett. 15(12), 8136–8140 (2015)ADSCrossRef
55.
go back to reference Y. Liu et al., Mesoscale imperfections in MoS2 atomic layers grown by a vapor transport technique. Nano Lett. 14(8), 4682–4686 (2014)ADSCrossRef Y. Liu et al., Mesoscale imperfections in MoS2 atomic layers grown by a vapor transport technique. Nano Lett. 14(8), 4682–4686 (2014)ADSCrossRef
56.
go back to reference S. Berweger et al., Microwave near-field imaging of two-dimensional semiconductors. Nano Lett. 15(2), 1122–1127 (2015)ADSCrossRef S. Berweger et al., Microwave near-field imaging of two-dimensional semiconductors. Nano Lett. 15(2), 1122–1127 (2015)ADSCrossRef
57.
go back to reference Y. Liu et al., Thermal oxidation of WSe2 nanosheets adhered on SiO2/Si substrates. Nano Lett. 15(8), 4979–4984 (2015)ADSCrossRef Y. Liu et al., Thermal oxidation of WSe2 nanosheets adhered on SiO2/Si substrates. Nano Lett. 15(8), 4979–4984 (2015)ADSCrossRef
58.
go back to reference J.S. Kim et al., Toward air-stable multilayer phosphorene thin-films and transistors. Sci. Rep. 5, 8989 (2015)CrossRef J.S. Kim et al., Toward air-stable multilayer phosphorene thin-films and transistors. Sci. Rep. 5, 8989 (2015)CrossRef
59.
go back to reference P. J de Visser et al., Spatial conductivity mapping of unprotected and capped black phosphorus using microwave microscopy. 2D Mater. 3(2), 021002 (2016)CrossRef P. J de Visser et al., Spatial conductivity mapping of unprotected and capped black phosphorus using microwave microscopy. 2D Mater. 3(2), 021002 (2016)CrossRef
60.
go back to reference B. Keimer, J. E. Moore, The physics of quantum materials. Nat. Phys. 13(11), 1045–1055 (2017)CrossRef B. Keimer, J. E. Moore, The physics of quantum materials. Nat. Phys. 13(11), 1045–1055 (2017)CrossRef
61.
go back to reference Y. Tokura, M. Kawasaki, N. Nagaosa, Emergent functions of quantum materials (vol 13, pg 1056, 2017). Nat. Phys. 13(11), 1069–1069 (2017)ADSCrossRef Y. Tokura, M. Kawasaki, N. Nagaosa, Emergent functions of quantum materials (vol 13, pg 1056, 2017). Nat. Phys. 13(11), 1069–1069 (2017)ADSCrossRef
62.
go back to reference The rise of quantum materials. Nat. Phys. 12(2), 105–105 (2016) The rise of quantum materials. Nat. Phys. 12(2), 105–105 (2016)
63.
go back to reference L. D. Landau, E. M. Lifshitz, L. P. Pitaevskiĭ, Statistical physics. Course of theoretical physics (Pergamon Press, Oxford; New York, 1980) L. D. Landau, E. M. Lifshitz, L. P. Pitaevskiĭ, Statistical physics. Course of theoretical physics (Pergamon Press, Oxford; New York, 1980)
64.
go back to reference S. L. Sondhi et al., Continuous quantum phase transitions. Rev. Mod. Phys. 69(1), 315–333 (1997)ADSCrossRef S. L. Sondhi et al., Continuous quantum phase transitions. Rev. Mod. Phys. 69(1), 315–333 (1997)ADSCrossRef
65.
66.
go back to reference C. K. Chiu et al., Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 88(3) (2016) C. K. Chiu et al., Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 88(3) (2016)
67.
go back to reference Y. F. Ren, Z. H. Qiao, Q. Niu, Topological phases in two-dimensional materials: a review. Rep. Prog. Phys. 79(6) (2016)ADSCrossRef Y. F. Ren, Z. H. Qiao, Q. Niu, Topological phases in two-dimensional materials: a review. Rep. Prog. Phys. 79(6) (2016)ADSCrossRef
68.
go back to reference A. Stern, N. H. Lindner, Topological quantum computation-from basic concepts to first experiments. Science 339(6124), 1179–1184 (2013)ADSCrossRef A. Stern, N. H. Lindner, Topological quantum computation-from basic concepts to first experiments. Science 339(6124), 1179–1184 (2013)ADSCrossRef
69.
go back to reference S. Hyun et al., Coexistence of metallic and insulating phases in epitaxial CaRuO3 thin films observed by scanning microwave microscopy. Appl. Phys. Lett. 80(9), 1574–1576 (2002)ADSCrossRef S. Hyun et al., Coexistence of metallic and insulating phases in epitaxial CaRuO3 thin films observed by scanning microwave microscopy. Appl. Phys. Lett. 80(9), 1574–1576 (2002)ADSCrossRef
70.
go back to reference H. Takahashi, Y. Imai, A. Maeda, Observation of mesoscopic phase separation in Se2 by scanning microwave microscopy. Physica C (Amsterdam, Neth.) 518, 33–35 (2015)ADSCrossRef H. Takahashi, Y. Imai, A. Maeda, Observation of mesoscopic phase separation in Se2 by scanning microwave microscopy. Physica C (Amsterdam, Neth.) 518, 33–35 (2015)ADSCrossRef
71.
go back to reference W. Kundhikanjana et al., Direct imaging of dynamic glassy behavior in a strained manganite film. Phys. Rev. Lett. 115(26) (2015) W. Kundhikanjana et al., Direct imaging of dynamic glassy behavior in a strained manganite film. Phys. Rev. Lett. 115(26) (2015)
72.
go back to reference H. Madan et al., Quantitative mapping of phase coexistence in mott-peierls insulator during electronic and thermally driven phase transition. ACS Nano 9(2), 2009–2017 (2015)ADSCrossRef H. Madan et al., Quantitative mapping of phase coexistence in mott-peierls insulator during electronic and thermally driven phase transition. ACS Nano 9(2), 2009–2017 (2015)ADSCrossRef
73.
go back to reference A. Tselev et al., Mesoscopic metal-insulator transition at ferroelastic domain walls in VO2. ACS Nano 4(8), 4412–4419 (2010)CrossRef A. Tselev et al., Mesoscopic metal-insulator transition at ferroelastic domain walls in VO2. ACS Nano 4(8), 4412–4419 (2010)CrossRef
74.
go back to reference K. Lai et al., Imaging of coulomb-driven quantum Hall edge states. Phys. Rev. Lett. 107(17), 176809 (2011)ADSCrossRef K. Lai et al., Imaging of coulomb-driven quantum Hall edge states. Phys. Rev. Lett. 107(17), 176809 (2011)ADSCrossRef
75.
go back to reference M. E. Suddards et al., Scanning capacitance imaging of compressible and incompressible quantum Hall effect edge strips. New J. Phys. 14(8), 083015 (2012)ADSCrossRef M. E. Suddards et al., Scanning capacitance imaging of compressible and incompressible quantum Hall effect edge strips. New J. Phys. 14(8), 083015 (2012)ADSCrossRef
76.
go back to reference Y. T. Cui et al., Unconventional correlation between quantum hall transport quantization and bulk state filling in gated graphene devices. Phys. Rev. Lett. 117(18), 186601 (2016)ADSCrossRef Y. T. Cui et al., Unconventional correlation between quantum hall transport quantization and bulk state filling in gated graphene devices. Phys. Rev. Lett. 117(18), 186601 (2016)ADSCrossRef
77.
go back to reference E. Y. Ma et al., Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry. Nat. Commun. 6, 7252 (2015)ADSCrossRef E. Y. Ma et al., Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry. Nat. Commun. 6, 7252 (2015)ADSCrossRef
Metadata
Title
Scanning Microwave Impedance Microscopy (sMIM) in Electronic and Quantum Materials
Authors
Kurt A. Rubin
Yongliang Yang
Oskar Amster
David A. Scrymgeour
Shashank Misra
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-15612-1_12