Skip to main content
Top
Published in: Acta Mechanica Sinica 2/2019

24-01-2019 | Research Paper

Direct numerical simulation of a turbulent boundary layer over an anisotropic compliant wall

Authors: Qian-Jin Xia, Wei-Xi Huang, Chun-Xiao Xu

Published in: Acta Mechanica Sinica | Issue 2/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Direct numerical simulation of a spatially developing turbulent boundary layer over a compliant wall with anisotropic wall material properties is performed. The Reynolds number varies from 300 to approximately 860 along the streamwise direction, based on the external flow velocity and the momentum thickness. Eight typical cases are selected for numerical investigation under the guidance of monoharmonic analysis. The instantaneous flow fields exhibit a traveling wavy motion of the compliant wall, and the frequency-wavenumber power spectrum of wall pressure fluctuation is computed to quantify the mutual influence of the wall compliance and the turbulent flow at different wave numbers. It is shown that the Reynolds shear stress and the pressure fluctuation are generally enhanced by the wall compliance with the parameters considered in the present study. A dynamical decomposition of the skin-friction coefficient is derived, and a new term (CW) appears due to the wall-induced Reynolds shear stress. The influence of the anisotropic compliant wall motion on the turbulent boundary layer through the wall-induced negative Reynolds shear stress is discussed. To elucidate the underlying mechanism, the budget analysis of the Reynolds stress transportation is further carried out. The impact of the wall compliance on the turbulent flow is disclosed by examining the variations of the diffusion and velocity–pressure correlation terms. It is shown that an increase of the Reynolds stress inside the flow domain is caused by enhancement of the velocity–pressure correlation term, possibly through the long-range influence of the wall compliance on the pressure field, rather than diffusion of the wall-induced Reynolds shear stress into the fluid flow.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bushnell, D.M., Hefner, J.N., Ash, R.L.: Effect of compliant wall motion on turbulent boundary layers. Phys. Fluids Part II 20, S31–S48 (1977)CrossRef Bushnell, D.M., Hefner, J.N., Ash, R.L.: Effect of compliant wall motion on turbulent boundary layers. Phys. Fluids Part II 20, S31–S48 (1977)CrossRef
2.
go back to reference Riley, J.J., Gad-el-Hak, M., Metcalfe, R.W.: Compliant coatings. Annu. Rev. Fluid Mech. 20, 393–420 (1988)CrossRef Riley, J.J., Gad-el-Hak, M., Metcalfe, R.W.: Compliant coatings. Annu. Rev. Fluid Mech. 20, 393–420 (1988)CrossRef
3.
go back to reference Gad-el-Hak, M.: Compliant coatings: a decade of progress. Appl. Mech. Rev. 49, S147–S157 (1996)CrossRef Gad-el-Hak, M.: Compliant coatings: a decade of progress. Appl. Mech. Rev. 49, S147–S157 (1996)CrossRef
4.
go back to reference Gad-el-Hak, M.: Compliant coatings for drag reduction. Prog. Aerosp. Sci. 38, 77–99 (2002)CrossRef Gad-el-Hak, M.: Compliant coatings for drag reduction. Prog. Aerosp. Sci. 38, 77–99 (2002)CrossRef
5.
go back to reference Carpenter, P.W., Garrad, A.D.: The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 1. Tollmien–Schlichting instabilities. J. Fluid Mech. 155, 465–510 (1985)CrossRefMATH Carpenter, P.W., Garrad, A.D.: The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 1. Tollmien–Schlichting instabilities. J. Fluid Mech. 155, 465–510 (1985)CrossRefMATH
6.
go back to reference Carpenter, P.W., Garrad, A.D.: The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 2. Flow-induced surface instabilities. J. Fluid Mech. 170, 199–232 (1986)CrossRefMATH Carpenter, P.W., Garrad, A.D.: The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 2. Flow-induced surface instabilities. J. Fluid Mech. 170, 199–232 (1986)CrossRefMATH
7.
go back to reference Carpenter, P.W., Morris, P.J.: The effect of anisotropic wall compliance on boundary-layer stability and transition. J. Fluid Mech. 218, 171–223 (1990)CrossRefMATH Carpenter, P.W., Morris, P.J.: The effect of anisotropic wall compliance on boundary-layer stability and transition. J. Fluid Mech. 218, 171–223 (1990)CrossRefMATH
8.
go back to reference Yeo, K.S.: Hydrodynamic stability of boundary-layer flow over a class of anisotropic complaint walls. J. Fluid Mech. 220, 125–160 (1990)CrossRefMATH Yeo, K.S.: Hydrodynamic stability of boundary-layer flow over a class of anisotropic complaint walls. J. Fluid Mech. 220, 125–160 (1990)CrossRefMATH
9.
go back to reference Yeo, K.S.: The three-dimensional stability of boundary-layer flow over compliant walls. J. Fluid Mech. 238, 537–577 (1992)CrossRefMATH Yeo, K.S.: The three-dimensional stability of boundary-layer flow over compliant walls. J. Fluid Mech. 238, 537–577 (1992)CrossRefMATH
10.
go back to reference Lucey, A.D., Carpenter, P.W.: Boundary layer instability over compliant walls: comparison between theory and experiment. Phys. Fluids 7, 2355–2363 (1995)MathSciNetCrossRef Lucey, A.D., Carpenter, P.W.: Boundary layer instability over compliant walls: comparison between theory and experiment. Phys. Fluids 7, 2355–2363 (1995)MathSciNetCrossRef
11.
go back to reference Luhar, M., Sharma, A.S., McKeon, B.J.: A framework for studying the effect of compliant surfaces on wall turbulence. J. Fluid Mech. 768, 415–441 (2015)MathSciNetCrossRef Luhar, M., Sharma, A.S., McKeon, B.J.: A framework for studying the effect of compliant surfaces on wall turbulence. J. Fluid Mech. 768, 415–441 (2015)MathSciNetCrossRef
12.
go back to reference Kramer, M.O.: Boundary-layer stabilization by distributed damping. J. Aeronaut. Sci. 24, 459–460 (1957) Kramer, M.O.: Boundary-layer stabilization by distributed damping. J. Aeronaut. Sci. 24, 459–460 (1957)
13.
go back to reference Gad-el-Hak, M., Blackwelder, R.F., Riley, J.J.: On the interaction of compliant coatings with boundary-layer flows. J. Fluid Mech. 140, 257–280 (1984)CrossRef Gad-el-Hak, M., Blackwelder, R.F., Riley, J.J.: On the interaction of compliant coatings with boundary-layer flows. J. Fluid Mech. 140, 257–280 (1984)CrossRef
14.
go back to reference Lee, T., Fisher, M., Schwarz, W.H.: Investigation of the stable interaction of a passive compliant surface with a turbulent boundary layer. J. Fluid Mech. 257, 373–401 (1993)CrossRef Lee, T., Fisher, M., Schwarz, W.H.: Investigation of the stable interaction of a passive compliant surface with a turbulent boundary layer. J. Fluid Mech. 257, 373–401 (1993)CrossRef
15.
go back to reference Choi, K.S., Yang, X., Clayton, B.R., et al.: Turbulent drag reduction using compliant surfaces. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 453, 2229–2240 (1997)CrossRefMATH Choi, K.S., Yang, X., Clayton, B.R., et al.: Turbulent drag reduction using compliant surfaces. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 453, 2229–2240 (1997)CrossRefMATH
16.
go back to reference Verma, M., Kumaran, V.: A multifold reduction in the transition Reynolds number, and ultra-fast mixing, in a micro-channel due to a dynamical instability induced by a soft wall. J. Fluid Mech. 727, 407–455 (2013)MathSciNetCrossRefMATH Verma, M., Kumaran, V.: A multifold reduction in the transition Reynolds number, and ultra-fast mixing, in a micro-channel due to a dynamical instability induced by a soft wall. J. Fluid Mech. 727, 407–455 (2013)MathSciNetCrossRefMATH
17.
go back to reference Endo, T., Himeno, R.: Direct numerical simulation of turbulent flow over a compliant surface. J. Turbul. 3, 1–10 (2002)CrossRef Endo, T., Himeno, R.: Direct numerical simulation of turbulent flow over a compliant surface. J. Turbul. 3, 1–10 (2002)CrossRef
18.
go back to reference Xu, S., Rempfer, D., Lumley, J.: Turbulence over a compliant surface: numerical simulation and analysis. J. Fluid Mech. 478, 11–34 (2003)MathSciNetCrossRefMATH Xu, S., Rempfer, D., Lumley, J.: Turbulence over a compliant surface: numerical simulation and analysis. J. Fluid Mech. 478, 11–34 (2003)MathSciNetCrossRefMATH
19.
go back to reference Luo, H., Bewley, T.R.: Design, modeling, and optimization of compliant tensegrity fabrics for the reduction of turbulent skin friction. In: International Society for Optics and Photonics, Smart Structures and Materials, pp. 460-470 (2003) Luo, H., Bewley, T.R.: Design, modeling, and optimization of compliant tensegrity fabrics for the reduction of turbulent skin friction. In: International Society for Optics and Photonics, Smart Structures and Materials, pp. 460-470 (2003)
20.
go back to reference Luo, H., Bewley, T.R.: Accurate simulation of near-wall turbulence over a compliant tensegrity fabric. In: International Society for Optics and Photonics, Smart Structures and Materials, pp. 184-197 (2005) Luo, H., Bewley, T.R.: Accurate simulation of near-wall turbulence over a compliant tensegrity fabric. In: International Society for Optics and Photonics, Smart Structures and Materials, pp. 184-197 (2005)
21.
go back to reference Fukagata, K., Kern, S., Chatelain, P., et al.: Evolutionary optimization of an anisotropic compliant surface for turbulent friction drag reduction. J. Turbul. 9, N35 (2008)CrossRef Fukagata, K., Kern, S., Chatelain, P., et al.: Evolutionary optimization of an anisotropic compliant surface for turbulent friction drag reduction. J. Turbul. 9, N35 (2008)CrossRef
22.
go back to reference Kim, E., Choi, H.: Space-time characteristics of a compliant wall in a turbulent channel flow. J. Fluid Mech. 756, 30–53 (2014)MathSciNetCrossRef Kim, E., Choi, H.: Space-time characteristics of a compliant wall in a turbulent channel flow. J. Fluid Mech. 756, 30–53 (2014)MathSciNetCrossRef
23.
go back to reference Xia, Q.J., Huang, W.X., Xu, C.X.: Direct numerical simulation of turbulent boundary layer over a compliant wall. J. Fluids Struct. 71, 126–142 (2017)CrossRef Xia, Q.J., Huang, W.X., Xu, C.X.: Direct numerical simulation of turbulent boundary layer over a compliant wall. J. Fluids Struct. 71, 126–142 (2017)CrossRef
24.
go back to reference Rosti, M., Brandt, L.: Numerical simulation of turbulent channel flow over a viscous hyper-elastic wall. J. Fluid Mech. 830, 708–735 (2017)MathSciNetCrossRef Rosti, M., Brandt, L.: Numerical simulation of turbulent channel flow over a viscous hyper-elastic wall. J. Fluid Mech. 830, 708–735 (2017)MathSciNetCrossRef
25.
go back to reference Kramer, M.O.: Hydrodynamics of the dolphin. In: Chow, V.T. (ed.) Advances in Hydroscience, vol. 2, pp. 111–130. Academic Press, New York (1965) Kramer, M.O.: Hydrodynamics of the dolphin. In: Chow, V.T. (ed.) Advances in Hydroscience, vol. 2, pp. 111–130. Academic Press, New York (1965)
26.
go back to reference Grosskreutz, R.: Wechselwirkungen zwischen turbulenten Grenzschichten und weichen Wänden. Selbstverlag Max-Planck-Institut für Strömungsforschung und der Aerodynamische Versuchsanstalt (1971) (in German) Grosskreutz, R.: Wechselwirkungen zwischen turbulenten Grenzschichten und weichen Wänden. Selbstverlag Max-Planck-Institut für Strömungsforschung und der Aerodynamische Versuchsanstalt (1971) (in German)
27.
go back to reference Grosskreutz, R.: An attempt to control boundary-layer turbulence with nonisotropic compliant walls. Univ. Sci. J. Dar es Salaam 1, 65–73 (1975) Grosskreutz, R.: An attempt to control boundary-layer turbulence with nonisotropic compliant walls. Univ. Sci. J. Dar es Salaam 1, 65–73 (1975)
28.
go back to reference Lund, T.S., Wu, X., Squires, K.D.: Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comput. Phys. 140, 233–258 (1998)MathSciNetCrossRefMATH Lund, T.S., Wu, X., Squires, K.D.: Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comput. Phys. 140, 233–258 (1998)MathSciNetCrossRefMATH
29.
go back to reference Kim, K., Baek, S.J., Sung, H.J.: An implicit velocity decoupling procedure for the incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 38, 125–138 (2002)CrossRefMATH Kim, K., Baek, S.J., Sung, H.J.: An implicit velocity decoupling procedure for the incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 38, 125–138 (2002)CrossRefMATH
30.
31.
go back to reference Del Álamo, J.C., Jiménez, J.: Estimation of turbulent convection velocities and corrections to Taylor’s approximation. J. Fluid Mech. 640, 5–26 (2009)MathSciNetCrossRefMATH Del Álamo, J.C., Jiménez, J.: Estimation of turbulent convection velocities and corrections to Taylor’s approximation. J. Fluid Mech. 640, 5–26 (2009)MathSciNetCrossRefMATH
32.
go back to reference Fukagata, K., Iwamoto, K., Kasagi, N.: Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14, L73–L76 (2002)CrossRefMATH Fukagata, K., Iwamoto, K., Kasagi, N.: Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14, L73–L76 (2002)CrossRefMATH
33.
go back to reference Xia, Q.J., Huang, W.X., Xu, C.X., et al.: Direct numerical simulation of spatially developing turbulent boundary layers with opposition control. Fluid Dyn. Res. 47, 025503 (2015)CrossRef Xia, Q.J., Huang, W.X., Xu, C.X., et al.: Direct numerical simulation of spatially developing turbulent boundary layers with opposition control. Fluid Dyn. Res. 47, 025503 (2015)CrossRef
34.
go back to reference Schlatter, P., Örlü, R.: Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116–126 (2010)CrossRefMATH Schlatter, P., Örlü, R.: Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116–126 (2010)CrossRefMATH
Metadata
Title
Direct numerical simulation of a turbulent boundary layer over an anisotropic compliant wall
Authors
Qian-Jin Xia
Wei-Xi Huang
Chun-Xiao Xu
Publication date
24-01-2019
Publisher
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Published in
Acta Mechanica Sinica / Issue 2/2019
Print ISSN: 0567-7718
Electronic ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-018-0820-x

Other articles of this Issue 2/2019

Acta Mechanica Sinica 2/2019 Go to the issue

Premium Partners