Skip to main content
Top
Published in: Journal of Computational Electronics 2/2016

29-12-2015

Double gate graphene nanoribbon field effect transistor with electrically induced junctions for source and drain regions

Author: Ali Naderi

Published in: Journal of Computational Electronics | Issue 2/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper a novel graphene nanoribbon transistor with electrically induced junction for source and drain regions is proposed. An auxiliary junction is used to form electrically induced source and drain regions beside the main regions. Two parts of same metal are implemented at both sides of the main gate region. These metals which act as side gates are connected to each other to form auxiliary junction. A fixed voltage is applied on this junction during voltage variation on other junctions. Side metals have smaller workfunction than the middle one. Tight-binding Hamiltonian and nonequilibrium Green’s function formalism are used to perform atomic scale electronic transport simulation. Due to the difference in metals workfunction, additional gates create two steps in potential profile. These steps increase horizontal distance between conduction and valance bands at gate to drain/source junction and consequently lower band to band tunneling probability. Current ratio and subthreshold swing improved at different channel lengths. Furthermore, device reliability is improved where electric field at drain side of the channel is reduced. This means improvement in leakage current, hot electron effect behavior and breakdown voltage. Application to multi-input logic gates shows higher speed and smaller power delay product in comparison with conventional platform.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Brennan, K.F.: Introduction to Semiconductor Devices for Computing and Telecommunications Applications. Cambridge University Press, Cambridge (2005)CrossRef Brennan, K.F.: Introduction to Semiconductor Devices for Computing and Telecommunications Applications. Cambridge University Press, Cambridge (2005)CrossRef
3.
go back to reference Murali, R., Brenner, K., Yinxiao, Y., Beck, T.: Resistivity of graphene nanoribbon interconnects. IEEE Electron Device Lett. 30(6), 611–613 (2009)CrossRef Murali, R., Brenner, K., Yinxiao, Y., Beck, T.: Resistivity of graphene nanoribbon interconnects. IEEE Electron Device Lett. 30(6), 611–613 (2009)CrossRef
4.
go back to reference Murali, R., Yang, Y., Brenner, K., Beck, T., Meind, J.D.: Breakdown current density of graphene nanoribbons. Appl. Phys. Lett. 94(24), 243114 (2009)CrossRef Murali, R., Yang, Y., Brenner, K., Beck, T., Meind, J.D.: Breakdown current density of graphene nanoribbons. Appl. Phys. Lett. 94(24), 243114 (2009)CrossRef
5.
go back to reference Murali, R.: Graphene transistors. Graphene Nanoelectronics from Materials to Circuits, pp. 51–91. Springer, New York (2012)CrossRef Murali, R.: Graphene transistors. Graphene Nanoelectronics from Materials to Circuits, pp. 51–91. Springer, New York (2012)CrossRef
6.
go back to reference Gholipour, M., Masoumi, N., Chen, Y., Chen, D., Pourfath, M.: Asymmetric gate Schottky–Barrier graphene nanoribbon FETs for low-power design. IEEE Trans. Electron Devices. 61(12), 4000–4006 (2014)CrossRef Gholipour, M., Masoumi, N., Chen, Y., Chen, D., Pourfath, M.: Asymmetric gate Schottky–Barrier graphene nanoribbon FETs for low-power design. IEEE Trans. Electron Devices. 61(12), 4000–4006 (2014)CrossRef
7.
go back to reference Naderi, A.: Theoretical analysis of a novel dual gate metal-graphene nanoribbon field effect transistor. Mater. Sci. Semicond. Process. 31, 223–228 (2015)CrossRef Naderi, A.: Theoretical analysis of a novel dual gate metal-graphene nanoribbon field effect transistor. Mater. Sci. Semicond. Process. 31, 223–228 (2015)CrossRef
8.
go back to reference Gholipour, M., Masoumi, N.: Graphene nanoribbon crossbar architecture for low power and dense circuit implementations. Microelectron. J. 45(11), 1533–1541 (2014)CrossRef Gholipour, M., Masoumi, N.: Graphene nanoribbon crossbar architecture for low power and dense circuit implementations. Microelectron. J. 45(11), 1533–1541 (2014)CrossRef
9.
go back to reference Zhao, P., Guo, J.: Modeling edge effects in graphene nanoribbon field effect transistors with real and mode space methods. J. Appl. Phys. 105, 034503 (2009)CrossRef Zhao, P., Guo, J.: Modeling edge effects in graphene nanoribbon field effect transistors with real and mode space methods. J. Appl. Phys. 105, 034503 (2009)CrossRef
10.
go back to reference Jang, S.K., Jeon, J., Jeon, S.M., Song, Y.J., Lee, S.: Effects of dielectric material properties on graphene transistor performance. Solid-State Electron. 109, 8–11 (2015)CrossRef Jang, S.K., Jeon, J., Jeon, S.M., Song, Y.J., Lee, S.: Effects of dielectric material properties on graphene transistor performance. Solid-State Electron. 109, 8–11 (2015)CrossRef
11.
go back to reference Naderi, A., Keshavarzi, P.: Electrically-activated source extension graphene nanoribbon field effect transistor: novel attributes and design considerations for suppressing short channel effects. Superlattices Microstruct. 72, 305–318 (2014)CrossRef Naderi, A., Keshavarzi, P.: Electrically-activated source extension graphene nanoribbon field effect transistor: novel attributes and design considerations for suppressing short channel effects. Superlattices Microstruct. 72, 305–318 (2014)CrossRef
12.
go back to reference Liang, G., Neophytou, N., Lundstrom, M., Nikonov, D.: Computational study of double-gate graphene nano-ribbon transistors. J. Comput. Electron. 7(3), 394–397 (2008)CrossRef Liang, G., Neophytou, N., Lundstrom, M., Nikonov, D.: Computational study of double-gate graphene nano-ribbon transistors. J. Comput. Electron. 7(3), 394–397 (2008)CrossRef
13.
go back to reference Grassi, R., Gnudi, A., Gnani, E., Reggiani, S., Baccarani, G.: An investigation of performance limits of conventional and tunneling graphene-based transistors. J. Comput. Electron. 8(3), 441–450 (2009)CrossRef Grassi, R., Gnudi, A., Gnani, E., Reggiani, S., Baccarani, G.: An investigation of performance limits of conventional and tunneling graphene-based transistors. J. Comput. Electron. 8(3), 441–450 (2009)CrossRef
14.
go back to reference Kawaura, H., Sakamoto, T., Baba, T., Ochiai, Y., Fujita, J., Matsui, S., Sone, J.: Transistor operation of 30 nm gate-length EJ-MOSFETs. IEEE Electron Device Lett. 19(3), 74–76 (1998)CrossRef Kawaura, H., Sakamoto, T., Baba, T., Ochiai, Y., Fujita, J., Matsui, S., Sone, J.: Transistor operation of 30 nm gate-length EJ-MOSFETs. IEEE Electron Device Lett. 19(3), 74–76 (1998)CrossRef
15.
go back to reference Kawaura, H., Sakamoto, T., Baba, T., Ochiai, Y., Fujita, J., Sone, J.: Transistor characteristics of 14-nm-gate-length EJ-MOSFETs. IEEE Trans. Electron Devices 47(4), 856–860 (2000)CrossRef Kawaura, H., Sakamoto, T., Baba, T., Ochiai, Y., Fujita, J., Sone, J.: Transistor characteristics of 14-nm-gate-length EJ-MOSFETs. IEEE Trans. Electron Devices 47(4), 856–860 (2000)CrossRef
16.
go back to reference Han, S., Chang, S., Lee, J., Shin, H.: 50 nm MOSFET with electrically induced source/drain (S/D) extensions. IEEE Trans. Electron Devices 48(9), 2058–2064 (2001)CrossRef Han, S., Chang, S., Lee, J., Shin, H.: 50 nm MOSFET with electrically induced source/drain (S/D) extensions. IEEE Trans. Electron Devices 48(9), 2058–2064 (2001)CrossRef
17.
go back to reference Choi, Y.J., Choi, B.Y., Kim, K.R., Lee, J.D., Park, B.G.: A new 50-nm nMOSFET with side-gates for virtual source-drain extensions. IEEE Trans. Electron Devices 49(42), 1833–1835 (2002)CrossRef Choi, Y.J., Choi, B.Y., Kim, K.R., Lee, J.D., Park, B.G.: A new 50-nm nMOSFET with side-gates for virtual source-drain extensions. IEEE Trans. Electron Devices 49(42), 1833–1835 (2002)CrossRef
18.
go back to reference Arefinia, Z., Orouji, A.: Quantum simulation study of a new carbon nanotube field-effect transistor with electrically induced source/drain extension. IEEE Trans. Device Mater. Relat. 9(9), 237–243 (2009)CrossRef Arefinia, Z., Orouji, A.: Quantum simulation study of a new carbon nanotube field-effect transistor with electrically induced source/drain extension. IEEE Trans. Device Mater. Relat. 9(9), 237–243 (2009)CrossRef
19.
go back to reference Sarvari, H., Ghayour, R., Dastjerdy, E.: Frequency analysis of graphene nanoribbon FET by non-equilibrium Green’s function in mode space. Physica E 43(8), 1509–1513 (2011)CrossRef Sarvari, H., Ghayour, R., Dastjerdy, E.: Frequency analysis of graphene nanoribbon FET by non-equilibrium Green’s function in mode space. Physica E 43(8), 1509–1513 (2011)CrossRef
20.
go back to reference Noei, M., Moradinasab, M., Fathipour, M.: A computational study of ballistic graphene nanoribbon field effect transistors. Physica E 44(7), 45–52 (2012) Noei, M., Moradinasab, M., Fathipour, M.: A computational study of ballistic graphene nanoribbon field effect transistors. Physica E 44(7), 45–52 (2012)
21.
go back to reference Wang, Z., Li, Q., Zheng, H., Su, H., Shi, Q., Chen, J.: Tuning the electronic structure of graphene nanoribbons through chemical edge modification: a theoretical study. Phys. Rev. B 75, 113406 (2007)CrossRef Wang, Z., Li, Q., Zheng, H., Su, H., Shi, Q., Chen, J.: Tuning the electronic structure of graphene nanoribbons through chemical edge modification: a theoretical study. Phys. Rev. B 75, 113406 (2007)CrossRef
22.
go back to reference Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1995)CrossRef Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1995)CrossRef
23.
go back to reference Datta, S.: Quantum Transport: Atom to Transistor. Cambridge University Press, Cambridge (2005)CrossRefMATH Datta, S.: Quantum Transport: Atom to Transistor. Cambridge University Press, Cambridge (2005)CrossRefMATH
24.
go back to reference Goharrizi, A.Y., Pourfath, M., Fathipour, M., Kosina, H., Selberherr, S.: An analytical model for line-edge roughness limited mobility of graphene nanoribbons. IEEE Trans. Electron Devices 58(11), 3725–3735 (2011)CrossRef Goharrizi, A.Y., Pourfath, M., Fathipour, M., Kosina, H., Selberherr, S.: An analytical model for line-edge roughness limited mobility of graphene nanoribbons. IEEE Trans. Electron Devices 58(11), 3725–3735 (2011)CrossRef
25.
go back to reference Haixia, D., Kai-Tak, L., Samudra, G., Sai-Kong, Ch., Liang, G.: Graphene nanoribbon tunneling field-effect transistors with a semiconducting and a semimetallic heterojunction channel. IEEE Trans. Electron Devices 59(5), 1454–1461 (2012)CrossRef Haixia, D., Kai-Tak, L., Samudra, G., Sai-Kong, Ch., Liang, G.: Graphene nanoribbon tunneling field-effect transistors with a semiconducting and a semimetallic heterojunction channel. IEEE Trans. Electron Devices 59(5), 1454–1461 (2012)CrossRef
26.
go back to reference Pei, Zh, Feenstra, R.M., Gong, G., Jena, D.: SymFET: a proposed symmetric graphene tunneling field-effect transistor. IEEE Trans. Electron Devices 60(3), 951–957 (2013)CrossRef Pei, Zh, Feenstra, R.M., Gong, G., Jena, D.: SymFET: a proposed symmetric graphene tunneling field-effect transistor. IEEE Trans. Electron Devices 60(3), 951–957 (2013)CrossRef
27.
go back to reference Hsu, F., Grinolds, H.: Structure-enhanced MOSFET degradation due to hot electron injection. IEEE Electron Device Lett. 5(3), 71–74 (1984)CrossRef Hsu, F., Grinolds, H.: Structure-enhanced MOSFET degradation due to hot electron injection. IEEE Electron Device Lett. 5(3), 71–74 (1984)CrossRef
28.
go back to reference Mao, L.F., Li, X.J., Wang, Z.O., Wang, J.Y.: The gate leakage current in graphene field-effect transistor. IEEE Electron Device Lett. 29(9), 1047–1049 (2008)CrossRef Mao, L.F., Li, X.J., Wang, Z.O., Wang, J.Y.: The gate leakage current in graphene field-effect transistor. IEEE Electron Device Lett. 29(9), 1047–1049 (2008)CrossRef
29.
go back to reference Ghadiry, M., Nadi, M., Saiedmanesh, M., Abadi, H.K.F.: An analytical approach to study breakdown mechanism in graphene nanoribbon field effect transistots. J. Comput. Theor. Nanosci. 11(2), 339–343 (2014)CrossRef Ghadiry, M., Nadi, M., Saiedmanesh, M., Abadi, H.K.F.: An analytical approach to study breakdown mechanism in graphene nanoribbon field effect transistots. J. Comput. Theor. Nanosci. 11(2), 339–343 (2014)CrossRef
30.
go back to reference Youngki, Y., Fiori, G., Seokmin, H., Iannaccone, G., Guo, J.: Performance comparison of graphene nanoribbon FETs with Schottky Contacts and doped reservoirs. IEEE Trans. Electron Devices 55(9), 2314–2323 (2008)CrossRef Youngki, Y., Fiori, G., Seokmin, H., Iannaccone, G., Guo, J.: Performance comparison of graphene nanoribbon FETs with Schottky Contacts and doped reservoirs. IEEE Trans. Electron Devices 55(9), 2314–2323 (2008)CrossRef
31.
go back to reference Naderi, A., Keshavarzi, P.: Novel carbon nanotube field effect transistor with graded double halo channel. Superlattices Microstruct. 51(5), 668–679 (2012)CrossRef Naderi, A., Keshavarzi, P.: Novel carbon nanotube field effect transistor with graded double halo channel. Superlattices Microstruct. 51(5), 668–679 (2012)CrossRef
32.
go back to reference Kopylov, S., Tzalenchuk, A., Kubatkin, S., Fal’ko, V.I.: Charge transfer between epitaxial graphene and silicon carbide. Appl. Phys. Lett. 97(11), 112109 (2010)CrossRef Kopylov, S., Tzalenchuk, A., Kubatkin, S., Fal’ko, V.I.: Charge transfer between epitaxial graphene and silicon carbide. Appl. Phys. Lett. 97(11), 112109 (2010)CrossRef
33.
go back to reference Farmer, D.B., Golizadeh-Mojarad, R., Perebeinos, V., Lin, Y.M., Tulevski, G.S., Tsang, J.C., Avouris, P.: Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors. Nano Lett. 9(12), 388 (2009)CrossRef Farmer, D.B., Golizadeh-Mojarad, R., Perebeinos, V., Lin, Y.M., Tulevski, G.S., Tsang, J.C., Avouris, P.: Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors. Nano Lett. 9(12), 388 (2009)CrossRef
34.
go back to reference Tseng, F., Unluer, D., Stan, M.R., Ghosh, A.W.: Graphene nanoribbons: from chemistry to circuits. In: Raza, H. (ed.) Graphene Nanoelectronics Metrology, Synthesis, Properties and Applications, pp. 555–586. Springer, Heidelberg (2012) Tseng, F., Unluer, D., Stan, M.R., Ghosh, A.W.: Graphene nanoribbons: from chemistry to circuits. In: Raza, H. (ed.) Graphene Nanoelectronics Metrology, Synthesis, Properties and Applications, pp. 555–586. Springer, Heidelberg (2012)
Metadata
Title
Double gate graphene nanoribbon field effect transistor with electrically induced junctions for source and drain regions
Author
Ali Naderi
Publication date
29-12-2015
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 2/2016
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-015-0781-2

Other articles of this Issue 2/2016

Journal of Computational Electronics 2/2016 Go to the issue