Skip to main content
Top
Published in: Meccanica 7/2014

01-07-2014

Dynamic multi-axial behavior of shape memory alloy nanowires with coupled thermo-mechanical phase-field models

Authors: R. P. Dhote, R. N. V. Melnik, J. Zu

Published in: Meccanica | Issue 7/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The objective of this paper is to provide new insight into the dynamic thermo-mechanical properties of shape memory alloy (SMA) nanowires subjected to multi-axial loadings. The phase-field model with Ginzburg–Landau energy, having appropriate strain based order parameter and strain gradient energy contributions, is used to study the martensitic transformations in the representative 2D square-to-rectangular phase transformations for FePd SMA nanowires. The microstructure and mechanical behavior of martensitic transformations in SMA nanostructures have been studied extensively in the literature for uniaxial loading, usually under isothermal assumptions. The developed model describes the martensitic transformations in SMAs based on the equations for momentum and energy with bi-directional coupling via strain, strain rate and temperature. These governing equations of the thermo-mechanical model are numerically solved simultaneously for different external loadings starting with the evolved twinned and austenitic phases. We observed a strong influence of multi-axial loading on dynamic thermo-mechanical properties of SMA nanowires. Notably, the multi-axial loadings are quite distinct as compared to the uniaxial loading case, and the particular axial stress level is reached at a lower strain. The SMA behaviors predicted by the model are in qualitative agreements with experimental and numerical results published in the literature. The new results reported here on the nanowire response to multi-axial loadings provide new physical insight into underlying phenomena and are important, for example, in developing better SMA-based MEMS and NEMS devices

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Shu S, Lagoudas D, Hughes D, Wen J (1997) Modeling of a flexible beam actuated by shape memory alloy wires. Smart Mater Struct 6:265ADSCrossRef Shu S, Lagoudas D, Hughes D, Wen J (1997) Modeling of a flexible beam actuated by shape memory alloy wires. Smart Mater Struct 6:265ADSCrossRef
2.
go back to reference Kahn H, Huff M, Heuer A (1998) The TiNi shape-memory alloy and its applications for MEMS. J Micromech Microeng 8:213CrossRef Kahn H, Huff M, Heuer A (1998) The TiNi shape-memory alloy and its applications for MEMS. J Micromech Microeng 8:213CrossRef
3.
go back to reference Fu Y, Du H, Huang W, Zhang S, Hu M (2004) TiNi-based thin films in MEMS applications: a review. Sens Actuators A 112(2):395–408CrossRef Fu Y, Du H, Huang W, Zhang S, Hu M (2004) TiNi-based thin films in MEMS applications: a review. Sens Actuators A 112(2):395–408CrossRef
4.
go back to reference Juan J, No M, Schuh C (2009) Nanoscale shape-memory alloys for ultrahigh mechanical damping. Nature Nanotechnol 4(7):415–419ADSCrossRef Juan J, No M, Schuh C (2009) Nanoscale shape-memory alloys for ultrahigh mechanical damping. Nature Nanotechnol 4(7):415–419ADSCrossRef
5.
go back to reference Barcikowski S, Hahn A, Guggenheim M, Reimers K, Ostendorf A (2010) Biocompatibility of nanoactuators: stem cell growth on laser-generated Nickel–Titanium shape memory alloy nanoparticles. J Nanopart Res 12(5):1733–1742CrossRef Barcikowski S, Hahn A, Guggenheim M, Reimers K, Ostendorf A (2010) Biocompatibility of nanoactuators: stem cell growth on laser-generated Nickel–Titanium shape memory alloy nanoparticles. J Nanopart Res 12(5):1733–1742CrossRef
6.
go back to reference Bayer BC, Sanjabi S, Baehtz C, Wirth CT, Esconjauregui S, Weatherup RS, Barber ZH, Hofmann S, Robertson J (2011) Carbon nanotube forest growth on NiTi shape memory alloy thin films for thermal actuation. Thin Solid Films 519(18):6126–6129 Bayer BC, Sanjabi S, Baehtz C, Wirth CT, Esconjauregui S, Weatherup RS, Barber ZH, Hofmann S, Robertson J (2011) Carbon nanotube forest growth on NiTi shape memory alloy thin films for thermal actuation. Thin Solid Films 519(18):6126–6129
7.
go back to reference Bhattacharya K (2003) Microstructure of martensite: why it forms and how it gives rise to the shape-memory effect. Oxford University Press, Qxford Bhattacharya K (2003) Microstructure of martensite: why it forms and how it gives rise to the shape-memory effect. Oxford University Press, Qxford
8.
go back to reference Smith R (2005) Smart material systems: model development, vol 32. Society for Industrial Mathematics, PhiladelphiaCrossRef Smith R (2005) Smart material systems: model development, vol 32. Society for Industrial Mathematics, PhiladelphiaCrossRef
9.
go back to reference Lagoudas D, Brinson L, Patoor E (2006) Shape memory alloys, part II: modeling of polycrystals. Mech Mater 38(5–6):430–462CrossRef Lagoudas D, Brinson L, Patoor E (2006) Shape memory alloys, part II: modeling of polycrystals. Mech Mater 38(5–6):430–462CrossRef
10.
go back to reference Lagoudas D (2008) Shape memory alloys: modeling and engineering applications. Springer, London Lagoudas D (2008) Shape memory alloys: modeling and engineering applications. Springer, London
11.
go back to reference Yoneyama T, Miyazaki S (2008) Shape memory alloys for biomedical applications. Woodhead Publishing Yoneyama T, Miyazaki S (2008) Shape memory alloys for biomedical applications. Woodhead Publishing
12.
go back to reference Otsuka K, Wayman C (1998) Shape memory materials. Cambridge University Press, New York Otsuka K, Wayman C (1998) Shape memory materials. Cambridge University Press, New York
14.
go back to reference Miyazaki S, Fu Y, Huang W (2009) Thin film shape memory alloys: fundamentals and device applications. Cambridge University Press, CambridgeCrossRef Miyazaki S, Fu Y, Huang W (2009) Thin film shape memory alloys: fundamentals and device applications. Cambridge University Press, CambridgeCrossRef
15.
go back to reference Ozbulut O, Hurlebaus S, DesRoches R (2011) Seismic response control using shape memory alloys: a review. J Intell Mater Syst Struct 22(14):1531–1549CrossRef Ozbulut O, Hurlebaus S, DesRoches R (2011) Seismic response control using shape memory alloys: a review. J Intell Mater Syst Struct 22(14):1531–1549CrossRef
16.
go back to reference Elahinia M, Hashemi M, Tabesh M, Bhaduri S (2011) Manufacturing and processing of NiTi implants: a review. Prog Mater Sci Elahinia M, Hashemi M, Tabesh M, Bhaduri S (2011) Manufacturing and processing of NiTi implants: a review. Prog Mater Sci
17.
go back to reference Fang D, Lu W, Hwang K (1998) Pseudoelastic behavior of CuAINi single crystal under biaxial loading. Met Mater Int 4(4):702–706CrossRef Fang D, Lu W, Hwang K (1998) Pseudoelastic behavior of CuAINi single crystal under biaxial loading. Met Mater Int 4(4):702–706CrossRef
18.
go back to reference Shan Y, Dodson J, Abraham S, Speich JE, Rao R, Leang KK (2007) A biaxial shape memory alloy actuated cell/tissue stretching system. In: ASME 2007 international mechanical engineering congress and exposition, American Society of Mechanical Engineers, pp. 161–169. Shan Y, Dodson J, Abraham S, Speich JE, Rao R, Leang KK (2007) A biaxial shape memory alloy actuated cell/tissue stretching system. In: ASME 2007 international mechanical engineering congress and exposition, American Society of Mechanical Engineers, pp. 161–169.
19.
go back to reference Niendorf T, Lackmann J, Gorny B (2011) H. Maier, Scr Mater, In-situ characterization of martensite variant formation in Nickel-Titanium shape memory alloy under biaxial loading. Scripta Materialia Niendorf T, Lackmann J, Gorny B (2011) H. Maier, Scr Mater, In-situ characterization of martensite variant formation in Nickel-Titanium shape memory alloy under biaxial loading. Scripta Materialia
20.
go back to reference Tokuda M, Petr S, Takakura M, Ye M (1995) Experimental study on performances in Cu-based shape memory alloy under multi-axial loading conditions. Mater Sci Res Int 1(4):260–265 Tokuda M, Petr S, Takakura M, Ye M (1995) Experimental study on performances in Cu-based shape memory alloy under multi-axial loading conditions. Mater Sci Res Int 1(4):260–265
21.
go back to reference Sittner P, Hara Y, Tokuda M (1995) Experimental study on the thermoelastic martensitic transformation in shape memory alloy polycrystal induced by combined external forces. Metall Mater Trans A 26(11):2923–2935CrossRef Sittner P, Hara Y, Tokuda M (1995) Experimental study on the thermoelastic martensitic transformation in shape memory alloy polycrystal induced by combined external forces. Metall Mater Trans A 26(11):2923–2935CrossRef
22.
go back to reference Lim T, McDowell D (1999) Mechanical behavior of an Ni-Ti shape memory alloy under axial-torsional proportional and nonproportional loading. J Eng Mater Technol 121:9CrossRef Lim T, McDowell D (1999) Mechanical behavior of an Ni-Ti shape memory alloy under axial-torsional proportional and nonproportional loading. J Eng Mater Technol 121:9CrossRef
23.
go back to reference Bouvet C, Calloch S, Lexcellent C (2002) Mechanical behavior of a Cu–Al–Be shape memory alloy under multiaxial proportional and nonproportional loadings. J Eng Mater Technol 124:112CrossRef Bouvet C, Calloch S, Lexcellent C (2002) Mechanical behavior of a Cu–Al–Be shape memory alloy under multiaxial proportional and nonproportional loadings. J Eng Mater Technol 124:112CrossRef
24.
go back to reference McNaney J, Imbeni V, Jung Y, Papadopoulos P, Ritchie R (2003) An experimental study of the superelastic effect in a shape-memory Nitinol alloy under biaxial loading. Mech Mater 35(10):969–986CrossRef McNaney J, Imbeni V, Jung Y, Papadopoulos P, Ritchie R (2003) An experimental study of the superelastic effect in a shape-memory Nitinol alloy under biaxial loading. Mech Mater 35(10):969–986CrossRef
25.
go back to reference Lavernhe-Taillard K, Calloch S, Arbab-Chirani S, Lexcellent C (2009) Multiaxial shape memory effect and superelasticity. Strain 45(1):77–84CrossRef Lavernhe-Taillard K, Calloch S, Arbab-Chirani S, Lexcellent C (2009) Multiaxial shape memory effect and superelasticity. Strain 45(1):77–84CrossRef
26.
go back to reference Grabe C, Bruhns O (2009) Path dependence and multiaxial behavior of a polycrystalline NiTi alloy within the pseudoelastic and pseudoplastic temperature regimes. Int J Plast 25(3):513–545CrossRefMATH Grabe C, Bruhns O (2009) Path dependence and multiaxial behavior of a polycrystalline NiTi alloy within the pseudoelastic and pseudoplastic temperature regimes. Int J Plast 25(3):513–545CrossRefMATH
27.
go back to reference Birman V (1997) Review of mechanics of shape memory alloy structures. Appl Mech Rev 50(11):629–645ADSCrossRef Birman V (1997) Review of mechanics of shape memory alloy structures. Appl Mech Rev 50(11):629–645ADSCrossRef
28.
29.
go back to reference Khandelwal A, Buravalla V (2009) Models for shape memory alloy behavior: an overview of modeling approaches. Int J Struct Changes Solids 1(1):111–148 Khandelwal A, Buravalla V (2009) Models for shape memory alloy behavior: an overview of modeling approaches. Int J Struct Changes Solids 1(1):111–148
30.
go back to reference Tokuda M, Ye M, Takakura M, Sittner P (1999) Thermomechanical behavior of shape memory alloy under complex loading conditions. Int J Plast 15(2):223–239CrossRefMATH Tokuda M, Ye M, Takakura M, Sittner P (1999) Thermomechanical behavior of shape memory alloy under complex loading conditions. Int J Plast 15(2):223–239CrossRefMATH
31.
go back to reference Bouvet C, Calloch S, Lexcellent C (2004) A phenomenological model for pseudoelasticity of shape memory alloys under multiaxial proportional and nonproportional loadings. Eur J Mech-A/Solids 23(1):37–61CrossRefMATHMathSciNet Bouvet C, Calloch S, Lexcellent C (2004) A phenomenological model for pseudoelasticity of shape memory alloys under multiaxial proportional and nonproportional loadings. Eur J Mech-A/Solids 23(1):37–61CrossRefMATHMathSciNet
32.
go back to reference Thiebaud F, Collet M, Foltete E, Lexcellent C (2007) Implementation of a multi-axial pseudoelastic model to predict the dynamic behavior of shape memory alloys. Smart Mater Struct 16:935ADSCrossRef Thiebaud F, Collet M, Foltete E, Lexcellent C (2007) Implementation of a multi-axial pseudoelastic model to predict the dynamic behavior of shape memory alloys. Smart Mater Struct 16:935ADSCrossRef
33.
go back to reference Pan H, Thamburaja P, Chau F (2007) Multi-axial behavior of shape-memory alloys undergoing martensitic reorientation and detwinning. Int J Plast 23(4):711–732CrossRefMATH Pan H, Thamburaja P, Chau F (2007) Multi-axial behavior of shape-memory alloys undergoing martensitic reorientation and detwinning. Int J Plast 23(4):711–732CrossRefMATH
34.
go back to reference Arghavani J, Auricchio F, Naghdabadi R, Reali A, Sohrabpour S (2010) A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings. Int J Plast 26(7):976–991CrossRefMATH Arghavani J, Auricchio F, Naghdabadi R, Reali A, Sohrabpour S (2010) A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings. Int J Plast 26(7):976–991CrossRefMATH
35.
go back to reference Saleeb A, Padula S II, Kumar A (2011) A multi-axial, multimechanism based constitutive model for the comprehensive representation of the evolutionary response of SMAs under general thermomechanical loading conditions. Int J Plast 27(5):655–687CrossRefMATH Saleeb A, Padula S II, Kumar A (2011) A multi-axial, multimechanism based constitutive model for the comprehensive representation of the evolutionary response of SMAs under general thermomechanical loading conditions. Int J Plast 27(5):655–687CrossRefMATH
36.
go back to reference Raniecki B, Lexcellent C, Tanaka K (1992) Thermodynamic models of pseudoelastic behaviour of shape memory alloys. Arch Mech 44:261–284MATHMathSciNet Raniecki B, Lexcellent C, Tanaka K (1992) Thermodynamic models of pseudoelastic behaviour of shape memory alloys. Arch Mech 44:261–284MATHMathSciNet
37.
go back to reference Khachaturian A (1983) Theory of structural transformations in solids. Wiley, New York Khachaturian A (1983) Theory of structural transformations in solids. Wiley, New York
38.
go back to reference Melnik R, Roberts A, Thomas K (1999) Modelling dynamics of shape-memory-alloys via computer algebra. Proc SPIE Math Control Smart Struct 3667:290–301ADS Melnik R, Roberts A, Thomas K (1999) Modelling dynamics of shape-memory-alloys via computer algebra. Proc SPIE Math Control Smart Struct 3667:290–301ADS
39.
go back to reference Melnik R, Roberts A, Thomas KA (2000) Computing dynamics of copper-based SMA via center manifold reduction models. Comput Mat Sci 18:255–268CrossRef Melnik R, Roberts A, Thomas KA (2000) Computing dynamics of copper-based SMA via center manifold reduction models. Comput Mat Sci 18:255–268CrossRef
40.
go back to reference Artemev A, Jin Y, Khachaturyan A (2001) Three-dimensional phase field model of proper martensitic transformation. Acta Mater 49(7):1165–1177CrossRef Artemev A, Jin Y, Khachaturyan A (2001) Three-dimensional phase field model of proper martensitic transformation. Acta Mater 49(7):1165–1177CrossRef
41.
go back to reference Chen L (2002) Phase field models for microstructure evolution. Annu Rev Mater Res 32:113–140CrossRef Chen L (2002) Phase field models for microstructure evolution. Annu Rev Mater Res 32:113–140CrossRef
42.
go back to reference Levitas V, Preston D (2002) Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. II. Multivariant phase transformations and stress space analysis. Phys Rev B 66(134206):1–15 Levitas V, Preston D (2002) Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. II. Multivariant phase transformations and stress space analysis. Phys Rev B 66(134206):1–15
43.
go back to reference Ahluwalia R, Lookman T, Saxena A (2006) Dynamic strain loading of cubic to tetragonal martensites. Acta Materialia 54:2109–2120CrossRef Ahluwalia R, Lookman T, Saxena A (2006) Dynamic strain loading of cubic to tetragonal martensites. Acta Materialia 54:2109–2120CrossRef
44.
go back to reference Wang L, Melnik R (2007) Finite volume analysis of nonlinear thermo-mechanical dynamics of shape memory alloys. Heat Mass Transf 43(6):535–546ADSCrossRef Wang L, Melnik R (2007) Finite volume analysis of nonlinear thermo-mechanical dynamics of shape memory alloys. Heat Mass Transf 43(6):535–546ADSCrossRef
45.
go back to reference Bouville M, Ahluwalia R (2008) Microstructure and mechanical properties of constrained shape memory alloy nanograins and nanowires. Acta Mater 56(14):3558–3567CrossRef Bouville M, Ahluwalia R (2008) Microstructure and mechanical properties of constrained shape memory alloy nanograins and nanowires. Acta Mater 56(14):3558–3567CrossRef
46.
go back to reference Daghia F, Fabrizio M, Grandi D (2010) A non isothermal Ginzburg–Landau model for phase transitions in shape memory alloys. Meccanica 45:797–807CrossRefMATHMathSciNet Daghia F, Fabrizio M, Grandi D (2010) A non isothermal Ginzburg–Landau model for phase transitions in shape memory alloys. Meccanica 45:797–807CrossRefMATHMathSciNet
47.
go back to reference Dhote R, Fabrizio M, Melnik R, Zu J (2013) Hysteresis phenomena in shape memory alloys by non-isothermal Ginzburg–Landau models. Commun Nonlinear Sci Numer Simul 18:2549–2561ADSCrossRefMathSciNet Dhote R, Fabrizio M, Melnik R, Zu J (2013) Hysteresis phenomena in shape memory alloys by non-isothermal Ginzburg–Landau models. Commun Nonlinear Sci Numer Simul 18:2549–2561ADSCrossRefMathSciNet
48.
go back to reference Idesman A, Cho J, Levitas V (2008) Finite element modeling of dynamics of martensitic phase transitions. Appl Phys Lett 93(4):043102ADSCrossRef Idesman A, Cho J, Levitas V (2008) Finite element modeling of dynamics of martensitic phase transitions. Appl Phys Lett 93(4):043102ADSCrossRef
49.
go back to reference Melnik R, Roberts A, Thomas KA (2002) Phase transitions in shape memory alloys with hyperbolic heat conduction and differential-algebraic models. Comput Mech 29(1):16–26CrossRefMATH Melnik R, Roberts A, Thomas KA (2002) Phase transitions in shape memory alloys with hyperbolic heat conduction and differential-algebraic models. Comput Mech 29(1):16–26CrossRefMATH
50.
go back to reference Melnik R, Roberts A (2003) Modelling nonlinear dynamics of shape-memory-alloys with approximate models of coupled thermoelasticity. Z Angew Math Mech 83(2):93–104CrossRefMATHMathSciNet Melnik R, Roberts A (2003) Modelling nonlinear dynamics of shape-memory-alloys with approximate models of coupled thermoelasticity. Z Angew Math Mech 83(2):93–104CrossRefMATHMathSciNet
51.
go back to reference Mahapatra D, Melnik R (2006) Finite element analysis of phase transformation dynamics in shape memory alloys with a consistent Landau–Ginzburg free energy model. Mech Adv Mater Struct 13:443–455CrossRef Mahapatra D, Melnik R (2006) Finite element analysis of phase transformation dynamics in shape memory alloys with a consistent Landau–Ginzburg free energy model. Mech Adv Mater Struct 13:443–455CrossRef
52.
go back to reference Wang L, Melnik R (2010) Low dimensional approximations to ferroelastic dynamics and hysteretic behavior due to phase transformations. J Appl Mech 77:031015CrossRef Wang L, Melnik R (2010) Low dimensional approximations to ferroelastic dynamics and hysteretic behavior due to phase transformations. J Appl Mech 77:031015CrossRef
53.
go back to reference Dhote R, Melnik R, Zu J (2012) Dynamic thermo-mechanical coupling and size effects in finite shape memory alloy nanostructures. Comput Mat Sci 63:105–117CrossRef Dhote R, Melnik R, Zu J (2012) Dynamic thermo-mechanical coupling and size effects in finite shape memory alloy nanostructures. Comput Mat Sci 63:105–117CrossRef
54.
go back to reference Wang L, Melnik R (2007) Thermo-mechanical wave propagation in shape memory alloy rod with phase transformations. Mech Adv Mater Struct 14(8):665–676CrossRef Wang L, Melnik R (2007) Thermo-mechanical wave propagation in shape memory alloy rod with phase transformations. Mech Adv Mater Struct 14(8):665–676CrossRef
55.
go back to reference Melnik R, Wang L (2009) International conference on computational methods for coupled problems in science and engineering coupled problems 2009, CIMNE, Barcelona pp. 1–4. Melnik R, Wang L (2009) International conference on computational methods for coupled problems in science and engineering coupled problems 2009, CIMNE, Barcelona pp. 1–4.
56.
go back to reference Dhote RP, Melnik RVN, Zu JW (2011) Dynamic thermo-mechanical properties of shape memory alloy nanowires upon multi-axial loading. ASME conference on smart materials, adaptive structures and intelligent systems pp. 411–417 Dhote RP, Melnik RVN, Zu JW (2011) Dynamic thermo-mechanical properties of shape memory alloy nanowires upon multi-axial loading. ASME conference on smart materials, adaptive structures and intelligent systems pp. 411–417
57.
go back to reference Dhote R, Gomez H, Melnik R, Zu J. 3D coupled thermo-mechanical phase-field modeling of shape memory alloy dynamics via isogeometric analysis (submitted for evaluation, available as arXiv:1403.5612) Dhote R, Gomez H, Melnik R, Zu J. 3D coupled thermo-mechanical phase-field modeling of shape memory alloy dynamics via isogeometric analysis (submitted for evaluation, available as arXiv:1403.5612)
58.
go back to reference Dhote R, Gomez H, Melnik R, Zu J. Shape memory alloy nanostructures with coupled dynamic thermo-mechanical effects, 2014, (available as arXiv:1403.6133) Dhote R, Gomez H, Melnik R, Zu J. Shape memory alloy nanostructures with coupled dynamic thermo-mechanical effects, 2014, (available as arXiv:1403.6133)
59.
go back to reference Falk F (1980) Model free energy, mechanics, and thermodynamics of shape memory alloys. Acta Metall 28(12):1773–1780CrossRef Falk F (1980) Model free energy, mechanics, and thermodynamics of shape memory alloys. Acta Metall 28(12):1773–1780CrossRef
60.
go back to reference Carstensen C (1996) On the computational of crystalline microstructure. Acta Numer 5:191–256CrossRef Carstensen C (1996) On the computational of crystalline microstructure. Acta Numer 5:191–256CrossRef
61.
go back to reference Rabe K, Ahn C, Triscone J (2007) Physics of ferroelectrics: a modern perspective. Springer, Berlin Rabe K, Ahn C, Triscone J (2007) Physics of ferroelectrics: a modern perspective. Springer, Berlin
62.
go back to reference Clayton JD, Knap J (2011) A phase field model of deformation twinning: nonlinear theory and numerical simulations. Phys D 240(9):841–858CrossRefMATHMathSciNet Clayton JD, Knap J (2011) A phase field model of deformation twinning: nonlinear theory and numerical simulations. Phys D 240(9):841–858CrossRefMATHMathSciNet
63.
go back to reference Hildebrand F, Miehe C (2012) A phase field model for the formation and evolution of martensitic laminate microstructure at finite strains. Philos Mag 92(34):4250–4290ADSCrossRef Hildebrand F, Miehe C (2012) A phase field model for the formation and evolution of martensitic laminate microstructure at finite strains. Philos Mag 92(34):4250–4290ADSCrossRef
64.
go back to reference Levin VA, Levitas VI, Zingerman KM, Freiman EI (2013) Phase-field simulation of stress-induced martensitic phase transformations at large strains. Int J Solids Struct 50(19):2914–2928CrossRef Levin VA, Levitas VI, Zingerman KM, Freiman EI (2013) Phase-field simulation of stress-induced martensitic phase transformations at large strains. Int J Solids Struct 50(19):2914–2928CrossRef
65.
go back to reference Phillips R (2001) Crystals, defects and microstructures: modeling across scales. Cambridge University Press, CambridgeCrossRef Phillips R (2001) Crystals, defects and microstructures: modeling across scales. Cambridge University Press, CambridgeCrossRef
66.
go back to reference Clayton JD (2011) Nonlinear mechanics of crystals, vol 177. Springer, DordrechtMATH Clayton JD (2011) Nonlinear mechanics of crystals, vol 177. Springer, DordrechtMATH
67.
go back to reference Waitz T, Antretter T, Fischer F, Simha N, Karnthaler H (2007) Size effects on the martensitic phase transformation of NiTi nanograins. Acta Mater 55(2):419–444MATH Waitz T, Antretter T, Fischer F, Simha N, Karnthaler H (2007) Size effects on the martensitic phase transformation of NiTi nanograins. Acta Mater 55(2):419–444MATH
68.
go back to reference Gadaj S, Nowacki W, Pieczyska E (2002) Temperature evolution in deformed shape memory alloy. Infrared Phys Technol 43(3–5):151–155ADSCrossRef Gadaj S, Nowacki W, Pieczyska E (2002) Temperature evolution in deformed shape memory alloy. Infrared Phys Technol 43(3–5):151–155ADSCrossRef
69.
go back to reference Pieczyska E, Gadaj S, Nowacki W, Tobushi H (2006) Phase-transformation fronts evolution for stress-and strain-controlled tension tests in TiNi shape memory alloy. Exp Mech 46(4):531–542CrossRef Pieczyska E, Gadaj S, Nowacki W, Tobushi H (2006) Phase-transformation fronts evolution for stress-and strain-controlled tension tests in TiNi shape memory alloy. Exp Mech 46(4):531–542CrossRef
70.
go back to reference Pieczyska EA, Tobushi H (2010) Temperature evolution in shape memory alloy during loading in various conditions. 10’th international conference on quantitative infrared thermography, pp. 1–6. Pieczyska EA, Tobushi H (2010) Temperature evolution in shape memory alloy during loading in various conditions. 10’th international conference on quantitative infrared thermography, pp. 1–6.
71.
go back to reference Ricci A, Ricciardi A (2010) A new finite element approach for studying the effect of surface stress on microstructures. Sens Actuators A 159:141–148CrossRef Ricci A, Ricciardi A (2010) A new finite element approach for studying the effect of surface stress on microstructures. Sens Actuators A 159:141–148CrossRef
73.
go back to reference Park K, Banerjee P (2002) Two-and three-dimensional transient thermoelastic analysis by BEM via particular integrals. Int J Solids Struct 39(10):2871–2892CrossRefMATH Park K, Banerjee P (2002) Two-and three-dimensional transient thermoelastic analysis by BEM via particular integrals. Int J Solids Struct 39(10):2871–2892CrossRefMATH
74.
go back to reference Wang L, Melnik R (2006) Differential-algebraic approach to coupled problems of dynamic thermoelasticity. Appl Math Mech 27(9):1185–1196CrossRef Wang L, Melnik R (2006) Differential-algebraic approach to coupled problems of dynamic thermoelasticity. Appl Math Mech 27(9):1185–1196CrossRef
75.
76.
go back to reference Yasuda H, Komoto N, Ueda M, Umakoshi Y (2002) Microstructure control for developing Fe–Pd ferromagnetic shape memory alloys. Sci Technol Adv Mater 3(2):165–169CrossRef Yasuda H, Komoto N, Ueda M, Umakoshi Y (2002) Microstructure control for developing Fe–Pd ferromagnetic shape memory alloys. Sci Technol Adv Mater 3(2):165–169CrossRef
77.
go back to reference Ma Y, Setzer A, Gerlach JW, Frost F, Esquinazi P, Mayr SG (2012) Freestanding single crystalline Fe–Pd ferromagnetic shape memory membranes—role of mechanical and magnetic constraints across the martensite transition. Adv Funct Mater 22(12):2529–2534 Ma Y, Setzer A, Gerlach JW, Frost F, Esquinazi P, Mayr SG (2012) Freestanding single crystalline Fe–Pd ferromagnetic shape memory membranes—role of mechanical and magnetic constraints across the martensite transition. Adv Funct Mater 22(12):2529–2534
78.
go back to reference Liu Y (2001) Detwinning process and its anisotropy in shape memory alloys. Smart materials and MEMS, International Society for Optics and Photonics, pp. 82–93. Liu Y (2001) Detwinning process and its anisotropy in shape memory alloys. Smart materials and MEMS, International Society for Optics and Photonics, pp. 82–93.
79.
go back to reference Rejzner J, Lexcellent C, Raniecki B (2002) Pseudoelastic behaviour of shape memory alloy beams under pure bending: experiments and modelling. Int J Mech Sci 44(4):665–686CrossRefMATH Rejzner J, Lexcellent C, Raniecki B (2002) Pseudoelastic behaviour of shape memory alloy beams under pure bending: experiments and modelling. Int J Mech Sci 44(4):665–686CrossRefMATH
80.
go back to reference Reedlunn B, Churchill CB, Nelson EE, Shaw JA, Daly SH (2014) Tension, compression, and bending of superelastic shape memory alloy tubes. J Mech Phys Solids 63:506–537 Reedlunn B, Churchill CB, Nelson EE, Shaw JA, Daly SH (2014) Tension, compression, and bending of superelastic shape memory alloy tubes. J Mech Phys Solids 63:506–537
81.
go back to reference Dhote R, Gomez H, Melnik R, Zu J (2013) Isogeometric analysis of coupled thermo-mechanical phase-field models for shape memory alloys using distributed computing. Proc Comput Sci 18:1068–1076CrossRef Dhote R, Gomez H, Melnik R, Zu J (2013) Isogeometric analysis of coupled thermo-mechanical phase-field models for shape memory alloys using distributed computing. Proc Comput Sci 18:1068–1076CrossRef
Metadata
Title
Dynamic multi-axial behavior of shape memory alloy nanowires with coupled thermo-mechanical phase-field models
Authors
R. P. Dhote
R. N. V. Melnik
J. Zu
Publication date
01-07-2014
Publisher
Springer Netherlands
Published in
Meccanica / Issue 7/2014
Print ISSN: 0025-6455
Electronic ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-014-9938-5

Other articles of this Issue 7/2014

Meccanica 7/2014 Go to the issue

Premium Partners