Skip to main content
Top
Published in: Acta Mechanica Sinica 2/2019

25-03-2019 | Research Paper

Effects of hypoxia on the biological behavior of MSCs seeded in demineralized bone scaffolds with different stiffness

Authors: Yuanyuan Sun, Guobao Chen, Yonggang Lv

Published in: Acta Mechanica Sinica | Issue 2/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Matrix stiffness has been demonstrated in many studies to adjust the biological behaviors of mesenchymal stem cells (MSCs). However, in the initial phase of bone restoration, MSCs will encounter a hypoxic microenvironment. Studying the connection existing between the matrix stiffness and biological behavior of MSCs under hypoxic condition can better simulate the microenvironment at the prime period of bone repairment. In this work, three-dimensional (3D) decalcified bone scaffolds with diverse stiffness [high stiffness (66.06 ± 27.83) MPa, medium stiffness (26.90 ± 13.16) MPa, and low stiffness (0.67 ± 0.14) MPa] but same microstructure have been prepared by controlling decalcification time. In addition, the decellularized bone scaffold was regard as control group and its stiffness was (230.93 ± 72.65) MPa. The viability, proliferation, infiltration, and osteogenic differentiation of MSCs seeded into these 3D demineralized bone scaffolds were systematically investigated under 100 μM CoCl2-simulated hypoxic and normoxic environments. The results showed that the viability, proliferation, and extracellular matrix (ECM) secretion of MSCs had no significant difference on scaffolds with diverse stiffness, but the degree of collagen deposition of MSCs gradually increased with the increase of scaffold stiffness both under normoxia and hypoxia. Compared to normoxia, the viability, proliferation, ECM secretion, vascular endothelial growth factor (VEGF) expression, and osteogenesis of MSCs on the scaffolds with the same stiffness were evidently inhibited by hypoxia. Additionally, under hypoxic condition, the expression of VEGF and hypoxia inducible factor 1α (HIF-1α) in MSCs on the low stiffness scaffold was markedly increased comparing to those on other groups. In summary, we found that the low-stiffness scaffold can improved the proliferation and osteogenic differentiation of MSCs under hypoxic environment, which may help to explore efficient methods for bone defect repairing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Heo, S.J., Szczesny, S.E., Kim, D.H., et al.: Expansion of mesenchymal stem cells on electrospun scaffolds maintains stemness, mechano-responsivity, and differentiation potential. J. Orthop. Res. 36, 808–815 (2018) Heo, S.J., Szczesny, S.E., Kim, D.H., et al.: Expansion of mesenchymal stem cells on electrospun scaffolds maintains stemness, mechano-responsivity, and differentiation potential. J. Orthop. Res. 36, 808–815 (2018)
2.
go back to reference Higuchi, A., Ling, Q.D., Chang, Y., et al.: Physical cues of biomaterials guide stem cell differentiation fate. Chem. Rev. 113, 3297–3328 (2013)CrossRef Higuchi, A., Ling, Q.D., Chang, Y., et al.: Physical cues of biomaterials guide stem cell differentiation fate. Chem. Rev. 113, 3297–3328 (2013)CrossRef
3.
go back to reference Nematbakhsh, Y., Lim, C.T.: Cell biomechanics and its applications in human disease diagnosis. Acta. Mech. Sin. 31, 268–273 (2015)CrossRef Nematbakhsh, Y., Lim, C.T.: Cell biomechanics and its applications in human disease diagnosis. Acta. Mech. Sin. 31, 268–273 (2015)CrossRef
4.
5.
go back to reference Casarin, S., Aletti, F., Baselli, G., et al.: Optimal flow conditions of a tracheobronchial model to reengineer lung structures. Acta. Mech. Sin. 33, 284–294 (2017)CrossRefMATH Casarin, S., Aletti, F., Baselli, G., et al.: Optimal flow conditions of a tracheobronchial model to reengineer lung structures. Acta. Mech. Sin. 33, 284–294 (2017)CrossRefMATH
6.
go back to reference Lee, E.J., Kasper, F.K., Mikos, A.G.: Biomaterials for tissue engineering. Ann. Biomed. Eng. 42, 323–337 (2014)CrossRef Lee, E.J., Kasper, F.K., Mikos, A.G.: Biomaterials for tissue engineering. Ann. Biomed. Eng. 42, 323–337 (2014)CrossRef
7.
go back to reference Even-Ram, S., Artym, V., Yamada, K.M., et al.: Matrix control of stem cell fate. Cell 126, 645–647 (2006)CrossRef Even-Ram, S., Artym, V., Yamada, K.M., et al.: Matrix control of stem cell fate. Cell 126, 645–647 (2006)CrossRef
8.
go back to reference Engler, A.J., Sen, S., Sweeney, H.L., et al.: Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006)CrossRef Engler, A.J., Sen, S., Sweeney, H.L., et al.: Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006)CrossRef
9.
go back to reference Jeon, B.G., Kumar, B.M., Kang, E.J., et al.: Differential cytotoxic effects of sodium meta-arsenite on human cancer cells, dental papilla stem cells and somatic cells correlate with telomeric properties and gene expression. Anticancer Res. 31, 4315–4328 (2011) Jeon, B.G., Kumar, B.M., Kang, E.J., et al.: Differential cytotoxic effects of sodium meta-arsenite on human cancer cells, dental papilla stem cells and somatic cells correlate with telomeric properties and gene expression. Anticancer Res. 31, 4315–4328 (2011)
10.
go back to reference Huebsch, N., Arany, P.R., Mao, A.S., et al.: Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater. 9, 518–526 (2010)CrossRef Huebsch, N., Arany, P.R., Mao, A.S., et al.: Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater. 9, 518–526 (2010)CrossRef
11.
go back to reference Hadjipanayi, E., Mudera, V., Brown, R.A.: Guiding cell migration in 3D: a collagen matrix with graded directional stiffness. Cell Motil. Cytoskeleton. 66, 121–128 (2009)CrossRef Hadjipanayi, E., Mudera, V., Brown, R.A.: Guiding cell migration in 3D: a collagen matrix with graded directional stiffness. Cell Motil. Cytoskeleton. 66, 121–128 (2009)CrossRef
12.
go back to reference Kraehenbueh, T.P., Zammaretti, P., Van der Vlies, A.J.: Three-dimensional extracellular matrix-directed cardioprogenitor differentiation: systematic modulation of a synthetic cell-responsive PEG-hydrogel. Biomaterials 29, 2757–2766 (2008)CrossRef Kraehenbueh, T.P., Zammaretti, P., Van der Vlies, A.J.: Three-dimensional extracellular matrix-directed cardioprogenitor differentiation: systematic modulation of a synthetic cell-responsive PEG-hydrogel. Biomaterials 29, 2757–2766 (2008)CrossRef
13.
go back to reference Banerjee, A., Arha, M., Choudhary, S., et al.: The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells. Biomaterials 30, 4695–4699 (2009)CrossRef Banerjee, A., Arha, M., Choudhary, S., et al.: The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells. Biomaterials 30, 4695–4699 (2009)CrossRef
14.
go back to reference Chen, G., Dong, C., Yang, L., et al.: 3D scaffolds with different stiffness but the same microstructure for bone tissue engineering. ACS Appl. Mater. Interfaces 7, 1570–1580 (2015) Chen, G., Dong, C., Yang, L., et al.: 3D scaffolds with different stiffness but the same microstructure for bone tissue engineering. ACS Appl. Mater. Interfaces 7, 1570–1580 (2015)
15.
go back to reference Hu, Q., Liu, M., Chen, G., et al.: Demineralized bone scaffolds with tunable matrix stiffness for efficient bone integration. ACS Appl. Mater. Interfaces. 10, 27669–27680 (2018)CrossRef Hu, Q., Liu, M., Chen, G., et al.: Demineralized bone scaffolds with tunable matrix stiffness for efficient bone integration. ACS Appl. Mater. Interfaces. 10, 27669–27680 (2018)CrossRef
16.
go back to reference Leszczak, V., Place, L.W., Franz, N., et al.: Nanostructured biomaterials from electrospun demineralized bone matrix: a survey of processing and crosslinking strategies. ACS Appl. Mater. Interfaces. 6, 9328–9337 (2014)CrossRef Leszczak, V., Place, L.W., Franz, N., et al.: Nanostructured biomaterials from electrospun demineralized bone matrix: a survey of processing and crosslinking strategies. ACS Appl. Mater. Interfaces. 6, 9328–9337 (2014)CrossRef
17.
go back to reference Hou, T., Li, Z., Luo, F., et al.: A composite demineralized bone matrix–self assembling peptide scaffold for enhancing cell and growth factor activity in bone marrow. Biomaterials 35, 5689–5699 (2014)CrossRef Hou, T., Li, Z., Luo, F., et al.: A composite demineralized bone matrix–self assembling peptide scaffold for enhancing cell and growth factor activity in bone marrow. Biomaterials 35, 5689–5699 (2014)CrossRef
18.
go back to reference Liu, Q., Ma, Y., Wang, J., et al.: Demineralized bone matrix used for direct pulp capping in rats. PLoS ONE 12, e0172693 (2017)CrossRef Liu, Q., Ma, Y., Wang, J., et al.: Demineralized bone matrix used for direct pulp capping in rats. PLoS ONE 12, e0172693 (2017)CrossRef
19.
go back to reference Shi, J., Sun, J., Zhang, W., et al.: Demineralized bone matrix scaffolds modified by CBD-SDF-1α promote bone regeneration via recruiting endogenous stem cells. ACS Appl. Mater. Interfaces. 8, 27511–27522 (2016)CrossRef Shi, J., Sun, J., Zhang, W., et al.: Demineralized bone matrix scaffolds modified by CBD-SDF-1α promote bone regeneration via recruiting endogenous stem cells. ACS Appl. Mater. Interfaces. 8, 27511–27522 (2016)CrossRef
20.
go back to reference D’Ippolito, G., Diabira, S., Howard, G.A., et al.: Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells. Bone 39, 513–522 (2006)CrossRef D’Ippolito, G., Diabira, S., Howard, G.A., et al.: Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells. Bone 39, 513–522 (2006)CrossRef
21.
go back to reference Lafont, J.E.: Lack of oxygen in articular cartilage: consequences for chondrocyte biology. Int. J. Exp. Pathol. 91, 99–106 (2010)CrossRef Lafont, J.E.: Lack of oxygen in articular cartilage: consequences for chondrocyte biology. Int. J. Exp. Pathol. 91, 99–106 (2010)CrossRef
22.
go back to reference Hsu, S.H., Chen, C.T., Wei, Y.H.: Inhibitory effects of hypoxia on metabolic switch and osteogenic differentiation of human mesenchymal stem cells. Stem Cells 31, 2779–2788 (2013)CrossRef Hsu, S.H., Chen, C.T., Wei, Y.H.: Inhibitory effects of hypoxia on metabolic switch and osteogenic differentiation of human mesenchymal stem cells. Stem Cells 31, 2779–2788 (2013)CrossRef
23.
go back to reference Cicione, C., Muiños-López, E., Hermida-Gómez, T., et al.: Effects of severe hypoxia on bone marrow mesenchymal stem cells differentiation potential. Stem Cells Int. 2013, 232896 (2013)CrossRef Cicione, C., Muiños-López, E., Hermida-Gómez, T., et al.: Effects of severe hypoxia on bone marrow mesenchymal stem cells differentiation potential. Stem Cells Int. 2013, 232896 (2013)CrossRef
24.
go back to reference Boyette, L.B., Creasey, O.A., Guzik, L., et al.: Human bone marrow-derived mesenchymal stem cells display enhanced clonogenicity but impaired differentiation with hypoxic preconditioning. Stem Cells Transl. Med. 3, 251–254 (2014)CrossRef Boyette, L.B., Creasey, O.A., Guzik, L., et al.: Human bone marrow-derived mesenchymal stem cells display enhanced clonogenicity but impaired differentiation with hypoxic preconditioning. Stem Cells Transl. Med. 3, 251–254 (2014)CrossRef
25.
go back to reference Tsai, C.C., Yew, T.L., Yang, D.C., et al.: Benefits of hypoxic culture on bone marrow multipotent stromal cells. Am. J. Blood Res. 2, 148–159 (2012) Tsai, C.C., Yew, T.L., Yang, D.C., et al.: Benefits of hypoxic culture on bone marrow multipotent stromal cells. Am. J. Blood Res. 2, 148–159 (2012)
26.
go back to reference Cruet-Hennequart, S., Drougard, C., Shaw, G., et al.: Radiation-induced alterations of osteogenic and chondrogenic differentiation of human mesenchymal stem cells. PLoS ONE 10, e0119334 (2015)CrossRef Cruet-Hennequart, S., Drougard, C., Shaw, G., et al.: Radiation-induced alterations of osteogenic and chondrogenic differentiation of human mesenchymal stem cells. PLoS ONE 10, e0119334 (2015)CrossRef
27.
go back to reference Xu, N., Liu, H., Qu, F., et al.: Hypoxia inhibits the differentiation of mesenchymal stem cells into osteoblasts by activation of Notch signaling. Exp. Mol. Pathol. 94, 33–39 (2013)CrossRef Xu, N., Liu, H., Qu, F., et al.: Hypoxia inhibits the differentiation of mesenchymal stem cells into osteoblasts by activation of Notch signaling. Exp. Mol. Pathol. 94, 33–39 (2013)CrossRef
28.
go back to reference Ciapetti, G., Granchi, D., Fotia, C., et al.: Effects of hypoxia on osteogenic differentiation of mesenchymal stromal cells used as a cell therapy for avascular necrosis of the femoral head. Cytotherapy 18, 1087–1099 (2016)CrossRef Ciapetti, G., Granchi, D., Fotia, C., et al.: Effects of hypoxia on osteogenic differentiation of mesenchymal stromal cells used as a cell therapy for avascular necrosis of the femoral head. Cytotherapy 18, 1087–1099 (2016)CrossRef
29.
go back to reference Cigognini, D., Gaspar, D., Kumar, P., et al.: Macromolecular crowding meets oxygen tension in human mesenchymal stem cell culture—a step closer to physiologically relevant in vitro organogenesis. Sci. Rep. 6, 30746 (2016)CrossRef Cigognini, D., Gaspar, D., Kumar, P., et al.: Macromolecular crowding meets oxygen tension in human mesenchymal stem cell culture—a step closer to physiologically relevant in vitro organogenesis. Sci. Rep. 6, 30746 (2016)CrossRef
30.
go back to reference Fan, L., Liu, R., Li, J., et al.: Low oxygen tension enhances osteogenic potential of bone marrow-derived mesenchymal stem cells with osteonecrosis-related functional impairment. Stem Cells Int. 2015, 950312 (2015)CrossRef Fan, L., Liu, R., Li, J., et al.: Low oxygen tension enhances osteogenic potential of bone marrow-derived mesenchymal stem cells with osteonecrosis-related functional impairment. Stem Cells Int. 2015, 950312 (2015)CrossRef
31.
go back to reference Wagegg, M., Gaber, T., Lohanatha, F.L., et al.: Hypoxia promotes osteogenesis but suppresses adipogenesis of human mesenchymal stromal cells in a hypoxia-inducible factor-1 dependent manner. PLoS ONE 7, e46483 (2012)CrossRef Wagegg, M., Gaber, T., Lohanatha, F.L., et al.: Hypoxia promotes osteogenesis but suppresses adipogenesis of human mesenchymal stromal cells in a hypoxia-inducible factor-1 dependent manner. PLoS ONE 7, e46483 (2012)CrossRef
32.
go back to reference Salim, A., Nacamuli, R.P., Morgan, E.F., et al.: Transient changes in oxygen tension inhibit osteogenic differentiation and Runx2 expression in osteoblasts. J. Biol. Chem. 279, 40007–40016 (2004)CrossRef Salim, A., Nacamuli, R.P., Morgan, E.F., et al.: Transient changes in oxygen tension inhibit osteogenic differentiation and Runx2 expression in osteoblasts. J. Biol. Chem. 279, 40007–40016 (2004)CrossRef
33.
go back to reference Sha, Y., Lv, Y., Xu, Z., et al.: MGF E peptide pretreatment improves the proliferation and osteogenic differentiation of BMSCs via MEK-ERK1/2 and PI3 K-Akt pathway under severe hypoxia. Life Sci. 189, 52–62 (2017)CrossRef Sha, Y., Lv, Y., Xu, Z., et al.: MGF E peptide pretreatment improves the proliferation and osteogenic differentiation of BMSCs via MEK-ERK1/2 and PI3 K-Akt pathway under severe hypoxia. Life Sci. 189, 52–62 (2017)CrossRef
34.
go back to reference Guo, R., Lu, S., Page, J.M., et al.: Fabrication of 3D scaffolds with precisely controlled substrate modulus and pore size by templated-fused deposition modeling to direct osteogenic differentiation. Adv. Healthc. Mater. 4, 1826–1832 (2015)CrossRef Guo, R., Lu, S., Page, J.M., et al.: Fabrication of 3D scaffolds with precisely controlled substrate modulus and pore size by templated-fused deposition modeling to direct osteogenic differentiation. Adv. Healthc. Mater. 4, 1826–1832 (2015)CrossRef
35.
go back to reference Mebarki, M., Coquelin, L., Layrolle, P., et al.: Enhanced human bone marrow mesenchymal stromal cell adhesion on scaffolds promotes cell survival and bone formation. Acta Biomater. 59, 94–107 (2017)CrossRef Mebarki, M., Coquelin, L., Layrolle, P., et al.: Enhanced human bone marrow mesenchymal stromal cell adhesion on scaffolds promotes cell survival and bone formation. Acta Biomater. 59, 94–107 (2017)CrossRef
36.
go back to reference Dubon, M.J., Yu, J., Choi, S., et al.: Transforming growth factor β induces bone marrow mesenchymal stem cell migration via noncanonical signals and N-cadherin. J. Cell. Physiol. 233, 201–213 (2018)CrossRef Dubon, M.J., Yu, J., Choi, S., et al.: Transforming growth factor β induces bone marrow mesenchymal stem cell migration via noncanonical signals and N-cadherin. J. Cell. Physiol. 233, 201–213 (2018)CrossRef
37.
go back to reference Udartseva, O.O., Lobanova, M.V., Andreeva, E.R., et al.: Acute hypoxic stress affects migration machinery of tissue O2-adapted adipose stromal cells. Stem Cells Int. 2016, 7260562 (2016)CrossRef Udartseva, O.O., Lobanova, M.V., Andreeva, E.R., et al.: Acute hypoxic stress affects migration machinery of tissue O2-adapted adipose stromal cells. Stem Cells Int. 2016, 7260562 (2016)CrossRef
38.
go back to reference Gu, Q., Gu, Y., Shi, Q., et al.: Hypoxia promotes osteogenesis of human placental-derived mesenchymal stem cells. Tohoku J. Exp. Med. 239, 287–296 (2016)CrossRef Gu, Q., Gu, Y., Shi, Q., et al.: Hypoxia promotes osteogenesis of human placental-derived mesenchymal stem cells. Tohoku J. Exp. Med. 239, 287–296 (2016)CrossRef
39.
go back to reference Teti, G., Focaroli, S., Salvatore, V., et al.: The hypoxia-mimetic agent cobalt chloride differently affects human mesenchymal stem cells in their chondrogenic potential. Stem Cells Int. 2018, 3237253 (2018)CrossRef Teti, G., Focaroli, S., Salvatore, V., et al.: The hypoxia-mimetic agent cobalt chloride differently affects human mesenchymal stem cells in their chondrogenic potential. Stem Cells Int. 2018, 3237253 (2018)CrossRef
40.
go back to reference Yoo, H.I., Moon, Y.H., Kim, M.S., et al.: Effects of CoCl2 on multi-lineage differentiation of C3H/10T1/2 mesenchymal stem cells. Korean J. Physiol. Pharmacol. 20, 53–62 (2016)CrossRef Yoo, H.I., Moon, Y.H., Kim, M.S., et al.: Effects of CoCl2 on multi-lineage differentiation of C3H/10T1/2 mesenchymal stem cells. Korean J. Physiol. Pharmacol. 20, 53–62 (2016)CrossRef
41.
go back to reference Potier, E., Ferreira, E., Andriamanalijaona, R., et al.: Hypoxia affects mesenchymal stromal cell osteogenic differentiation and angiogenic factor expression. Bone 40, 1078–1087 (2007)CrossRef Potier, E., Ferreira, E., Andriamanalijaona, R., et al.: Hypoxia affects mesenchymal stromal cell osteogenic differentiation and angiogenic factor expression. Bone 40, 1078–1087 (2007)CrossRef
42.
go back to reference Becerra, J., Andrades, J.A., Ertl, D.C., et al.: Demineralized bone matrix mediates differentiation bone marrow stromal cells in vitro: effect of age of cell donor. J. Bone Miner. Res. 11, 1703–1714 (1996) Becerra, J., Andrades, J.A., Ertl, D.C., et al.: Demineralized bone matrix mediates differentiation bone marrow stromal cells in vitro: effect of age of cell donor. J. Bone Miner. Res. 11, 1703–1714 (1996)
43.
go back to reference Qiu, Y., Chen, Y., Zeng, T., et al.: EGCG ameliorates the hypoxia-induced apoptosis and osteogenic differentiation reduction of mesenchymal stem cells via upregulating miR-210. Mol. Biol. Rep. 43, 183–193 (2016)CrossRef Qiu, Y., Chen, Y., Zeng, T., et al.: EGCG ameliorates the hypoxia-induced apoptosis and osteogenic differentiation reduction of mesenchymal stem cells via upregulating miR-210. Mol. Biol. Rep. 43, 183–193 (2016)CrossRef
44.
go back to reference Guvendiren, M., Burdick, J.A.: Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics. Nat Commun. 3, 792 (2012)CrossRef Guvendiren, M., Burdick, J.A.: Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics. Nat Commun. 3, 792 (2012)CrossRef
45.
go back to reference Moore, S.W., Roca-Cusachs, P., Sheetz, M.P.: Stretchy proteins on stretchy substrates: the important elements of integrin-mediated rigidity sensing. Dev. Cell 19, 194–206 (2010)CrossRef Moore, S.W., Roca-Cusachs, P., Sheetz, M.P.: Stretchy proteins on stretchy substrates: the important elements of integrin-mediated rigidity sensing. Dev. Cell 19, 194–206 (2010)CrossRef
46.
go back to reference Saxena, S., Spears, M.W., Yoshida, H., et al.: Microgel film dynamics modulate cell adhesion behavior. Soft Matter 10, 1356–1364 (2014)CrossRef Saxena, S., Spears, M.W., Yoshida, H., et al.: Microgel film dynamics modulate cell adhesion behavior. Soft Matter 10, 1356–1364 (2014)CrossRef
47.
go back to reference Iyer, N.V., Kotch, L.E., Agani, F., et al.: Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. 12, 149–162 (1998)CrossRef Iyer, N.V., Kotch, L.E., Agani, F., et al.: Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. 12, 149–162 (1998)CrossRef
48.
go back to reference Semenza, G.L.: Targeting HIF-1α for cancer therapy. Nat. Rev. Cancer 3, 721–732 (2003)CrossRef Semenza, G.L.: Targeting HIF-1α for cancer therapy. Nat. Rev. Cancer 3, 721–732 (2003)CrossRef
49.
go back to reference Brahimi-Horn, M.C., Pouysségur, J.: HIF at a glance. J. Cell Sci. 122, 1055–1057 (2009)CrossRef Brahimi-Horn, M.C., Pouysségur, J.: HIF at a glance. J. Cell Sci. 122, 1055–1057 (2009)CrossRef
50.
go back to reference Tatsuyama, K., Maezawa, Y., Baba, H., et al.: Expression of various growth factors for cell proliferation and cytodifferentiation during fracture repair of bone. Eur. J. Histochem. 44, 269–278 (2000) Tatsuyama, K., Maezawa, Y., Baba, H., et al.: Expression of various growth factors for cell proliferation and cytodifferentiation during fracture repair of bone. Eur. J. Histochem. 44, 269–278 (2000)
51.
go back to reference Bluteau, G., Julien, M., Magne, D., et al.: VEGF and VEGF receptors are differentially expressed in chondrocytes. Bone 40, 568–576 (2007)CrossRef Bluteau, G., Julien, M., Magne, D., et al.: VEGF and VEGF receptors are differentially expressed in chondrocytes. Bone 40, 568–576 (2007)CrossRef
52.
go back to reference Kinnaird, T., Stabile, E., Burnett, M.S., et al.: Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109, 1543–1549 (2004)CrossRef Kinnaird, T., Stabile, E., Burnett, M.S., et al.: Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109, 1543–1549 (2004)CrossRef
53.
go back to reference He, J., Genetos, D.C., Yellowley, C.E., et al.: Oxygen tension differentially influences osteogenic differentiation of human adipose stem cells in 2D and 3D cultures. J. Cell. Biochem. 110, 87–96 (2010) He, J., Genetos, D.C., Yellowley, C.E., et al.: Oxygen tension differentially influences osteogenic differentiation of human adipose stem cells in 2D and 3D cultures. J. Cell. Biochem. 110, 87–96 (2010)
Metadata
Title
Effects of hypoxia on the biological behavior of MSCs seeded in demineralized bone scaffolds with different stiffness
Authors
Yuanyuan Sun
Guobao Chen
Yonggang Lv
Publication date
25-03-2019
Publisher
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Published in
Acta Mechanica Sinica / Issue 2/2019
Print ISSN: 0567-7718
Electronic ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-019-00845-2

Other articles of this Issue 2/2019

Acta Mechanica Sinica 2/2019 Go to the issue

Premium Partners