Skip to main content
Top
Published in: Journal of Computational Electronics 2/2016

14-03-2016

A novel robust exclusive-OR function implementation in QCA nanotechnology with energy dissipation analysis

Authors: Gurmohan Singh, R. K. Sarin, Balwinder Raj

Published in: Journal of Computational Electronics | Issue 2/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Numerous scientific and fundamental hindrances have resulted in a slow down of silicon technology and opened new possibilities for emerging research devices and structures. The need has arisen to expedite new methods to interface these nanostructures for computing applications. Quantum-dot Cellular Automata (QCA) is one of such computing paradigm and means of encoding binary information. QCA computing offers potential advantages of ultra-low power dissipation, improved speed and highly density structures. This paper presents a novel two-input Exclusive-OR (XOR) gate implementation in quantum-dot cellular automata nanotechnology with minimum area and power dissipation as compared to previous designs. The proposed novel QCA based XOR structure uses only 28 QCA cells with an area of \(0.02\,\upmu \hbox {m}^{2}\) and latency of 0.75 clock cycles. Also the proposed novel XOR gate is implemented in single layer without using any coplanar and multi-layer cross-over wiring facilitating highly robust and dense QCA circuit implementations. To investigate the efficacy of our proposed design in complex array of QCA structures, 4, 8, 16 and 32-bit even parity generator circuits were implemented. The proposed 4-bit even parity design occupies 9 and 50 % less area and has 12.5 and 22.22 % less latency as compared to previous designs. The 32-bit even parity design occupies 22 % less area than the best reported previous design. The proposed novel XOR structure has 28 % less switching energy dissipation, 10 % less average leakage energy dissipation and 19 % less average energy dissipation than best reported design. The simulation results verified that the proposed design offers significant improvements in terms of area, latency, energy dissipation and structural implementation requirements. All designs have been functionally verified in the QCADesigner tool for GaAs/AlGaAs heterostructure based semiconductor implementations. The energy dissipation results have been computed using an accurate QCAPro tool.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Bourianoff, G.: The future of nanocomputing. IEEE Comput. Mag. 36(8), 44–53 (2003)CrossRef Bourianoff, G.: The future of nanocomputing. IEEE Comput. Mag. 36(8), 44–53 (2003)CrossRef
3.
go back to reference Lent, C.S., Taugaw, P.D., Porod, W., Berstein, G.H.: Quantum cellular automata. Nanotechnology (IOPScience) 4(1), 49–57 (1993)CrossRef Lent, C.S., Taugaw, P.D., Porod, W., Berstein, G.H.: Quantum cellular automata. Nanotechnology (IOPScience) 4(1), 49–57 (1993)CrossRef
4.
go back to reference Lent, C.S., Taugaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85, 541–557 (1997)CrossRef Lent, C.S., Taugaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85, 541–557 (1997)CrossRef
5.
go back to reference Orlov, A.O., Amlani, I., Bernstein, G.H., Lent, C.S., Snider, G.L.: Realization of a functional cell for quantum-dot cellular automata. Sci. Mag. 227, 928–930 (1997) Orlov, A.O., Amlani, I., Bernstein, G.H., Lent, C.S., Snider, G.L.: Realization of a functional cell for quantum-dot cellular automata. Sci. Mag. 227, 928–930 (1997)
6.
go back to reference Amlani, I., Orlov, A.O., Kummamuru, R.K., Bernstein, G.H., Lent, C.S., Snider, G.L.: Experimental demonstration of a leadless quantum-dot cellular automata cell. Appl. Phys. Lett. 77(5), 738–740 (2000)CrossRef Amlani, I., Orlov, A.O., Kummamuru, R.K., Bernstein, G.H., Lent, C.S., Snider, G.L.: Experimental demonstration of a leadless quantum-dot cellular automata cell. Appl. Phys. Lett. 77(5), 738–740 (2000)CrossRef
7.
go back to reference Sheikhfaal, Shadi, Angizi, Shaahin, Sarmadi, Soheil, Moaiyeri, Mohammad Hossein, Sayedsalehi, Samira: Designing efficient QCA logical circuits with power dissipation analysis. Microelectron. J. 46, 462–471 (2015)CrossRef Sheikhfaal, Shadi, Angizi, Shaahin, Sarmadi, Soheil, Moaiyeri, Mohammad Hossein, Sayedsalehi, Samira: Designing efficient QCA logical circuits with power dissipation analysis. Microelectron. J. 46, 462–471 (2015)CrossRef
8.
go back to reference Angizi, S., Alkaldy, E., Bagherzadeh, N., Navi, K.: Novel robust single layer wire-crossing approach for exclusive-OR sum of products logic design with quantum-dot cellular automata. J. Low Power Electron. 10, 259–271 (2014)CrossRef Angizi, S., Alkaldy, E., Bagherzadeh, N., Navi, K.: Novel robust single layer wire-crossing approach for exclusive-OR sum of products logic design with quantum-dot cellular automata. J. Low Power Electron. 10, 259–271 (2014)CrossRef
9.
go back to reference Srivastava, S., Asthana, A., Bhanja, S., Sarkar, S.: QCAPro—an error power estimation tool for QCA circuit design. In: Proceedings of the IEEE international symposium circuits system, pp. 2377–2380, May (2011) Srivastava, S., Asthana, A., Bhanja, S., Sarkar, S.: QCAPro—an error power estimation tool for QCA circuit design. In: Proceedings of the IEEE international symposium circuits system, pp. 2377–2380, May (2011)
10.
go back to reference Srivastava, S., Sarkar, S., Bhanja, S.: Estimation of upper bound of power dissipation in QCA circuits. IEEE Trans. Nanotechnol. 8, 116–127 (2009)CrossRef Srivastava, S., Sarkar, S., Bhanja, S.: Estimation of upper bound of power dissipation in QCA circuits. IEEE Trans. Nanotechnol. 8, 116–127 (2009)CrossRef
11.
go back to reference Timler, J., Lent, C.S.: Power gain and dissipation in quantum-dot cellular automata. J. Appl. Phys. 91, 823–831 (2002)CrossRef Timler, J., Lent, C.S.: Power gain and dissipation in quantum-dot cellular automata. J. Appl. Phys. 91, 823–831 (2002)CrossRef
12.
go back to reference Tougaw, P.D., Lent, C.S.: Dynamic behavior of quantum cellular automata. J. Appl. Phys. 80, 4722–4736 (1996)CrossRef Tougaw, P.D., Lent, C.S.: Dynamic behavior of quantum cellular automata. J. Appl. Phys. 80, 4722–4736 (1996)CrossRef
13.
go back to reference Walus, K., Jullien, G.A.: Design tools for an emerging SoC technology: quantum-dot cellular automata. Proc. IEEE 94(6), 1225–1244 (2006)CrossRef Walus, K., Jullien, G.A.: Design tools for an emerging SoC technology: quantum-dot cellular automata. Proc. IEEE 94(6), 1225–1244 (2006)CrossRef
14.
go back to reference Beigh, M.R., Mustafa, M., Ahmad, F.: Performance evaluation of efficient XOR structures in quantum-dot cellular automata (QCA). Circuits Syst. 4(2), 147–156 (2013)CrossRef Beigh, M.R., Mustafa, M., Ahmad, F.: Performance evaluation of efficient XOR structures in quantum-dot cellular automata (QCA). Circuits Syst. 4(2), 147–156 (2013)CrossRef
15.
go back to reference Chabi, A.M., Sayedsalehi, S., Angizi, S., Navi, K.: Efficient QCA exclusive-OR and multiplexer circuits based on a nanoelectronic-compatible designing approach. Int. Sch. Res. Not. Article ID 463967 (2014) Chabi, A.M., Sayedsalehi, S., Angizi, S., Navi, K.: Efficient QCA exclusive-OR and multiplexer circuits based on a nanoelectronic-compatible designing approach. Int. Sch. Res. Not. Article ID 463967 (2014)
16.
go back to reference Lent, C.S., Taugaw, P.D., Porod, W.: Quantum cellular automata: the physics of computing with arrays of quantum dot molecules. In: Proceedings of the workshop on physics and computing, pp. 5–13 (1994) Lent, C.S., Taugaw, P.D., Porod, W.: Quantum cellular automata: the physics of computing with arrays of quantum dot molecules. In: Proceedings of the workshop on physics and computing, pp. 5–13 (1994)
17.
go back to reference Lent, C.S., Taugaw, P.D.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75, 1818–1825 (1994)CrossRef Lent, C.S., Taugaw, P.D.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75, 1818–1825 (1994)CrossRef
18.
go back to reference Lent, C.S., Taugaw, P.D.: Lines of interacting quantum-dot cells: a binary wire. J. Appl. Phys. 74, 6227–6233 (1993)CrossRef Lent, C.S., Taugaw, P.D.: Lines of interacting quantum-dot cells: a binary wire. J. Appl. Phys. 74, 6227–6233 (1993)CrossRef
19.
go back to reference Porod, W., Lent, C.S., Bernstein, G.H., Orlov, A.O., Amlani, I., Snider, G.L., Merz, J.L.: Quantum-dot cellular automata: computing with coupled quantum dots. Int. J. Electron. 86(5), 549–590 (1999)CrossRef Porod, W., Lent, C.S., Bernstein, G.H., Orlov, A.O., Amlani, I., Snider, G.L., Merz, J.L.: Quantum-dot cellular automata: computing with coupled quantum dots. Int. J. Electron. 86(5), 549–590 (1999)CrossRef
20.
go back to reference Navi, K., Farazkish, R., Sayedsalehi, S., Rahimi Azghadi, M.: A new quantum-dot cellular automata full adder. Microelectron. J. 41, 820–826 (2010)CrossRef Navi, K., Farazkish, R., Sayedsalehi, S., Rahimi Azghadi, M.: A new quantum-dot cellular automata full adder. Microelectron. J. 41, 820–826 (2010)CrossRef
21.
go back to reference Navi, K., Sayedsalehi, S., Farazkish, R., Rahimi Azghadi, M.: Five-input majority gate, a new device for quantum-dot cellular automata. J. Comput. Theor. Nanosci. 7(8), 1546–1553 (2010)CrossRef Navi, K., Sayedsalehi, S., Farazkish, R., Rahimi Azghadi, M.: Five-input majority gate, a new device for quantum-dot cellular automata. J. Comput. Theor. Nanosci. 7(8), 1546–1553 (2010)CrossRef
22.
go back to reference Bernstein, G.H., Imre, A., Metlushko, V., Orlov, A., Zhou, L., Ji, L., Csaba, G., Porod, W.: Magnetic QCA systems. Microelectron. J. 36, 619–624 (2005)CrossRef Bernstein, G.H., Imre, A., Metlushko, V., Orlov, A., Zhou, L., Ji, L., Csaba, G., Porod, W.: Magnetic QCA systems. Microelectron. J. 36, 619–624 (2005)CrossRef
23.
go back to reference Gardelis, S., Smith, C.G., Cooper, J., Ritchie, D.A., Linfield, E., Jin, Y.: Evidence for transfer of polarization in a quantum-dot cellular automata cell consisting of semiconductor quantum dots. Phys. Rev. B 67(3), 1–3 (2003)CrossRef Gardelis, S., Smith, C.G., Cooper, J., Ritchie, D.A., Linfield, E., Jin, Y.: Evidence for transfer of polarization in a quantum-dot cellular automata cell consisting of semiconductor quantum dots. Phys. Rev. B 67(3), 1–3 (2003)CrossRef
24.
go back to reference Perez-Martinez, F., Farrer, I., Anderson, D., Jones, G., Ritchie, D.A., Chorley, S., Smith, C.G.: Demonstration of a quantum cellular automata cell in a GaAs/AlGaAs heterostructures. Appl. Phys. Lett. 91(032102), 1–3 (2007) Perez-Martinez, F., Farrer, I., Anderson, D., Jones, G., Ritchie, D.A., Chorley, S., Smith, C.G.: Demonstration of a quantum cellular automata cell in a GaAs/AlGaAs heterostructures. Appl. Phys. Lett. 91(032102), 1–3 (2007)
25.
go back to reference Smith, C.G., Gardelis, S., Rushforth, A., Crook, R., Cooper, J., Ritchie, D.A., Linfield, E., Jin, Y., Pepper, M.: Realization of quantum-dot cellular automata using semiconductor quantum dots. Superlattices Microstruct. 34(3–6), 195–203 (2003) Smith, C.G., Gardelis, S., Rushforth, A., Crook, R., Cooper, J., Ritchie, D.A., Linfield, E., Jin, Y., Pepper, M.: Realization of quantum-dot cellular automata using semiconductor quantum dots. Superlattices Microstruct. 34(3–6), 195–203 (2003)
26.
go back to reference Mitic, M., Cassidy, M.C., Petersson, K., Starrett, R., Gauja, E., Brenner, R., Clark, R., Dzurak, A., Yang, C., Jamieson, D.: Demonstration of a silicon-based quantum cellular automata cell. Appl. Phys. Lett. 89(013503), 1–3 (2006) Mitic, M., Cassidy, M.C., Petersson, K., Starrett, R., Gauja, E., Brenner, R., Clark, R., Dzurak, A., Yang, C., Jamieson, D.: Demonstration of a silicon-based quantum cellular automata cell. Appl. Phys. Lett. 89(013503), 1–3 (2006)
27.
go back to reference Anderson, N.G., Bhanja, S. (eds.): Field-Coupled Nanocomputing. Lecture Notes in Computer Science (LNCS), vol. 8280. Springer, Berlin (2014) Anderson, N.G., Bhanja, S. (eds.): Field-Coupled Nanocomputing. Lecture Notes in Computer Science (LNCS), vol. 8280. Springer, Berlin (2014)
28.
go back to reference Hennessy, K., Lent, C.S.: Clocking of molecular quantum-dot cellular automata. J. Vac. Sci. Technol. B19(5), 1752–1755 (2001)CrossRef Hennessy, K., Lent, C.S.: Clocking of molecular quantum-dot cellular automata. J. Vac. Sci. Technol. B19(5), 1752–1755 (2001)CrossRef
29.
go back to reference Blair, E. P., Lent, C.S.: An architecture for molecular computing using quantum-dot cellular automata. In: Proceedings of 3rd IEEE conference on nanotechnology, pp. 402–405 (2003) Blair, E. P., Lent, C.S.: An architecture for molecular computing using quantum-dot cellular automata. In: Proceedings of 3rd IEEE conference on nanotechnology, pp. 402–405 (2003)
30.
go back to reference Joyce, R.A., Qi, H., Fehlner, T.P., Lent, C.S., Orlov, A.O., Snider, G.L.: A system to demonstrate the bistability in molecules for application in a molecular QCA cell. In: IEEE Nanotechnology Materials and Devices Conference, pp. 46–49, 2–5 June (2009) Joyce, R.A., Qi, H., Fehlner, T.P., Lent, C.S., Orlov, A.O., Snider, G.L.: A system to demonstrate the bistability in molecules for application in a molecular QCA cell. In: IEEE Nanotechnology Materials and Devices Conference, pp. 46–49, 2–5 June (2009)
31.
go back to reference Cowburn, R.P., Welland, M.E.: Room temperature magnetic quantum cellular automata. Sci. Mag. 287, 1466–1468 (2000) Cowburn, R.P., Welland, M.E.: Room temperature magnetic quantum cellular automata. Sci. Mag. 287, 1466–1468 (2000)
32.
go back to reference Imre, A., Csaba, G., Bernstein, G. H., Porod, W., Metlushko, V.: Investigation of antiferromagnetic ordering along chains of coupled nanomagnets. In: Proceedings of 3rd IEEE conference on nanotechnology, vol. 2, pp. 20–23 (2003) Imre, A., Csaba, G., Bernstein, G. H., Porod, W., Metlushko, V.: Investigation of antiferromagnetic ordering along chains of coupled nanomagnets. In: Proceedings of 3rd IEEE conference on nanotechnology, vol. 2, pp. 20–23 (2003)
33.
go back to reference Lambson, B., Carlton, D., Bokor, J.: Exploring the thermodynamic limits of computation in integrated systems: magnetic memory, nanomagnetic logic, and the Landauer limit. Phys. Rev. Lett. 107(010604), 1–4 (2011) Lambson, B., Carlton, D., Bokor, J.: Exploring the thermodynamic limits of computation in integrated systems: magnetic memory, nanomagnetic logic, and the Landauer limit. Phys. Rev. Lett. 107(010604), 1–4 (2011)
34.
go back to reference Niemier, M.T.: Designing digital systems in quantum cellular automata. Master’s thesis, University of Notre Dame, Notre Dame, Indiana, USA (2004) Niemier, M.T.: Designing digital systems in quantum cellular automata. Master’s thesis, University of Notre Dame, Notre Dame, Indiana, USA (2004)
35.
go back to reference Hashemi, S., Farazkish, R., Navi, K.: New quantum-dot cellular automata cell arrangements. J. Comput. Theor. Nanosci. 10, 798–809 (2013)CrossRef Hashemi, S., Farazkish, R., Navi, K.: New quantum-dot cellular automata cell arrangements. J. Comput. Theor. Nanosci. 10, 798–809 (2013)CrossRef
37.
go back to reference Walus, K., Dysart, T., Jullien, G., Budiman, R.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–29 (2004)CrossRef Walus, K., Dysart, T., Jullien, G., Budiman, R.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–29 (2004)CrossRef
Metadata
Title
A novel robust exclusive-OR function implementation in QCA nanotechnology with energy dissipation analysis
Authors
Gurmohan Singh
R. K. Sarin
Balwinder Raj
Publication date
14-03-2016
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 2/2016
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-016-0804-7

Other articles of this Issue 2/2016

Journal of Computational Electronics 2/2016 Go to the issue