Skip to main content
Top
Published in: Metallurgist 7-8/2020

12-11-2020

Effect of Preliminary Firing on Oxidation of Mo–Mo3Si Alloyed with Sc or Nd

Authors: L. Yu. Udoeva, K. V. Pikulin, R. I. Gulyaeva, A. V. Larionov, S. N. Tyushnyakov

Published in: Metallurgist | Issue 7-8/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The main tasks of studying molybdenum silicides for use at elevated temperature include development of materials with a melting point Tme ≥ 2000°C, possibly with a low brittle-ductile transition temperature and resistance to high temperature oxidation. The possibility is considered of increasing corrosion resistance of a model alloy consisting of molybdenum solid solution and Mo3Si. The effect of Sc or Nd alloying additives, as well as preliminary high-temperature annealing. i.e., pre-oxidation in order to create a protective oxide layer on the alloy surface of a model alloy, is evaluated. Non-isothermal oxidation of alloys is performed using combined thermogravimetric and differential thermal analysis methods. The phase composition of the scale formed is determined by an X-ray diffraction method. As a result of these studies it is established that preliminary oxidation firing of Mo–Mo3Si–REE (about 3 at.%) alloys at 1100°C for 5–10 min provides conditions for forming a layer of SiO2 and REE molybdates Sc2(MoO4)3 and Nd2Si2O7 at the alloy surface. Oxidation in a dynamic regime for treated alloys in the range 500–850°C proceeds much more slowly than for the initial samples. This can be explained by the difficult access of oxygen to the reaction zone through a protective layer of non-volatile oxides. In addition, preliminary oxidation of Mo–Mo3Si alloyed with Sc or Nd during subsequent oxidation leads to an increase in the transition temperature for the process from the stage of oxide formation to intense MoO3 sublimation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Krüger, P. Jain, K. S. Kumar, and M. Heilmaier, “Correlation between microstructure and properties of fine grained Mo–Mo3Si–Mo5SiB2 alloys,” Intermetallics, 48, 10–18 (2014).CrossRef M. Krüger, P. Jain, K. S. Kumar, and M. Heilmaier, “Correlation between microstructure and properties of fine grained Mo–Mo3Si–Mo5SiB2 alloys,” Intermetallics, 48, 10–18 (2014).CrossRef
2.
go back to reference M. K. Meyer, A. J. Thom, and M. Akinc, “Oxide scale formation and isothermal oxidation behavior of Mo–Si–B intermetallics at 600–1000°C,” Intermetallics, 7, No. 2, 152–162 (1999).CrossRef M. K. Meyer, A. J. Thom, and M. Akinc, “Oxide scale formation and isothermal oxidation behavior of Mo–Si–B intermetallics at 600–1000°C,” Intermetallics, 7, No. 2, 152–162 (1999).CrossRef
3.
go back to reference S. Katrych, A. Grytsiv, A. Bondar, et al., “Structural materials: metal–silicon–boron: On the melting behavior of Mo–Si–B alloys,” J. Alloys and Compounds, 347, No. 1/2, 94–100 (2002).CrossRef S. Katrych, A. Grytsiv, A. Bondar, et al., “Structural materials: metal–silicon–boron: On the melting behavior of Mo–Si–B alloys,” J. Alloys and Compounds, 347, No. 1/2, 94–100 (2002).CrossRef
4.
go back to reference F. Chu, D. J. Thomas, K. McClellan, et al., “Synthesis and properties of Mo5Si3 single crystals,” Intermetallics, 7, No. 5, 611–620 (1999).CrossRef F. Chu, D. J. Thomas, K. McClellan, et al., “Synthesis and properties of Mo5Si3 single crystals,” Intermetallics, 7, No. 5, 611–620 (1999).CrossRef
5.
go back to reference H. Chen, Q. Ma, X. Shao, et al., “Microstructure, mechanical properties and oxidation resistance of Mo5Si3–Al2O3 composite,” Materials Science and Engineering: A, 592, 12–18 (2014).CrossRef H. Chen, Q. Ma, X. Shao, et al., “Microstructure, mechanical properties and oxidation resistance of Mo5Si3–Al2O3 composite,” Materials Science and Engineering: A, 592, 12–18 (2014).CrossRef
6.
go back to reference M. Samadzadeh, C. Oprea, H. Karimi Sharif, and T. Troczynski, “Comparative studies of the oxidation of MoSi2 based materials: High-temperature oxidation (1000–1600°C),” International J. Refractory Metals and Hard Materials, 69, 31–39 (2017).CrossRef M. Samadzadeh, C. Oprea, H. Karimi Sharif, and T. Troczynski, “Comparative studies of the oxidation of MoSi2 based materials: High-temperature oxidation (1000–1600°C),” International J. Refractory Metals and Hard Materials, 69, 31–39 (2017).CrossRef
7.
go back to reference Y. Q. Liu, G. Shao, and P. Tsakiropoulos, “On the oxidation behaviour of MoSi2,” Intermetallics, 9, No. 2, 125–136 (2001).CrossRef Y. Q. Liu, G. Shao, and P. Tsakiropoulos, “On the oxidation behaviour of MoSi2,” Intermetallics, 9, No. 2, 125–136 (2001).CrossRef
8.
go back to reference C. D. Wirkus and D. R. Wilder, “High-temperature oxidation of molybdenum disilicide,” J. American Ceramic Society, 49, No. 4, 173–177 (1966).CrossRef C. D. Wirkus and D. R. Wilder, “High-temperature oxidation of molybdenum disilicide,” J. American Ceramic Society, 49, No. 4, 173–177 (1966).CrossRef
9.
go back to reference D. A. Berztiss, R. R. Cerchiara, E. A. Gulbransen, et al., “Oxidation of MoSi2 and comparison with other silicide materials,” Materials Science and Engineering: A, 155, No. 1/2, 165–181 (1992).CrossRef D. A. Berztiss, R. R. Cerchiara, E. A. Gulbransen, et al., “Oxidation of MoSi2 and comparison with other silicide materials,” Materials Science and Engineering: A, 155, No. 1/2, 165–181 (1992).CrossRef
10.
go back to reference T. C. Chou and T. G. Nieh, “New observations of MoSi2 pest at 500°C,” Scripta Metallurgica et Materialia, 26, No. 10, 1637– 1642 (1992).CrossRef T. C. Chou and T. G. Nieh, “New observations of MoSi2 pest at 500°C,” Scripta Metallurgica et Materialia, 26, No. 10, 1637– 1642 (1992).CrossRef
11.
go back to reference I. Rosales and J. H. Schneibel, “Stoichiometry and mechanical properties of Mo3Si,” Intermetallics, 8, No. 8, 885–889 (2000).CrossRef I. Rosales and J. H. Schneibel, “Stoichiometry and mechanical properties of Mo3Si,” Intermetallics, 8, No. 8, 885–889 (2000).CrossRef
12.
go back to reference I. Rosales, H. Martinez, D. Bahena, et al., “Oxidation performance of Mo3Si with Al additions,” Corrosion Science, 51, No. 3, 534–538 (2009).CrossRef I. Rosales, H. Martinez, D. Bahena, et al., “Oxidation performance of Mo3Si with Al additions,” Corrosion Science, 51, No. 3, 534–538 (2009).CrossRef
13.
go back to reference S. Ochiai, “Improvement of the oxidation-proof property and the scale structure of Mo3Si intermetallic alloy through the addition of chromium and aluminum elements,” Intermetallics, 14, No. 10/11, 1351–1357 (2006).CrossRef S. Ochiai, “Improvement of the oxidation-proof property and the scale structure of Mo3Si intermetallic alloy through the addition of chromium and aluminum elements,” Intermetallics, 14, No. 10/11, 1351–1357 (2006).CrossRef
14.
go back to reference M .F. Ashby, F. J. Blunt, and M. Bannister, “Flow characteristics of highly constrained metal wires,” Acta Metallurgica, 37, No. 7, 1847–1857 (1989).CrossRef M .F. Ashby, F. J. Blunt, and M. Bannister, “Flow characteristics of highly constrained metal wires,” Acta Metallurgica, 37, No. 7, 1847–1857 (1989).CrossRef
15.
go back to reference D. M .Berczik, USA Patent 5595616, МPК6 C22C32/0047. Method of Improving Molybdenum Alloy Oxidation Resistance and Molybdenum Alloy Preparation Method, Claim 07.07.1995; Publ. 01.21.1997, Bull. No. 19. D. M .Berczik, USA Patent 5595616, МPК6 C22C32/0047. Method of Improving Molybdenum Alloy Oxidation Resistance and Molybdenum Alloy Preparation Method, Claim 07.07.1995; Publ. 01.21.1997, Bull. No. 19.
16.
go back to reference A. B. Gokhale and G. J. Abbaschian, “The Mo–Si (Molybdenum–Silicon) system,” J. Phase Equilibria, 12, No. 4, 493–498 (1991).CrossRef A. B. Gokhale and G. J. Abbaschian, “The Mo–Si (Molybdenum–Silicon) system,” J. Phase Equilibria, 12, No. 4, 493–498 (1991).CrossRef
17.
go back to reference S. Burk, B. Gorr, M. Krüger, et al., “Oxidation behavior of Mo–Si–B–(X) alloys: Macro- and microalloying (X = Cr, Zr, La2O3),” JOM, 63, No. 12, 32–36 (2011).CrossRef S. Burk, B. Gorr, M. Krüger, et al., “Oxidation behavior of Mo–Si–B–(X) alloys: Macro- and microalloying (X = Cr, Zr, La2O3),” JOM, 63, No. 12, 32–36 (2011).CrossRef
18.
go back to reference M. Yu. Belomytsev, M. S. Evseev, D. A. Kozlov, et al., “Heat-resistant composite metal-intermetallic based on NiAl,” Izv. Vuz. Tsvet, Met., No. 6, 68–72 (2007). M. Yu. Belomytsev, M. S. Evseev, D. A. Kozlov, et al., “Heat-resistant composite metal-intermetallic based on NiAl,” Izv. Vuz. Tsvet, Met., No. 6, 68–72 (2007).
19.
go back to reference S. Paswan, R. Mitra, and S. K. Roy, “Oxidation behaviour of the Mo–Si–B and Mo–Si–B–Al alloys in the temperature range of 700–1300°C,” Intermetallics, 15, No. 9, 1217–1227 (2007).CrossRef S. Paswan, R. Mitra, and S. K. Roy, “Oxidation behaviour of the Mo–Si–B and Mo–Si–B–Al alloys in the temperature range of 700–1300°C,” Intermetallics, 15, No. 9, 1217–1227 (2007).CrossRef
20.
go back to reference L. Yu. Udoeva, V. M. Chumarev, A. V. Larionov, et al., “Effect of rare earth elements on structure and phase composition of in-situ composites Mo–Si–X (X = Sc, Y, Nd),” Perspekt. Materialy, No. 7, 24–33 (2017). L. Yu. Udoeva, V. M. Chumarev, A. V. Larionov, et al., “Effect of rare earth elements on structure and phase composition of in-situ composites Mo–Si–X (X = Sc, Y, Nd),” Perspekt. Materialy, No. 7, 24–33 (2017).
21.
go back to reference V. M. Chumarev, R. I. Gulyaeva, L. Yu. Udoeva, et al., “Oxidation of Moss –Mo3Si alloys containing Sc and Nd,” in: XXI Mendeleev Meeting for General and Applied Chemistry: Coll. Theses in 6 Vol., Vol 3 (2019). V. M. Chumarev, R. I. Gulyaeva, L. Yu. Udoeva, et al., “Oxidation of Moss –Mo3Si alloys containing Sc and Nd,” in: XXI Mendeleev Meeting for General and Applied Chemistry: Coll. Theses in 6 Vol., Vol 3 (2019).
22.
go back to reference NETZSCH Proteus Software. Thermal Analysis, Version 4.8.3. NETZSCH Proteus Software. Thermal Analysis, Version 4.8.3.
23.
go back to reference A. Roine, HSC Chemistry 6.0 User’s Guide. Chemical Reaction and Equilibrium Software with Extensive Thermochemical Database and Flowsheet Simulation [Electronic Source]. Pori: Outotec Research Oy. (2006). A. Roine, HSC Chemistry 6.0 User’s Guide. Chemical Reaction and Equilibrium Software with Extensive Thermochemical Database and Flowsheet Simulation [Electronic Source]. Pori: Outotec Research Oy. (2006).
Metadata
Title
Effect of Preliminary Firing on Oxidation of Mo–Mo3Si Alloyed with Sc or Nd
Authors
L. Yu. Udoeva
K. V. Pikulin
R. I. Gulyaeva
A. V. Larionov
S. N. Tyushnyakov
Publication date
12-11-2020
Publisher
Springer US
Published in
Metallurgist / Issue 7-8/2020
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-020-01059-9

Other articles of this Issue 7-8/2020

Metallurgist 7-8/2020 Go to the issue

Premium Partners