Skip to main content
Top
Published in: Semiconductors 7/2020

01-07-2020 | SEMICONDUCTOR STRUCTURES, LOW-DIMENSIONAL SYSTEMS, AND QUANTUM PHENOMENA

Doping-Dependent Nonlinear Electron Mobility in GaAs|InxGa1 –xAs Coupled Quantum-Well Pseudo-Morphic MODFET Structure

Authors: S. R. Panda, A. Sahu, S. Das, A. K. Panda, T. Sahu

Published in: Semiconductors | Issue 7/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We analyze the asymmetric delta-doping dependence of nonlinear electron mobility μ of GaAs|InxGa1 –xAs double quantum-well pseudo-morphic modulation doped field-effect transistor structure. We solve the Schrodinger and Poisson’s equations self-consistently to obtain the sub-band energy levels and wave functions. We consider scatterings due to the ionized impurities (IMP), alloy disorder (AL), and interface roughness (IR) to calculate μ for a system having double sub-band occupancy, in which the inter-sub-band effects play an important role. Considering the doping concentrations in the barriers towards the substrate and surface sides as Nd1 and Nd2, respectively, we show that variation of Nd1 leads to a dip in μ near Nd1 = Nd2, at which the resonance of the sub-band states occurs. A similar dip in μ as a function of Nd1 is also obtained at Nd1 = Nd2 by keeping (Nd1 + Nd2) unchanged. By increasing the central barrier width and well width, the dip in μ becomes sharp. We note that even though the overall μ is governed by the IMP- and AL-scatterings, the dip in μ is mostly affected through substantial variation of the sub-band mobilities due to IR-scattering near the resonance. Our results of nonlinear electron mobility near the resonance of sub-band states can be utilized for the performance analysis of GaAs|InGaAs pseudo-morphic quantum-well field-effect transistors.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Pseudomorphic HEMT Technology and Applications, Ed. by R. L. Ross, S. P. Svensson, and P. Lugli (Springer, Dordrecht, 1996). Pseudomorphic HEMT Technology and Applications, Ed. by R. L. Ross, S. P. Svensson, and P. Lugli (Springer, Dordrecht, 1996).
2.
go back to reference T. Ohshima, R. Shigemasa, M. Sato, M. Tsunotani, and T. Kimura, Solid State Electron. 43, 1519 (1999).ADSCrossRef T. Ohshima, R. Shigemasa, M. Sato, M. Tsunotani, and T. Kimura, Solid State Electron. 43, 1519 (1999).ADSCrossRef
3.
go back to reference S. J. Mahon, A. Dadello, A. P. Fattorini, A. Bessemoulin, and J. T. Harvey, in Proceedings of the IEEE MTT-S International Microwave Sympoisum (2008), p. 855. S. J. Mahon, A. Dadello, A. P. Fattorini, A. Bessemoulin, and J. T. Harvey, in Proceedings of the IEEE MTT-S International Microwave Sympoisum (2008), p. 855.
4.
5.
go back to reference V. M. Lukashin, A. B. Pashkovskii, K. S. Zhuravlev, A. I. Toropov, V. G. Lapin, E. I. Golant, and A. A. Kapralova, Semiconductors 48, 666 (2014).ADSCrossRef V. M. Lukashin, A. B. Pashkovskii, K. S. Zhuravlev, A. I. Toropov, V. G. Lapin, E. I. Golant, and A. A. Kapralova, Semiconductors 48, 666 (2014).ADSCrossRef
6.
go back to reference Z. Wang, J. Mou, W. Yu, and X. Lv, Appl. Mech. Mater. 229–231, 2007 (2012). Z. Wang, J. Mou, W. Yu, and X. Lv, Appl. Mech. Mater. 229–231, 2007 (2012).
8.
go back to reference K.-W. Lin, K.-H. Yu, W.-L. Chang, C.-C. Cheng, K.-P. Lin, C.-H. Yen, W.-S. Lour, and W.-C. Liu, Solid State Electron. 45, 309 (2001).ADSCrossRef K.-W. Lin, K.-H. Yu, W.-L. Chang, C.-C. Cheng, K.-P. Lin, C.-H. Yen, W.-S. Lour, and W.-C. Liu, Solid State Electron. 45, 309 (2001).ADSCrossRef
9.
go back to reference G. Dewey, M. K. Hudait, K. Lee, R. Pillarisetty, W. Rachmady, M. Radosavljevic, T. Rakshit, and R. Chau, IEEE Electron Dev. Lett. 29, 1094 (2008).ADSCrossRef G. Dewey, M. K. Hudait, K. Lee, R. Pillarisetty, W. Rachmady, M. Radosavljevic, T. Rakshit, and R. Chau, IEEE Electron Dev. Lett. 29, 1094 (2008).ADSCrossRef
10.
go back to reference D.-H. Kim, J. A. del Alamo, J.-H. Lee, and K.-S. Seo, IEEE Trans. Electron Dev. 54, 2606 (2007).ADSCrossRef D.-H. Kim, J. A. del Alamo, J.-H. Lee, and K.-S. Seo, IEEE Trans. Electron Dev. 54, 2606 (2007).ADSCrossRef
11.
go back to reference J. Lin, T.-W. Kim, and D. A. Antoniadis, and J. A. del Alamo, Appl. Phys. Express 5, 064002 (2012).ADSCrossRef J. Lin, T.-W. Kim, and D. A. Antoniadis, and J. A. del Alamo, Appl. Phys. Express 5, 064002 (2012).ADSCrossRef
12.
go back to reference D.-H. Kim, J. A. del Alamo, D. A. Antoniadis, and B. Brar, in IEDM Tech.Digest (2009), p. 861. D.-H. Kim, J. A. del Alamo, D. A. Antoniadis, and B. Brar, in IEDM Tech.Digest (2009), p. 861.
13.
go back to reference D.-H. Kim, and B. Brar, and J. A. del Alamo, in IEDM Tech.Digest (2011), p. 319. D.-H. Kim, and B. Brar, and J. A. del Alamo, in IEDM Tech.Digest (2011), p. 319.
14.
go back to reference C.-Y. Lee, H.-P. Shiao, K.-C. Kuo, H.-Y. Wu, and W.-H. Lin, J. Vac. Sci. Technol. B 24, 2597 (2006).CrossRef C.-Y. Lee, H.-P. Shiao, K.-C. Kuo, H.-Y. Wu, and W.-H. Lin, J. Vac. Sci. Technol. B 24, 2597 (2006).CrossRef
15.
go back to reference K. Y. Chu, S. Y. Cheng, M. H. Chiang, Y. J. Liu, C. C. Huang, T. Y. Chen, C. S. Hsu, W. C. Liu, W. Y. Cheng, and B. C. Lin, Solid State Electron. 72, 22 (2012).ADSCrossRef K. Y. Chu, S. Y. Cheng, M. H. Chiang, Y. J. Liu, C. C. Huang, T. Y. Chen, C. S. Hsu, W. C. Liu, W. Y. Cheng, and B. C. Lin, Solid State Electron. 72, 22 (2012).ADSCrossRef
17.
go back to reference H.-M. Shieh, W.-C. Hsu, R.-T. Hsu, C.-L. Wu, and T.-S. Wu, IEEE Electron Dev. Lett. 14, 581 (1993).ADSCrossRef H.-M. Shieh, W.-C. Hsu, R.-T. Hsu, C.-L. Wu, and T.-S. Wu, IEEE Electron Dev. Lett. 14, 581 (1993).ADSCrossRef
18.
go back to reference L.-Y. Chen, S.-Y. Cheng, T.-P. Chen, K.-Y. Chu, T.-H. Tsai, Y.-C. Liu, X.-D. Liao, and W.-C. Liu, IEEE Trans. Electron Dev. 55, 3310 (2008).ADSCrossRef L.-Y. Chen,  S.-Y. Cheng, T.-P. Chen, K.-Y. Chu, T.-H. Tsai, Y.-C. Liu, X.-D. Liao, and W.-C. Liu, IEEE Trans. Electron Dev. 55, 3310 (2008).ADSCrossRef
20.
go back to reference P. Bhattacharya, Properties of III–V Quantum Wells and Superlattices (INSPEC, IEE, London, 1996). P. Bhattacharya, Properties of III–V Quantum Wells and Superlattices (INSPEC, IEE, London, 1996).
21.
go back to reference L. Kowalczyk, G. Karczewski, T. Wojtowicz, and J. Kossut, J. Cryst. Growth 159, 680 (1996).ADSCrossRef L. Kowalczyk, G. Karczewski, T. Wojtowicz, and J. Kossut, J. Cryst. Growth 159, 680 (1996).ADSCrossRef
22.
go back to reference P. G. Huggard, C. J. Shaw, S. R. Andrews, J. A. Cluff, and R. Grey, Phys. Rev. Lett. 84, 1023 (2000).ADSCrossRef P. G. Huggard, C. J. Shaw, S. R. Andrews, J. A. Cluff, and R. Grey, Phys. Rev. Lett. 84, 1023 (2000).ADSCrossRef
27.
go back to reference T. Wecker, F. Horich, M. Feneberg, R. Goldhahn, D. Reuter, and D. J. As, Phys. Status Solidi B 252, 873 (2015).ADSCrossRef T. Wecker, F. Horich, M. Feneberg, R. Goldhahn, D. Reuter, and D. J. As, Phys. Status Solidi B 252, 873 (2015).ADSCrossRef
30.
go back to reference R. Fletcher, E. Zaremba, M. D’Iorio, C. T. Foxon, and J. J. Harris, Phys. Rev. B 41, 10649 (1990).ADSCrossRef R. Fletcher, E. Zaremba, M. D’Iorio, C. T. Foxon, and J. J. Harris, Phys. Rev. B 41, 10649 (1990).ADSCrossRef
33.
34.
36.
go back to reference M. Mohapatra, A. Sahu, S. R. Panda, S. Das, T. Sahu, and A. K. Panda, Jpn. J. Appl. Phys. 56, 064101 (2017).ADSCrossRef M. Mohapatra, A. Sahu, S. R. Panda, S. Das, T. Sahu, and A. K. Panda, Jpn. J. Appl. Phys. 56, 064101 (2017).ADSCrossRef
37.
go back to reference A. Palevski, F. Beltram, F. Capasso, L. Pfeiffer, and K. W. West, Phys. Rev. Lett. 65, 1929 (1990).ADSCrossRef A. Palevski, F. Beltram, F. Capasso, L. Pfeiffer, and K. W. West, Phys. Rev. Lett. 65, 1929 (1990).ADSCrossRef
38.
go back to reference A. Kurobe, I. M. Castleton, E. H. Linfield, M. P. Grimshaw, K. M. Brown, D. A. Ritchie, M. Pepper, and G. A. C. Jones, Phys. Rev. B 50, 8024 (1994).ADSCrossRef A. Kurobe, I. M. Castleton, E. H. Linfield, M. P. Grimshaw, K. M. Brown, D. A. Ritchie, M. Pepper, and G. A. C. Jones, Phys. Rev. B 50, 8024 (1994).ADSCrossRef
39.
Metadata
Title
Doping-Dependent Nonlinear Electron Mobility in GaAs|InxGa1 –xAs Coupled Quantum-Well Pseudo-Morphic MODFET Structure
Authors
S. R. Panda
A. Sahu
S. Das
A. K. Panda
T. Sahu
Publication date
01-07-2020
Publisher
Pleiades Publishing
Published in
Semiconductors / Issue 7/2020
Print ISSN: 1063-7826
Electronic ISSN: 1090-6479
DOI
https://doi.org/10.1134/S1063782620070118

Other articles of this Issue 7/2020

Semiconductors 7/2020 Go to the issue

SEMICONDUCTOR STRUCTURES, LOW-DIMENSIONAL SYSTEMS, AND QUANTUM PHENOMENA

Formation of GaN Nanorods in Monodisperse Spherical Mesoporous Silica Particles

SEMICONDUCTOR STRUCTURES, LOW-DIMENSIONAL SYSTEMS, AND QUANTUM PHENOMENA

2D SiC/Si Structure: Electron States and Adsorbability

Premium Partner