Skip to main content
Top
Published in: Archive of Applied Mechanics 9/2021

26-05-2021 | Original

Dynamic characteristics of quasi-zero stiffness vibration isolation system for coupled dynamic vibration absorber

Authors: Yanqi Liu, Wen Ji, Longlong Xu, Huangsen Gu, Chunfang Song

Published in: Archive of Applied Mechanics | Issue 9/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Based on the principle of dynamic vibration absorption, a quasi-zero stiffness (QZS) vibration isolation system for coupled a linear dynamic vibration absorber was designed. The dynamic model of the coupled system is established, and the frequency domain analytical solutions and the expression of force transmissibility are deduced by the averaging method. The effects of mass, stiffness and damping of the vibration absorber on the dynamic response and force transmissibility characteristics of the coupled system are analyzed numerically, and compared with an equivalent QZS vibration isolation system. The results reveal that the amplitude curve of the primary system shifts to the low-frequency range with the increase of mass ratio, the valley value appears and lower to \(2 \times 10^{ - 4}\) when the excitation frequency equals to the natural frequency of the absorber. Increase stiffness ratio can reduce the valley amplitude and the second peak amplitude of the primary system. The large the damping of the absorber, the lower the valley amplitude of the primary system can be acquired. As the mass ratio increases from 0.2 to 1, the initial isolation frequency of the coupled system decreases by 23.2%, which enlarges the bandwidth of the effective isolation frequency range. Large stiffness ratio or larger damping ratio of the absorber can improve the isolation performance in the frequency range near the second peak amplitude. Compared with the equivalent QZS isolation system, the coupled system possesses more excellent performance in the frequency domain near the valley amplitude and wider vibration isolation frequency bandwidth.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Niu, F., Meng, L.S., Wu, W.J., Sun, J.G., Su, W.H., Meng, G., Rao, Z.S.: Recent advances in quasi-zero-stiffness vibration isolation systems. Appl. Mech. Mater. 397–400, 295–303 (2013)CrossRef Niu, F., Meng, L.S., Wu, W.J., Sun, J.G., Su, W.H., Meng, G., Rao, Z.S.: Recent advances in quasi-zero-stiffness vibration isolation systems. Appl. Mech. Mater. 397–400, 295–303 (2013)CrossRef
2.
go back to reference Platus, D.L.: Negative-stiffness-mechanism vibration isolation systems. Proc. SPIE Int. Soc. Opt. Eng. 3786, 44–54 (1999) Platus, D.L.: Negative-stiffness-mechanism vibration isolation systems. Proc. SPIE Int. Soc. Opt. Eng. 3786, 44–54 (1999)
3.
go back to reference Winterflood, J., Barber, T.A., Blair, D.G.: Mathematical analysis of an Euler spring vibration isolator. Phys. Lett. A 300(2–3), 131–139 (2002)CrossRef Winterflood, J., Barber, T.A., Blair, D.G.: Mathematical analysis of an Euler spring vibration isolator. Phys. Lett. A 300(2–3), 131–139 (2002)CrossRef
4.
go back to reference Winterflood, J., Blair, D.G., Slagmolen, B.: High performance vibration isolation using springs in Euler column buckling mode. Phys. Lett. A 300(2–3), 122–130 (2002)CrossRef Winterflood, J., Blair, D.G., Slagmolen, B.: High performance vibration isolation using springs in Euler column buckling mode. Phys. Lett. A 300(2–3), 122–130 (2002)CrossRef
5.
go back to reference Virgin, L.N., Davis, R.B.: Vibration isolation using buckled struts. J. Sound Vib. 260(5), 965–973 (2003)CrossRef Virgin, L.N., Davis, R.B.: Vibration isolation using buckled struts. J. Sound Vib. 260(5), 965–973 (2003)CrossRef
6.
go back to reference Plaut, R.H., Sidbury, J.E., Virgin, L.N.: Analysis of buckled and pre-bent fixed-end columns used as vibration isolators. J. Sound Vib. 283(3–5), 1216–1228 (2005)CrossRef Plaut, R.H., Sidbury, J.E., Virgin, L.N.: Analysis of buckled and pre-bent fixed-end columns used as vibration isolators. J. Sound Vib. 283(3–5), 1216–1228 (2005)CrossRef
7.
go back to reference Zhang, J.Z., Li, D., Dong, S., Chen, M.Z.: Study on Euler spring used in ultra-low frequency vertical vibration isolation system. J. Sound Vib. 26, 237–241 (2004) Zhang, J.Z., Li, D., Dong, S., Chen, M.Z.: Study on Euler spring used in ultra-low frequency vertical vibration isolation system. J. Sound Vib. 26, 237–241 (2004)
8.
go back to reference Lee, C.M., Goverdovskiy, V.N., Temnikov, A.I.: Design of springs with “negative” stiffness to improve vehicle driver vibration isolation. J. Sound Vib. 302(4–5), 865–874 (2007)CrossRef Lee, C.M., Goverdovskiy, V.N., Temnikov, A.I.: Design of springs with “negative” stiffness to improve vehicle driver vibration isolation. J. Sound Vib. 302(4–5), 865–874 (2007)CrossRef
9.
go back to reference Zhou, N., Liu, K.: A tunable high-static-low-dynamic stiffness vibration isolator. J. Sound Vib. 329(9), 1254–1273 (2010)CrossRef Zhou, N., Liu, K.: A tunable high-static-low-dynamic stiffness vibration isolator. J. Sound Vib. 329(9), 1254–1273 (2010)CrossRef
10.
go back to reference Carrella, A., Brennan, M.J., Waters, T.P.: Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 301(3–5), 678–689 (2007)CrossRef Carrella, A., Brennan, M.J., Waters, T.P.: Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 301(3–5), 678–689 (2007)CrossRef
11.
go back to reference Carrella, A., Brennan, M.J., Kovacic, I., Waters, T.P.: On the force transmissibility of a vibration isolator with quasi-zero-stiffness. J. Sound Vib. 322(4–5), 707–717 (2009)CrossRef Carrella, A., Brennan, M.J., Kovacic, I., Waters, T.P.: On the force transmissibility of a vibration isolator with quasi-zero-stiffness. J. Sound Vib. 322(4–5), 707–717 (2009)CrossRef
12.
go back to reference Carrella, A., Brennan, M.J., Waters, T.P.: Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness. Int. J. Mech. Sci. 55(1), 22–29 (2012)CrossRef Carrella, A., Brennan, M.J., Waters, T.P.: Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness. Int. J. Mech. Sci. 55(1), 22–29 (2012)CrossRef
13.
go back to reference Nayfeh, A.H., Mook, D.T., Holmes, P.: Nonlinear oscillations. J. Appl. Mech. 47(3), 692 (1980)CrossRef Nayfeh, A.H., Mook, D.T., Holmes, P.: Nonlinear oscillations. J. Appl. Mech. 47(3), 692 (1980)CrossRef
14.
go back to reference Cheng, C., Li, S.M., Wang, Y., Jiang, X.X.: Force and displacement transmissibility of a quasi-zero stiffness vibration isolator with geometric nonlinear damping. Nonlinear Dyn. 87(4), 1–13 (2016) Cheng, C., Li, S.M., Wang, Y., Jiang, X.X.: Force and displacement transmissibility of a quasi-zero stiffness vibration isolator with geometric nonlinear damping. Nonlinear Dyn. 87(4), 1–13 (2016)
15.
go back to reference Xu, D.L., Zhang, Y.Y., Zhou, J.X.: On the analytical and experimental assessment of performance of a quasi-zero-stiffness isolator. J. Vib. Control 20(15), 2314–2325 (2014)CrossRef Xu, D.L., Zhang, Y.Y., Zhou, J.X.: On the analytical and experimental assessment of performance of a quasi-zero-stiffness isolator. J. Vib. Control 20(15), 2314–2325 (2014)CrossRef
16.
go back to reference Sun, X.T., Jing, X.J.: A nonlinear vibration isolator achieving high-static-low-dynamic stiffness and tunable anti-resonance frequency band. Mech. Syst. Signal Process. 80, 166–188 (2016)CrossRef Sun, X.T., Jing, X.J.: A nonlinear vibration isolator achieving high-static-low-dynamic stiffness and tunable anti-resonance frequency band. Mech. Syst. Signal Process. 80, 166–188 (2016)CrossRef
17.
go back to reference Dong, G.X., Zhang, X.N., Luo, Y.J., Zhang, Y.H.: Investigation on the design of magnetic spring-beam vibration isolator with negative stiffness characteristic. Int. J. Appl. Electromagn. 52, 1321–1329 (2016)CrossRef Dong, G.X., Zhang, X.N., Luo, Y.J., Zhang, Y.H.: Investigation on the design of magnetic spring-beam vibration isolator with negative stiffness characteristic. Int. J. Appl. Electromagn. 52, 1321–1329 (2016)CrossRef
18.
go back to reference Sun, X.T., Jing, X.J., Xu, J., Cheng, L.: Vibration isolation via a scissor-like structured platform. J. Sound Vib. 333(9), 2404–2420 (2014)CrossRef Sun, X.T., Jing, X.J., Xu, J., Cheng, L.: Vibration isolation via a scissor-like structured platform. J. Sound Vib. 333(9), 2404–2420 (2014)CrossRef
19.
go back to reference Jing, X.J., Lang, Z.Q., Billings, S.A., et al.: Frequency domain analysis for suppression of output vibration from periodic disturbance using nonlinearities. J. Sound Vib. 314(3–5), 536–557 (2008)CrossRef Jing, X.J., Lang, Z.Q., Billings, S.A., et al.: Frequency domain analysis for suppression of output vibration from periodic disturbance using nonlinearities. J. Sound Vib. 314(3–5), 536–557 (2008)CrossRef
20.
go back to reference Jing, X.J., Lang, Z.Q., Billings, S.A., Tomlinson, G.R.: Nonlinear influence in the frequency domain: alternating series. Syst. Control Lett. 60(5), 295–309 (2011)MathSciNetCrossRef Jing, X.J., Lang, Z.Q., Billings, S.A., Tomlinson, G.R.: Nonlinear influence in the frequency domain: alternating series. Syst. Control Lett. 60(5), 295–309 (2011)MathSciNetCrossRef
21.
go back to reference Liu, C.C., Jing, X.J., Daley, S., Li, F.M.: Recent advances in micro-vibration isolation. Mech. Syst. Signal Process. 56–57(8), 55–80 (2015)CrossRef Liu, C.C., Jing, X.J., Daley, S., Li, F.M.: Recent advances in micro-vibration isolation. Mech. Syst. Signal Process. 56–57(8), 55–80 (2015)CrossRef
22.
go back to reference Jing, X.J., Lang, Z.Q.: Frequency domain analysis and design of nonlinear systems based on Volterra series expansion: a parametric characteristic approach. In: Understanding Complex Systems (2015) Jing, X.J., Lang, Z.Q.: Frequency domain analysis and design of nonlinear systems based on Volterra series expansion: a parametric characteristic approach. In: Understanding Complex Systems (2015)
23.
go back to reference Jing, X.J., Lang, Z.Q.: Frequency domain analysis of a dimensionless cubic nonlinear damping system subject to harmonic input. Nonlinear Dyn. 58(3), 469–485 (2009)MathSciNetCrossRef Jing, X.J., Lang, Z.Q.: Frequency domain analysis of a dimensionless cubic nonlinear damping system subject to harmonic input. Nonlinear Dyn. 58(3), 469–485 (2009)MathSciNetCrossRef
24.
go back to reference Chai, K., Lou, J.J., Yang, Q.C.: Characteristic analysis of vibration isolation system based on high-static-low-dynamic stiffness. J. Vibroeng. 19(6), 4120–4137 (2017)CrossRef Chai, K., Lou, J.J., Yang, Q.C.: Characteristic analysis of vibration isolation system based on high-static-low-dynamic stiffness. J. Vibroeng. 19(6), 4120–4137 (2017)CrossRef
25.
go back to reference Le, T.D., Ahn, K.K.: A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat. J. Sound Vib. 330(26), 6311–6335 (2011)CrossRef Le, T.D., Ahn, K.K.: A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat. J. Sound Vib. 330(26), 6311–6335 (2011)CrossRef
26.
go back to reference Zheng, Y.S., Zhang, X.N., Luo, Y.J., Yan, B., Ma, C.C.: Design and experiment of a high-static-low-dynamic stiffness isolator using a negative stiffness magnetic spring. J. Sound Vib. 360, 31–52 (2016)CrossRef Zheng, Y.S., Zhang, X.N., Luo, Y.J., Yan, B., Ma, C.C.: Design and experiment of a high-static-low-dynamic stiffness isolator using a negative stiffness magnetic spring. J. Sound Vib. 360, 31–52 (2016)CrossRef
27.
go back to reference Zheng, Y.S., Zhang, X.N., Luo, Y.J., Zhang, Y.H., Xie, S.L.: Analytical study of a quasi-zero stiffness coupling using a torsion magnetic spring with negative stiffness. Mech. Syst. Signal Process. 100, 135–151 (2018)CrossRef Zheng, Y.S., Zhang, X.N., Luo, Y.J., Zhang, Y.H., Xie, S.L.: Analytical study of a quasi-zero stiffness coupling using a torsion magnetic spring with negative stiffness. Mech. Syst. Signal Process. 100, 135–151 (2018)CrossRef
28.
go back to reference Dong, G.X., Zhang, X.N., Xie, S.L., Yan, B., Luo, Y.J.: Simulated and experimental studies on a high-static-low-dynamic stiffness isolator using magnetic negative stiffness spring. Mech. Syst. Signal Process. 86, 188–203 (2017)CrossRef Dong, G.X., Zhang, X.N., Xie, S.L., Yan, B., Luo, Y.J.: Simulated and experimental studies on a high-static-low-dynamic stiffness isolator using magnetic negative stiffness spring. Mech. Syst. Signal Process. 86, 188–203 (2017)CrossRef
29.
go back to reference Shahadat, M.M.Z., Mizuno, T., Ishino, Y., Takasaki, M.: Cost-effective implementation of acceleration feedback to vibration system using negative stiffness. In: ASME 2012 5th Annual Dynamic Systems and Control Conference joint with the JSME 2012 11th Motion and Vibration Conference, Fort Lauderdale, Florida, USA (2012) Shahadat, M.M.Z., Mizuno, T., Ishino, Y., Takasaki, M.: Cost-effective implementation of acceleration feedback to vibration system using negative stiffness. In: ASME 2012 5th Annual Dynamic Systems and Control Conference joint with the JSME 2012 11th Motion and Vibration Conference, Fort Lauderdale, Florida, USA (2012)
30.
go back to reference Sun, X.T., Xu, J., Jing, X.J., Cheng, L.: Beneficial performance of a quasi-zero-stiffness vibration isolator with time-delayed active control. Int. J. Mech. Sci. 82, 32–40 (2014)CrossRef Sun, X.T., Xu, J., Jing, X.J., Cheng, L.: Beneficial performance of a quasi-zero-stiffness vibration isolator with time-delayed active control. Int. J. Mech. Sci. 82, 32–40 (2014)CrossRef
31.
go back to reference Hua, Y.Y., Wong, W., Cheng, L.: Optimal design of a beam-based dynamic vibration absorber using fixed-points theory. J. Sound Vib. 421, 111–131 (2018)CrossRef Hua, Y.Y., Wong, W., Cheng, L.: Optimal design of a beam-based dynamic vibration absorber using fixed-points theory. J. Sound Vib. 421, 111–131 (2018)CrossRef
32.
go back to reference Anh, N.D., Nguyen, N.X.: Research on the design of non-traditional dynamic vibration absorber for damped structures under ground motion. J. Mech. Sci. Technol. 30(2), 593–602 (2016)CrossRef Anh, N.D., Nguyen, N.X.: Research on the design of non-traditional dynamic vibration absorber for damped structures under ground motion. J. Mech. Sci. Technol. 30(2), 593–602 (2016)CrossRef
33.
go back to reference Shen, Y.J., Chen, L., Yang, X.F., Shi, D.H., Yang, J.: Improved design of dynamic vibration absorber by using the inerter and its application in vehicle suspension. J. Sound Vib. 361, 148–158 (2016)CrossRef Shen, Y.J., Chen, L., Yang, X.F., Shi, D.H., Yang, J.: Improved design of dynamic vibration absorber by using the inerter and its application in vehicle suspension. J. Sound Vib. 361, 148–158 (2016)CrossRef
34.
go back to reference Liu, M.C., Gu, F.H., Hua, J.H.: Integration design and optimization control of a dynamic vibration absorber for electric wheels with in-wheel motor. Energies 10(12), 2069 (2017)CrossRef Liu, M.C., Gu, F.H., Hua, J.H.: Integration design and optimization control of a dynamic vibration absorber for electric wheels with in-wheel motor. Energies 10(12), 2069 (2017)CrossRef
35.
go back to reference Sarah, G., Mohammad, H., Ali, H., Hassan, K., Wan, G.J.: Tremor reduction at the palm of a Parkinson’s patient using dynamic vibration absorber. Bioengineering 3(3), 18 (2016)CrossRef Sarah, G., Mohammad, H., Ali, H., Hassan, K., Wan, G.J.: Tremor reduction at the palm of a Parkinson’s patient using dynamic vibration absorber. Bioengineering 3(3), 18 (2016)CrossRef
36.
go back to reference Huang, X.C., Su, Z.W., Hua, H.X.: Application of a dynamic vibration absorber with negative stiffness for control of a marine shafting system. Ocean Eng. 155, 131–143 (2018)CrossRef Huang, X.C., Su, Z.W., Hua, H.X.: Application of a dynamic vibration absorber with negative stiffness for control of a marine shafting system. Ocean Eng. 155, 131–143 (2018)CrossRef
37.
go back to reference Acar, M.A., Yilmaz, C.: Design of an adaptive-passive dynamic vibration absorber composed of a string-mass system equipped with negative stiffness tension adjusting mechanism. J. Sound Vib. 332(2), 231–245 (2013)CrossRef Acar, M.A., Yilmaz, C.: Design of an adaptive-passive dynamic vibration absorber composed of a string-mass system equipped with negative stiffness tension adjusting mechanism. J. Sound Vib. 332(2), 231–245 (2013)CrossRef
38.
go back to reference Zhou, J., Wang, X., Xu, D., Bishop, S.: Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam-roller-spring mechanisms. J. Sound Vib. 346, 53–69 (2015)CrossRef Zhou, J., Wang, X., Xu, D., Bishop, S.: Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam-roller-spring mechanisms. J. Sound Vib. 346, 53–69 (2015)CrossRef
39.
go back to reference Liu, X.T., Huang, X.C., Hua, H.X.: On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector. J. Sound Vib. 332(14), 3359–3376 (2013)CrossRef Liu, X.T., Huang, X.C., Hua, H.X.: On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector. J. Sound Vib. 332(14), 3359–3376 (2013)CrossRef
40.
go back to reference Meng, Q.G., Yang, X.F., Li, W., Sheng, L.C., Lu, E.: Research and analysis of quasi-zero-stiffness isolator with geometric nonlinear damping. Shock Vib. 2017(9), 1–9 (2017) Meng, Q.G., Yang, X.F., Li, W., Sheng, L.C., Lu, E.: Research and analysis of quasi-zero-stiffness isolator with geometric nonlinear damping. Shock Vib. 2017(9), 1–9 (2017)
41.
go back to reference Yang, J., Xiong, Y.P., Xing, J.T.: Vibration power flow and force transmission behaviour of a nonlinear isolator mounted on a nonlinear base. Int. J. Mech. Sci. 115–116, 238–252 (2016)CrossRef Yang, J., Xiong, Y.P., Xing, J.T.: Vibration power flow and force transmission behaviour of a nonlinear isolator mounted on a nonlinear base. Int. J. Mech. Sci. 115–116, 238–252 (2016)CrossRef
Metadata
Title
Dynamic characteristics of quasi-zero stiffness vibration isolation system for coupled dynamic vibration absorber
Authors
Yanqi Liu
Wen Ji
Longlong Xu
Huangsen Gu
Chunfang Song
Publication date
26-05-2021
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 9/2021
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-021-01978-2

Other articles of this Issue 9/2021

Archive of Applied Mechanics 9/2021 Go to the issue

Premium Partners