Skip to main content
Top

2021 | OriginalPaper | Chapter

5. Effect of Pressure on Thermo-oxidation and Thermocatalytic Oxidation of n-C7 Asphaltenes

Authors : Oscar E. Medina, Jaime Gallego, Farid B. Cortés, Camilo A. Franco

Published in: Nanoparticles: An Emerging Technology for Oil Production and Processing Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study provides mechanistic insights into the effect of pressure on n-C7 asphaltene thermo-oxidation and thermocatalytic oxidation assisted by AuPd/Ce0.62Zr0.38O2 nanocatalysts as well as the thermodynamic compensation effect using pressures between 0.084 MPa and 7.0 MPa. This study is essentially divided into four parts, including (i) the impact of pressure on the oxidation of asphaltenes extracted from a single source; (ii) the effect of the chemical nature of asphaltenes on its thermo-oxidation at different pressures, using six different asphaltenes; (iii) the effect of different nanocatalysts in the decomposition of asphaltenes; and (iv) the thermodynamic compensation effect. Kinetic analysis was done based on high-pressure thermogravimetric results, conducted under an air atmosphere at temperatures from 100°C to 800°C. The temperature was divided into four main intervals, according to the mass change and rate for mass change profiles. The atypical behavior of asphaltenes limits each region during oxidation processes. The thermal events are named oxygen chemisorption region (OC), decomposition of chemisorbed oxygen region (DCO), first (FC), and second combustion (SC). Kinetic parameters were estimated through a first-order kinetic model for the different thermal regions. The results show the importance of the pressure on the oxidation of asphaltenes, according to the OC and DCO phenomena, in which there was no evidence at low-pressure conditions. Many variables influence the oxidation of asphaltenes. The content of thioethers, carboxyl and carbonyl groups, degree of aromatization, degree of dealkylation, cluster size, and content of long and short size aliphatic chains stand out. On the other hand, nanocatalysts’ presence considerably reduces the decomposition temperature of asphaltenes, obtaining values below 200°C, never before obtained. These reductions are possible in systems evaluated at 6.0 MPa and 3.0 MPa, indicating the beneficial effect of pressure on the performance and catalytic activity of the nanocatalyst. Finally, this work also shows insights about the kinetic compensation effect of the reactions throughout the conversion of asphaltenes with and without multifunctional nanocatalysts at different pressures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference O.E. Medina Erao, J. Gallego, C.M. Olmos, X. Chen, F.B. Cortés, C.A. Franco, Effect of multifunctional Nanocatalysts on n-C7 Asphaltene adsorption and subsequent oxidation under high pressure conditions. Energy Fuel (2020) O.E. Medina Erao, J. Gallego, C.M. Olmos, X. Chen, F.B. Cortés, C.A. Franco, Effect of multifunctional Nanocatalysts on n-C7 Asphaltene adsorption and subsequent oxidation under high pressure conditions. Energy Fuel (2020)
2.
go back to reference D.W. Green, G.P. Willhite, Enhanced oil recovery vol. 6: Henry L. Doherty Memorial Fund of AIME, Society of Petroleum Engineers Richardson, TX, (1998) D.W. Green, G.P. Willhite, Enhanced oil recovery vol. 6: Henry L. Doherty Memorial Fund of AIME, Society of Petroleum Engineers Richardson, TX, (1998)
3.
go back to reference S. Thomas, Enhanced oil recovery-an overview. Oil & Gas Science and Technology-Revue de l’IFP 63, 9–19 (2008) S. Thomas, Enhanced oil recovery-an overview. Oil & Gas Science and Technology-Revue de l’IFP 63, 9–19 (2008)
4.
go back to reference T. Nasr, G. Beaulieu, H. Golbeck, G. Heck, Novel expanding solvent-SAGD process “ES-SAGD”, in Canadian International Petroleum Conference, (2002) T. Nasr, G. Beaulieu, H. Golbeck, G. Heck, Novel expanding solvent-SAGD process “ES-SAGD”, in Canadian International Petroleum Conference, (2002)
5.
go back to reference P.A. Govind, S.K. Das, S. Srinivasan, T.J. Wheeler, Expanding solvent SAGD in heavy oil reservoirs, in International Thermal Operations and Heavy Oil Symposium, (2008) P.A. Govind, S.K. Das, S. Srinivasan, T.J. Wheeler, Expanding solvent SAGD in heavy oil reservoirs, in International Thermal Operations and Heavy Oil Symposium, (2008)
6.
go back to reference A.-Y. Huc, Heavy crude oils: from geology to upgrading: an overview. Editions Technip, (2010) A.-Y. Huc, Heavy crude oils: from geology to upgrading: an overview. Editions Technip, (2010)
7.
go back to reference X.-G. Dong, Q.-F. Lei, W.-J. Fang, Q.-S. Yu, Thermogravimetric analysis of petroleum asphaltenes along with estimation of average chemical structure by nuclear magnetic resonance spectroscopy. Thermochim. Acta 427, 149–153 (2005) X.-G. Dong, Q.-F. Lei, W.-J. Fang, Q.-S. Yu, Thermogravimetric analysis of petroleum asphaltenes along with estimation of average chemical structure by nuclear magnetic resonance spectroscopy. Thermochim. Acta 427, 149–153 (2005)
8.
go back to reference P. Murugan, T. Mani, N. Mahinpey, K. Asghari, The low temperature oxidation of Fosterton asphaltenes and its combustion kinetics. Fuel Process. Technol. 92, 1056–1061 (2011) P. Murugan, T. Mani, N. Mahinpey, K. Asghari, The low temperature oxidation of Fosterton asphaltenes and its combustion kinetics. Fuel Process. Technol. 92, 1056–1061 (2011)
9.
go back to reference N.P. Freitag, Chemical-reaction mechanisms that govern oxidation rates during in-situ combustion and high-pressure air injection. SPE Reserv. Eval. Eng. 19, 645–654 (2016) N.P. Freitag, Chemical-reaction mechanisms that govern oxidation rates during in-situ combustion and high-pressure air injection. SPE Reserv. Eval. Eng. 19, 645–654 (2016)
10.
go back to reference X. Zhang, Q. Liu, Z. Fan, Enhanced in situ combustion of heavy crude oil by nickel oxide nanoparticles. Int. J. Energy Res. 43, 3399–3412 (2019) X. Zhang, Q. Liu, Z. Fan, Enhanced in situ combustion of heavy crude oil by nickel oxide nanoparticles. Int. J. Energy Res. 43, 3399–3412 (2019)
11.
go back to reference N.N. Nassar, A. Hassan, P. Pereira-Almao, Clarifying the catalytic role of NiO nanoparticles in the oxidation of asphaltenes. Appl. Catal. A Gen. 462, 116–120 (2013) N.N. Nassar, A. Hassan, P. Pereira-Almao, Clarifying the catalytic role of NiO nanoparticles in the oxidation of asphaltenes. Appl. Catal. A Gen. 462, 116–120 (2013)
12.
go back to reference M.M. Husein, S.J. Alkhaldi, In situ preparation of alumina nanoparticles in heavy oil and their thermal cracking performance. Energy Fuel 28, 6563–6569 (2014) M.M. Husein, S.J. Alkhaldi, In situ preparation of alumina nanoparticles in heavy oil and their thermal cracking performance. Energy Fuel 28, 6563–6569 (2014)
13.
go back to reference F. Amin, A study on the adsorption and catalytic oxidation of Asphaltene onto nanoparticles. J. Pet. Sci. Technol. 7, 21–29 (2017) F. Amin, A study on the adsorption and catalytic oxidation of Asphaltene onto nanoparticles. J. Pet. Sci. Technol. 7, 21–29 (2017)
14.
go back to reference A. Amrollahi Biyouki, N. Hosseinpour, N.N. Nassar, Pyrolysis and oxidation of Asphaltene-born coke-like residue formed onto in situ prepared NiO nanoparticles toward advanced in situ combustion enhanced oil recovery processes. Energy Fuel 32, 5033–5044 (2018) A. Amrollahi Biyouki, N. Hosseinpour, N.N. Nassar, Pyrolysis and oxidation of Asphaltene-born coke-like residue formed onto in situ prepared NiO nanoparticles toward advanced in situ combustion enhanced oil recovery processes. Energy Fuel 32, 5033–5044 (2018)
15.
go back to reference A.A. Akhmadiyarov, I.T. Rakipov, A.A. Khachatrian, A.A. Petrov, S.A. Sitnov, A.V. Gerasimov, et al., Thermocatalytic upgrading of heavy oil by iron oxides nanoparticles synthesized by oil-soluble precursors. J. Pet. Sci. Eng. 169, 200–204 (2018) A.A. Akhmadiyarov, I.T. Rakipov, A.A. Khachatrian, A.A. Petrov, S.A. Sitnov, A.V. Gerasimov, et al., Thermocatalytic upgrading of heavy oil by iron oxides nanoparticles synthesized by oil-soluble precursors. J. Pet. Sci. Eng. 169, 200–204 (2018)
16.
go back to reference C.A. Franco, T. Montoya, N.N. Nassar, P. Pereira-Almao, F.B. Cortés, Adsorption and subsequent oxidation of colombian asphaltenes onto nickel and/or palladium oxide supported on fumed silica nanoparticles. Energy Fuel 27, 7336–7347 (2013) C.A. Franco, T. Montoya, N.N. Nassar, P. Pereira-Almao, F.B. Cortés, Adsorption and subsequent oxidation of colombian asphaltenes onto nickel and/or palladium oxide supported on fumed silica nanoparticles. Energy Fuel 27, 7336–7347 (2013)
17.
go back to reference J. Barillas, T.D. Júnior, W. Mata, Improved oil recovery process for heavy oil: A review. Brazilian Journal of Petroleum and Gás 2 (2008) J. Barillas, T.D. Júnior, W. Mata, Improved oil recovery process for heavy oil: A review. Brazilian Journal of Petroleum and Gás 2 (2008)
18.
go back to reference J. Burger, P. Sourieau, M. Combarnous, H.J. Ramey, Thermal methods of oil recovery: Gulf Publishing Company, Book Division, (1985) J. Burger, P. Sourieau, M. Combarnous, H.J. Ramey, Thermal methods of oil recovery: Gulf Publishing Company, Book Division, (1985)
19.
go back to reference J. Alvarez, S. Han, Current overview of cyclic steam injection process. Journal of Petroleum Science Research 2 (2013) J. Alvarez, S. Han, Current overview of cyclic steam injection process. Journal of Petroleum Science Research 2 (2013)
20.
go back to reference P.S. Sarathi and D.K. Olsen, Practical aspects of steam injection processes: A handbook for independent operators, National Inst. for Petroleum and Energy Research, Bartlesville, OK, (1992) P.S. Sarathi and D.K. Olsen, Practical aspects of steam injection processes: A handbook for independent operators, National Inst. for Petroleum and Energy Research, Bartlesville, OK, (1992)
21.
go back to reference M. Cokar, I.D. Gates, M.S. Kallos, Reservoir simulation of steam fracturing in early-cycle cyclic steam stimulation. SPE Reserv. Eval. Eng. 15, 676–687 (2012) M. Cokar, I.D. Gates, M.S. Kallos, Reservoir simulation of steam fracturing in early-cycle cyclic steam stimulation. SPE Reserv. Eval. Eng. 15, 676–687 (2012)
22.
go back to reference Q. Jiang, B. Thornton, J. Russel-Houston, S. Spence, Review of thermal recovery technologies for the Clearwater and lower grand rapids formations in the cold lake area in Alberta. J. Can. Pet. Technol. 49, 2–13 (2010) Q. Jiang, B. Thornton, J. Russel-Houston, S. Spence, Review of thermal recovery technologies for the Clearwater and lower grand rapids formations in the cold lake area in Alberta. J. Can. Pet. Technol. 49, 2–13 (2010)
23.
go back to reference R. Butler, C. Yee, Progress in the in situ recovery of heavy oils and bitumen. J. Can. Pet. Technol. 41 (2002) R. Butler, C. Yee, Progress in the in situ recovery of heavy oils and bitumen. J. Can. Pet. Technol. 41 (2002)
24.
go back to reference J.C. de Souza Jr, D.F. Cursino, K.G. Padua, Twenty Years of Vapor Injection in Heavy-Oil Fields, in SPE Latin American and Caribbean Petroleum Engineering Conference, (2005) J.C. de Souza Jr, D.F. Cursino, K.G. Padua, Twenty Years of Vapor Injection in Heavy-Oil Fields, in SPE Latin American and Caribbean Petroleum Engineering Conference, (2005)
25.
go back to reference E. Hanzlik, D. Mims, Forty years of steam injection in California-The evolution of heat management, in SPE International Improved Oil Recovery Conference in Asia Pacific, (2003) E. Hanzlik, D. Mims, Forty years of steam injection in California-The evolution of heat management, in SPE International Improved Oil Recovery Conference in Asia Pacific, (2003)
26.
go back to reference D.W. Zhao, J. Wang, I.D. Gates, Thermal recovery strategies for thin heavy oil reservoirs. Fuel 117, 431–441 (2014) D.W. Zhao, J. Wang, I.D. Gates, Thermal recovery strategies for thin heavy oil reservoirs. Fuel 117, 431–441 (2014)
27.
go back to reference D.W. Zhao, J. Wang, I.D. Gates, An evaluation of enhanced oil recovery strategies for a heavy oil reservoir after cold production with sand. Int. J. Energy Res. 39, 1355–1365 (2015) D.W. Zhao, J. Wang, I.D. Gates, An evaluation of enhanced oil recovery strategies for a heavy oil reservoir after cold production with sand. Int. J. Energy Res. 39, 1355–1365 (2015)
28.
go back to reference A.J. Rosa, R. de Souza Carvalho, J.A.D. Xavier, Engenharia de reservatórios de petróleo: Interciência, (2006) A.J. Rosa, R. de Souza Carvalho, J.A.D. Xavier, Engenharia de reservatórios de petróleo: Interciência, (2006)
29.
go back to reference R. Butler, A new approach to the modelling of steam-assisted gravity drainage. J. Can. Pet. Technol. 24, 42–51 (1985) R. Butler, A new approach to the modelling of steam-assisted gravity drainage. J. Can. Pet. Technol. 24, 42–51 (1985)
30.
go back to reference R. Butler, D. Stephens, The gravity drainage of steam-heated heavy oil to parallel horizontal wells. J. Can. Pet. Technol. 20 (1981) R. Butler, D. Stephens, The gravity drainage of steam-heated heavy oil to parallel horizontal wells. J. Can. Pet. Technol. 20 (1981)
31.
go back to reference L. Yang, D.-S. Zhou, Y.-h. Sun, SAGD as follow-up to cyclic steam stimulation in a medium deep and extra heavy oil reservoir, in International Oil & Gas Conference and Exhibition in China, (2006) L. Yang, D.-S. Zhou, Y.-h. Sun, SAGD as follow-up to cyclic steam stimulation in a medium deep and extra heavy oil reservoir, in International Oil & Gas Conference and Exhibition in China, (2006)
32.
go back to reference J. Jimenez, The field performance of SAGD projects in Canada, in International petroleum technology conference, (2008) J. Jimenez, The field performance of SAGD projects in Canada, in International petroleum technology conference, (2008)
33.
go back to reference I. Gates, N. Chakrabarty, Optimization of steam-assisted gravity drainage in McMurray reservoir, in Canadian International Petroleum Conference, (2005) I. Gates, N. Chakrabarty, Optimization of steam-assisted gravity drainage in McMurray reservoir, in Canadian International Petroleum Conference, (2005)
34.
go back to reference S. Akin, S. Bagci, A laboratory study of single-well steam-assisted gravity drainage process. J. Pet. Sci. Eng. 32, 23–33 (2001) S. Akin, S. Bagci, A laboratory study of single-well steam-assisted gravity drainage process. J. Pet. Sci. Eng. 32, 23–33 (2001)
35.
go back to reference V. Alvarado, E. Manrique, Enhanced oil recovery: An update review. Energies 3, 1529–1575 (2010) V. Alvarado, E. Manrique, Enhanced oil recovery: An update review. Energies 3, 1529–1575 (2010)
36.
go back to reference C. Chu, A study of fireflood field projects (includes associated paper 6504). J. Pet. Technol. 29, 111–120 (1977) C. Chu, A study of fireflood field projects (includes associated paper 6504). J. Pet. Technol. 29, 111–120 (1977)
37.
go back to reference C. Cheih, State-of-the-art review of fireflood field projects (includes associated papers 10901 and 10918). J. Pet. Technol. 34, 19–36 (1982) C. Cheih, State-of-the-art review of fireflood field projects (includes associated papers 10901 and 10918). J. Pet. Technol. 34, 19–36 (1982)
38.
go back to reference A. Turta, S. Chattopadhyay, R. Bhattacharya, A. Condrachi, W. Hanson, Current status of commercial in situ combustion projects worldwide. J. Can. Pet. Technol. 46 (2007) A. Turta, S. Chattopadhyay, R. Bhattacharya, A. Condrachi, W. Hanson, Current status of commercial in situ combustion projects worldwide. J. Can. Pet. Technol. 46 (2007)
39.
go back to reference C. Wu, P. Fulton, Experimental simulation of the zones preceding the combustion front of an in-situ combustion process. Soc. Pet. Eng. J. 11, 38–46 (1971) C. Wu, P. Fulton, Experimental simulation of the zones preceding the combustion front of an in-situ combustion process. Soc. Pet. Eng. J. 11, 38–46 (1971)
40.
go back to reference L. Castanier, W. Brigham, Upgrading of crude oil via in situ combustion. J. Pet. Sci. Eng. 39, 125–136 (2003) L. Castanier, W. Brigham, Upgrading of crude oil via in situ combustion. J. Pet. Sci. Eng. 39, 125–136 (2003)
41.
go back to reference N. Mahinpey, A. Ambalae, K. Asghari, In situ combustion in enhanced oil recovery (EOR): A review. Chem. Eng. Commun. 194, 995–1021 (2007) N. Mahinpey, A. Ambalae, K. Asghari, In situ combustion in enhanced oil recovery (EOR): A review. Chem. Eng. Commun. 194, 995–1021 (2007)
42.
go back to reference A.I. El-Diasty, A.M. Aly, Understanding the mechanism of nanoparticles applications in enhanced oil recovery, in SPE North Africa Technical Conference and Exhibition, (2015) A.I. El-Diasty, A.M. Aly, Understanding the mechanism of nanoparticles applications in enhanced oil recovery, in SPE North Africa Technical Conference and Exhibition, (2015)
43.
go back to reference C.A. Franco, N.N. Nassar, M.A. Ruiz, P. Pereira-Almao, F.B. Cortés, Nanoparticles for inhibition of asphaltenes damage: Adsorption study and displacement test on porous media. Energy Fuel 27, 2899–2907 (2013) C.A. Franco, N.N. Nassar, M.A. Ruiz, P. Pereira-Almao, F.B. Cortés, Nanoparticles for inhibition of asphaltenes damage: Adsorption study and displacement test on porous media. Energy Fuel 27, 2899–2907 (2013)
44.
go back to reference S. Mokhatab, M.A. Fresky, M.R. Islam, Applications of nanotechnology in oil and gas E&P. J. Pet. Technol. 58, 48–51 (2006) S. Mokhatab, M.A. Fresky, M.R. Islam, Applications of nanotechnology in oil and gas E&P. J. Pet. Technol. 58, 48–51 (2006)
45.
go back to reference A.I. El-Diasty, A.M.S. Ragab, Applications of nanotechnology in the oil & gas industry: Latest trends worldwide & future challenges in Egypt, in North Africa Technical Conference and Exhibition, (2013) A.I. El-Diasty, A.M.S. Ragab, Applications of nanotechnology in the oil & gas industry: Latest trends worldwide & future challenges in Egypt, in North Africa Technical Conference and Exhibition, (2013)
46.
go back to reference F. Ariza, C. Andrés, Synthesis and application of supported metallic and multi-metallic oxides nanoparticles for in-situ upgrading and inhibition of formation damage, Ph.D. Thesis, Universidad Nacional de Colombia-Sede Medellín, Online, (2015) F. Ariza, C. Andrés, Synthesis and application of supported metallic and multi-metallic oxides nanoparticles for in-situ upgrading and inhibition of formation damage, Ph.D. Thesis, Universidad Nacional de Colombia-Sede Medellín, Online, (2015)
47.
go back to reference N.N. Nassar, C.A. Franco, T. Montoya, F.B. Cortés, A. Hassan, Effect of oxide support on Ni–Pd bimetallic nanocatalysts for steam gasification of n-C7 asphaltenes. Fuel 156, 110–120 (2015) N.N. Nassar, C.A. Franco, T. Montoya, F.B. Cortés, A. Hassan, Effect of oxide support on Ni–Pd bimetallic nanocatalysts for steam gasification of n-C7 asphaltenes. Fuel 156, 110–120 (2015)
48.
go back to reference D. López, L.J. Giraldo, J.P. Salazar, D.M. Zapata, D.C. Ortega, C.A. Franco, et al., Metal oxide nanoparticles supported on macro-mesoporous Aluminosilicates for catalytic steam gasification of heavy oil fractions for on-site upgrading. Catalysts 7, 319 (2017) D. López, L.J. Giraldo, J.P. Salazar, D.M. Zapata, D.C. Ortega, C.A. Franco, et al., Metal oxide nanoparticles supported on macro-mesoporous Aluminosilicates for catalytic steam gasification of heavy oil fractions for on-site upgrading. Catalysts 7, 319 (2017)
49.
go back to reference T. Montoya, B.L. Argel, N.N. Nassar, C.A. Franco, F.B. Cortés, Kinetics and mechanisms of the catalytic thermal cracking of asphaltenes adsorbed on supported nanoparticles. Pet. Sci. 13, 561–571 (2016) T. Montoya, B.L. Argel, N.N. Nassar, C.A. Franco, F.B. Cortés, Kinetics and mechanisms of the catalytic thermal cracking of asphaltenes adsorbed on supported nanoparticles. Pet. Sci. 13, 561–571 (2016)
50.
go back to reference O.E. Medina, J. Gallego, D. Arias-Madrid, F.B. Cortés, C.A. Franco, Optimization of the load of transition metal oxides (Fe2O3, Co3O4, NiO and/or PdO) onto CeO2 nanoparticles in catalytic steam decomposition of n-C7 Asphaltenes at low temperatures. Nano 9, 401 (2019) O.E. Medina, J. Gallego, D. Arias-Madrid, F.B. Cortés, C.A. Franco, Optimization of the load of transition metal oxides (Fe2O3, Co3O4, NiO and/or PdO) onto CeO2 nanoparticles in catalytic steam decomposition of n-C7 Asphaltenes at low temperatures. Nano 9, 401 (2019)
51.
go back to reference O.E. Medina, J. Gallego, L.G. Restrepo, F.B. Cortés, C.A. Franco, Influence of the Ce4+/Ce3+ redox-couple on the cyclic regeneration for adsorptive and catalytic performance of NiO-PdO/CeO2±δ nanoparticles for n-C7 asphaltene steam gasification. Nano 9, 734 (2019) O.E. Medina, J. Gallego, L.G. Restrepo, F.B. Cortés, C.A. Franco, Influence of the Ce4+/Ce3+ redox-couple on the cyclic regeneration for adsorptive and catalytic performance of NiO-PdO/CeO2±δ nanoparticles for n-C7 asphaltene steam gasification. Nano 9, 734 (2019)
52.
go back to reference O.E. Medina, Y. Hurtado, C. Caro-Velez, F.B. Cortés, M. Riazi, S.H. Lopera, et al., Improvement of steam injection processes through nanotechnology: An approach through in situ upgrading and foam injection. Energies 12, 4633 (2019) O.E. Medina, Y. Hurtado, C. Caro-Velez, F.B. Cortés, M. Riazi, S.H. Lopera, et al., Improvement of steam injection processes through nanotechnology: An approach through in situ upgrading and foam injection. Energies 12, 4633 (2019)
53.
go back to reference C. Franco, E. Patiño, P. Benjumea, M.A. Ruiz, F.B. Cortés, Kinetic and thermodynamic equilibrium of asphaltenes sorption onto nanoparticles of nickel oxide supported on nanoparticulated alumina. Fuel 105, 408–414 (2013) C. Franco, E. Patiño, P. Benjumea, M.A. Ruiz, F.B. Cortés, Kinetic and thermodynamic equilibrium of asphaltenes sorption onto nanoparticles of nickel oxide supported on nanoparticulated alumina. Fuel 105, 408–414 (2013)
54.
go back to reference L. Cardona Rojas, Efecto de nanopartículas en procesos con inyección de vapor a diferentes calidades, Msc Magister Thesis, Universidad Nacional de Colombia-Sede Medellín, Online, 2018 L. Cardona Rojas, Efecto de nanopartículas en procesos con inyección de vapor a diferentes calidades, Msc Magister Thesis, Universidad Nacional de Colombia-Sede Medellín, Online, 2018
55.
go back to reference N.N. Nassar, A. Hassan, P. Pereira-Almao, Comparative oxidation of adsorbed asphaltenes onto transition metal oxide nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 384, 145–149 (2011) N.N. Nassar, A. Hassan, P. Pereira-Almao, Comparative oxidation of adsorbed asphaltenes onto transition metal oxide nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 384, 145–149 (2011)
56.
go back to reference N.N. Nassar, A. Hassan, P. Pereira-Almao, Effect of surface acidity and basicity of aluminas on asphaltene adsorption and oxidation. J. Colloid Interface Sci. 360, 233–238 (2011) N.N. Nassar, A. Hassan, P. Pereira-Almao, Effect of surface acidity and basicity of aluminas on asphaltene adsorption and oxidation. J. Colloid Interface Sci. 360, 233–238 (2011)
57.
go back to reference N.N. Nassar, A. Hassan, L. Carbognani, F. Lopez-Linares, P. Pereira-Almao, Iron oxide nanoparticles for rapid adsorption and enhanced catalytic oxidation of thermally cracked asphaltenes. Fuel 95, 257–262 (2012) N.N. Nassar, A. Hassan, L. Carbognani, F. Lopez-Linares, P. Pereira-Almao, Iron oxide nanoparticles for rapid adsorption and enhanced catalytic oxidation of thermally cracked asphaltenes. Fuel 95, 257–262 (2012)
58.
go back to reference N.N. Nassar, A. Hassan, G. Vitale, Comparing kinetics and mechanism of adsorption and thermo-oxidative decomposition of Athabasca asphaltenes onto TiO2, ZrO2, and CeO2 nanoparticles. Appl. Catal. A Gen. 484, 161–171 (2014) N.N. Nassar, A. Hassan, G. Vitale, Comparing kinetics and mechanism of adsorption and thermo-oxidative decomposition of Athabasca asphaltenes onto TiO2, ZrO2, and CeO2 nanoparticles. Appl. Catal. A Gen. 484, 161–171 (2014)
59.
go back to reference C.A. Franco, M.M. Lozano, S. Acevedo, N.N. Nassar, F.B. Cortés, Effects of resin I on Asphaltene adsorption onto nanoparticles: A novel method for obtaining asphaltenes/resin isotherms. Energy Fuel 30, 264–272 (2015) C.A. Franco, M.M. Lozano, S. Acevedo, N.N. Nassar, F.B. Cortés, Effects of resin I on Asphaltene adsorption onto nanoparticles: A novel method for obtaining asphaltenes/resin isotherms. Energy Fuel 30, 264–272 (2015)
60.
go back to reference M.M. Lozano, C.A. Franco, S.A. Acevedo, N.N. Nassar, F.B. Cortés, Effects of resin I on the catalytic oxidation of n-C 7 asphaltenes in the presence of silica-based nanoparticles. RSC Adv. 6, 74630–74642 (2016) M.M. Lozano, C.A. Franco, S.A. Acevedo, N.N. Nassar, F.B. Cortés, Effects of resin I on the catalytic oxidation of n-C 7 asphaltenes in the presence of silica-based nanoparticles. RSC Adv. 6, 74630–74642 (2016)
61.
go back to reference C.M. Olmos, L.E. Chinchilla, J.J. Delgado, A.B. Hungría, G. Blanco, J.J. Calvino, et al., CO oxidation over bimetallic au–Pd supported on ceria–zirconia catalysts: Effects of oxidation temperature and au: Pd molar ratio. Catal. Lett. 146, 144–156 (2016) C.M. Olmos, L.E. Chinchilla, J.J. Delgado, A.B. Hungría, G. Blanco, J.J. Calvino, et al., CO oxidation over bimetallic au–Pd supported on ceria–zirconia catalysts: Effects of oxidation temperature and au: Pd molar ratio. Catal. Lett. 146, 144–156 (2016)
62.
go back to reference L. Barre, D. Espinat, E. Rosenberg, M. Scarsella, Colloidal structure of heavy crudes and asphaltene solutions. Revue de l’Institut Français du Pétrole 52, 161–175 (1997) L. Barre, D. Espinat, E. Rosenberg, M. Scarsella, Colloidal structure of heavy crudes and asphaltene solutions. Revue de l’Institut Français du Pétrole 52, 161–175 (1997)
63.
go back to reference A. International, ASTM D5236–13, Standard Test Method for Distillation of Heavy Hydrocarbon Mixtures (Vacuum Potstill Method), Annual Book of ASTM Standards, (2013) A. International, ASTM D5236–13, Standard Test Method for Distillation of Heavy Hydrocarbon Mixtures (Vacuum Potstill Method), Annual Book of ASTM Standards, (2013)
64.
go back to reference A. International, ASTM D2892, Standard Test Method for Distillation of Crude Petroleum (15-Theoretical Plate Column), Annual Book of ASTM Standards, (2016) A. International, ASTM D2892, Standard Test Method for Distillation of Crude Petroleum (15-Theoretical Plate Column), Annual Book of ASTM Standards, (2016)
65.
go back to reference S.M. Lopes, P. Geng, Estimation of elemental composition of diesel fuel containing biodiesel. SAE International Journal of Fuels and Lubricants 6, 668–676 (2013) S.M. Lopes, P. Geng, Estimation of elemental composition of diesel fuel containing biodiesel. SAE International Journal of Fuels and Lubricants 6, 668–676 (2013)
66.
go back to reference S. Acevedo, J. Castillo, V. Vargas, A. Castro, O.Z. Delgado, C.A.F. Ariza, et al., Suppression of phase separation as a hypothesis to account for nuclei or nanoaggregate formation by Asphaltenes in toluene. Energy Fuel (2018) S. Acevedo, J. Castillo, V. Vargas, A. Castro, O.Z. Delgado, C.A.F. Ariza, et al., Suppression of phase separation as a hypothesis to account for nuclei or nanoaggregate formation by Asphaltenes in toluene. Energy Fuel (2018)
67.
go back to reference O.E. Medina, J. Gallego, N.N. Nassar, S.A. Acevedo, F.B. Cortés, C.A. Franco, Thermo-oxidative decomposition Behaviors of different sources of n-C7 Asphaltenes at high-pressure conditions. Energy Fuel (2020) O.E. Medina, J. Gallego, N.N. Nassar, S.A. Acevedo, F.B. Cortés, C.A. Franco, Thermo-oxidative decomposition Behaviors of different sources of n-C7 Asphaltenes at high-pressure conditions. Energy Fuel (2020)
68.
go back to reference C. Lee, W. Yang, R.G. Parr, Results obtained with the correlation energy density functionals. Phys. Rev. B: Condens. Matter Mater. Phys 37, 785 (1988) C. Lee, W. Yang, R.G. Parr, Results obtained with the correlation energy density functionals. Phys. Rev. B: Condens. Matter Mater. Phys 37, 785 (1988)
69.
go back to reference H.L. Schmider, A.D. Becke, Optimized density functionals from the extended G2 test set. J. Chem. Phys. 108, 9624–9631 (1998) H.L. Schmider, A.D. Becke, Optimized density functionals from the extended G2 test set. J. Chem. Phys. 108, 9624–9631 (1998)
71.
go back to reference S. Goncalves, J. Castillo, A. Fernandez, J. Hung, Absorbance and fluorescence spectroscopy on the aggregation behavior of asphaltene–toluene solutions. Fuel 83, 1823–1828 (2004) S. Goncalves, J. Castillo, A. Fernandez, J. Hung, Absorbance and fluorescence spectroscopy on the aggregation behavior of asphaltene–toluene solutions. Fuel 83, 1823–1828 (2004)
72.
go back to reference N.N. Nassar, A. Hassan, P. Pereira-Almao, Application of nanotechnology for heavy oil upgrading: Catalytic steam gasification/cracking of asphaltenes. Energy Fuel 25, 1566–1570 (2011) N.N. Nassar, A. Hassan, P. Pereira-Almao, Application of nanotechnology for heavy oil upgrading: Catalytic steam gasification/cracking of asphaltenes. Energy Fuel 25, 1566–1570 (2011)
73.
go back to reference O.E. Medina, J. Gallego, E. Rodríguez, C.A. Franco, F.B. Cortés, Effect of pressure on the oxidation kinetics of Asphaltenes. Energy Fuel 33, 10734–10744 (2019) O.E. Medina, J. Gallego, E. Rodríguez, C.A. Franco, F.B. Cortés, Effect of pressure on the oxidation kinetics of Asphaltenes. Energy Fuel 33, 10734–10744 (2019)
74.
go back to reference O. Talu, F. Meunier, Adsorption of associating molecules in micropores and application to water on carbon. AICHE J. 42, 809–819 (1996) O. Talu, F. Meunier, Adsorption of associating molecules in micropores and application to water on carbon. AICHE J. 42, 809–819 (1996)
75.
go back to reference T. Montoya, D. Coral, C.A. Franco, N.N. Nassar, F.B. Cortés, A novel solid–liquid equilibrium model for describing the adsorption of associating asphaltene molecules onto solid surfaces based on the “chemical theory”. Energy Fuel 28, 4963–4975 (2014) T. Montoya, D. Coral, C.A. Franco, N.N. Nassar, F.B. Cortés, A novel solid–liquid equilibrium model for describing the adsorption of associating asphaltene molecules onto solid surfaces based on the “chemical theory”. Energy Fuel 28, 4963–4975 (2014)
76.
go back to reference G.-S. Liu, S. Niksa, Coal conversion submodels for design applications at elevated pressures. Part II. Char gasification. Prog. Energy Combust. Sci. 30, 679–717 (2004) G.-S. Liu, S. Niksa, Coal conversion submodels for design applications at elevated pressures. Part II. Char gasification. Prog. Energy Combust. Sci. 30, 679–717 (2004)
77.
go back to reference P. Schneider, Adsorption isotherms of microporous-mesoporous solids revisited. Appl. Catal. A Gen. 129, 157–165 (1995) P. Schneider, Adsorption isotherms of microporous-mesoporous solids revisited. Appl. Catal. A Gen. 129, 157–165 (1995)
78.
go back to reference M. Kurian, C. Kunjachan, Effect of lattice distortion on physical properties and surface morphology of nanoceria framework with incorporation of iron/zirconium. Nano-Structures & Nano-Objects 1, 15–23 (2015) M. Kurian, C. Kunjachan, Effect of lattice distortion on physical properties and surface morphology of nanoceria framework with incorporation of iron/zirconium. Nano-Structures & Nano-Objects 1, 15–23 (2015)
79.
go back to reference A.E.E. Shilov, Activation of Saturated Hydrocarbons by Transition Metal Complexes, vol 5 (Springer Science & Business Media, 1984) A.E.E. Shilov, Activation of Saturated Hydrocarbons by Transition Metal Complexes, vol 5 (Springer Science & Business Media, 1984)
80.
go back to reference C.A. Franco-Ariza, J.D. Guzmán-Calle, F.B. Cortés-Correa, Adsorption and catalytic oxidation of asphaltenes in fumed silica nanoparticles: Effect of the surface acidity. Dyna 83, 171–179 (2016) C.A. Franco-Ariza, J.D. Guzmán-Calle, F.B. Cortés-Correa, Adsorption and catalytic oxidation of asphaltenes in fumed silica nanoparticles: Effect of the surface acidity. Dyna 83, 171–179 (2016)
81.
go back to reference F.B. Cortés, T. Montoya, S. Acevedo, N.N. Nassar, C.A. Franco, Adsorption-desorption of n-c7 asphaltenes over micro-and nanoparticles of silica and its impact on wettability alteration. CT&F-Ciencia, Tecnología y Futuro 6, 89–106 (2016) F.B. Cortés, T. Montoya, S. Acevedo, N.N. Nassar, C.A. Franco, Adsorption-desorption of n-c7 asphaltenes over micro-and nanoparticles of silica and its impact on wettability alteration. CT&F-Ciencia, Tecnología y Futuro 6, 89–106 (2016)
82.
go back to reference C.A. Franco, T. Montoya, N.N. Nassar, F.B. Cortés, NiO and PdO supported on Fumed silica nanoparticles for adsorption and catalytic steam gasification of Colombian n-C7 Asphaltenes. Handbook on Oil Production Research 26, 101–145 (2014) C.A. Franco, T. Montoya, N.N. Nassar, F.B. Cortés, NiO and PdO supported on Fumed silica nanoparticles for adsorption and catalytic steam gasification of Colombian n-C7 Asphaltenes. Handbook on Oil Production Research 26, 101–145 (2014)
83.
go back to reference O.E. Medina, J. Gallego, C.M. Olmos, X. Chen, F.B. Cortés, C.A. Franco, Effect of multifunctional nanocatalysts on n-C7 Asphaltene adsorption and subsequent oxidation under high-pressure conditions. Energy & Fuels (2020) 2020/03/29 O.E. Medina, J. Gallego, C.M. Olmos, X. Chen, F.B. Cortés, C.A. Franco, Effect of multifunctional nanocatalysts on n-C7 Asphaltene adsorption and subsequent oxidation under high-pressure conditions. Energy & Fuels (2020) 2020/03/29
84.
go back to reference N.N. Nassar, A. Hassan, G. Luna, P. Pereira-Almao, Kinetics of the catalytic thermo-oxidation of asphaltenes at isothermal conditions on different metal oxide nanoparticle surfaces. Catal. Today 207, 127–132 (2013) N.N. Nassar, A. Hassan, G. Luna, P. Pereira-Almao, Kinetics of the catalytic thermo-oxidation of asphaltenes at isothermal conditions on different metal oxide nanoparticle surfaces. Catal. Today 207, 127–132 (2013)
85.
go back to reference O. Sonibare, R. Egashira, T. Adedosu, Thermo-oxidative reactions of Nigerian oil sand bitumen. Thermochim. Acta 405, 195–205 (2003) O. Sonibare, R. Egashira, T. Adedosu, Thermo-oxidative reactions of Nigerian oil sand bitumen. Thermochim. Acta 405, 195–205 (2003)
86.
go back to reference P. Murugan, N. Mahinpey, T. Mani, Thermal cracking and combustion kinetics of asphaltenes derived from Fosterton oil. Fuel Process. Technol. 90, 1286–1291 (2009) P. Murugan, N. Mahinpey, T. Mani, Thermal cracking and combustion kinetics of asphaltenes derived from Fosterton oil. Fuel Process. Technol. 90, 1286–1291 (2009)
87.
go back to reference P.R. Herrington, Effect of concentration on the rate of reaction of asphaltenes with oxygen. Energy Fuel 18, 1573–1577 (2004) P.R. Herrington, Effect of concentration on the rate of reaction of asphaltenes with oxygen. Energy Fuel 18, 1573–1577 (2004)
88.
go back to reference N. Hosseinpour, Y. Mortazavi, A. Bahramian, L. Khodatars, A.A. Khodadadi, Enhanced pyrolysis and oxidation of asphaltenes adsorbed onto transition metal oxides nanoparticles towards advanced in-situ combustion EOR processes by nanotechnology. Appl. Catal. A Gen. 477, 159–171 (2014) N. Hosseinpour, Y. Mortazavi, A. Bahramian, L. Khodatars, A.A. Khodadadi, Enhanced pyrolysis and oxidation of asphaltenes adsorbed onto transition metal oxides nanoparticles towards advanced in-situ combustion EOR processes by nanotechnology. Appl. Catal. A Gen. 477, 159–171 (2014)
89.
go back to reference P. Hänggi, P. Talkner, M. Borkovec, Reaction-rate theory: Fifty years after Kramers. Rev. Mod. Phys. 62, 251 (1990)MathSciNet P. Hänggi, P. Talkner, M. Borkovec, Reaction-rate theory: Fifty years after Kramers. Rev. Mod. Phys. 62, 251 (1990)MathSciNet
90.
go back to reference B.J. Berne, M. Borkovec, J.E. Straub, Classical and modern methods in reaction rate theory. J. Phys. Chem. 92, 3711–3725 (1988) B.J. Berne, M. Borkovec, J.E. Straub, Classical and modern methods in reaction rate theory. J. Phys. Chem. 92, 3711–3725 (1988)
91.
go back to reference O.E. Medina, J. Gallego, E. Rodriguez, C.A. Franco, F.B. Cortés, Effect of pressure on the oxidation kinetics of Asphaltenes. Energy Fuel (2019) O.E. Medina, J. Gallego, E. Rodriguez, C.A. Franco, F.B. Cortés, Effect of pressure on the oxidation kinetics of Asphaltenes. Energy Fuel (2019)
92.
go back to reference N.M. Sánchez, A. de Klerk, Low-temperature oxidative asphaltenes liquefaction for petrochemicals: Fact or fiction? Appl. Petrochem. Res. 6, 97–106 (2016) N.M. Sánchez, A. de Klerk, Low-temperature oxidative asphaltenes liquefaction for petrochemicals: Fact or fiction? Appl. Petrochem. Res. 6, 97–106 (2016)
93.
go back to reference M. Gonçalves, M. Teixeira, R. Pereira, R. Mercury, J.D.R. Matos, Contribution of thermal analysis for characterization of asphaltenes from Brazilian crude oil. J. Therm. Anal. Calorim. 64, 697–706 (2001) M. Gonçalves, M. Teixeira, R. Pereira, R. Mercury, J.D.R. Matos, Contribution of thermal analysis for characterization of asphaltenes from Brazilian crude oil. J. Therm. Anal. Calorim. 64, 697–706 (2001)
94.
go back to reference D. Kuakpetoon, Y.-J. Wang, Structural characteristics and physicochemical properties of oxidized corn starches varying in amylose content. Carbohydr. Res. 341, 1896–1915 (2006) D. Kuakpetoon, Y.-J. Wang, Structural characteristics and physicochemical properties of oxidized corn starches varying in amylose content. Carbohydr. Res. 341, 1896–1915 (2006)
95.
go back to reference B.E. Ascanius, D.M. Garcia, S.I. Andersen, Analysis of asphaltenes subfractionated by N-methyl-2-pyrrolidone. Energy Fuel 18, 1827–1831 (2004) B.E. Ascanius, D.M. Garcia, S.I. Andersen, Analysis of asphaltenes subfractionated by N-methyl-2-pyrrolidone. Energy Fuel 18, 1827–1831 (2004)
96.
go back to reference Y.B. Bava, M. Geronés, L.J. Giovanetti, L. Andrini, M.F. Erben, Speciation of Sulphur in asphaltenes and resins from Argentinian petroleum by using XANES spectroscopy. Fuel 256, 115952 (2019) Y.B. Bava, M. Geronés, L.J. Giovanetti, L. Andrini, M.F. Erben, Speciation of Sulphur in asphaltenes and resins from Argentinian petroleum by using XANES spectroscopy. Fuel 256, 115952 (2019)
97.
go back to reference F.S. AlHumaidan, A. Hauser, M.S. Rana, H.M. Lababidi, NMR characterization of Asphaltene derived from residual oils and their thermal decomposition. Energy Fuel 31, 3812–3820 (2017) F.S. AlHumaidan, A. Hauser, M.S. Rana, H.M. Lababidi, NMR characterization of Asphaltene derived from residual oils and their thermal decomposition. Energy Fuel 31, 3812–3820 (2017)
98.
go back to reference O.C. Mullins, The modified yen model. Energy Fuel 24, 2179–2207 (2010) O.C. Mullins, The modified yen model. Energy Fuel 24, 2179–2207 (2010)
99.
go back to reference N.T. Nguyen, K.H. Kang, C.W. Lee, G.T. Kim, S. Park, Y.-K. Park, Structure comparison of asphaltene aggregates from hydrothermal and catalytic hydrothermal cracking of C5-isolated asphaltene. Fuel 235, 677–686 (2019) N.T. Nguyen, K.H. Kang, C.W. Lee, G.T. Kim, S. Park, Y.-K. Park, Structure comparison of asphaltene aggregates from hydrothermal and catalytic hydrothermal cracking of C5-isolated asphaltene. Fuel 235, 677–686 (2019)
100.
go back to reference I. Fernandez, G. Frenking, Direct estimate of conjugation and aromaticity in cyclic compounds with the EDA method. Faraday Discuss. 135, 403–421 (2007) I. Fernandez, G. Frenking, Direct estimate of conjugation and aromaticity in cyclic compounds with the EDA method. Faraday Discuss. 135, 403–421 (2007)
101.
go back to reference A. Martínez-Arias, M. Fernández-García, C. Belver, J. Conesa, J. Soria, EPR study on oxygen handling properties of ceria, zirconia and Zr–Ce (1: 1) mixed oxide samples. Catal. Lett. 65, 197–204 (2000) A. Martínez-Arias, M. Fernández-García, C. Belver, J. Conesa, J. Soria, EPR study on oxygen handling properties of ceria, zirconia and Zr–Ce (1: 1) mixed oxide samples. Catal. Lett. 65, 197–204 (2000)
102.
go back to reference O.E. Medina, C. Olmos, S.H. Lopera, F.B. Cortés, C.A. Franco, Nanotechnology applied to thermal enhanced oil recovery processes: A review. Energies 12, 4671 (2019) O.E. Medina, C. Olmos, S.H. Lopera, F.B. Cortés, C.A. Franco, Nanotechnology applied to thermal enhanced oil recovery processes: A review. Energies 12, 4671 (2019)
103.
go back to reference C.M. Olmos, L.E. Chinchilla, E.G. Rodrigues, J.J. Delgado, A.B. Hungría, G. Blanco, et al., Synergistic effect of bimetallic au-Pd supported on ceria-zirconia mixed oxide catalysts for selective oxidation of glycerol. Appl. Catal. B Environ. 197, 222–235 (2016) C.M. Olmos, L.E. Chinchilla, E.G. Rodrigues, J.J. Delgado, A.B. Hungría, G. Blanco, et al., Synergistic effect of bimetallic au-Pd supported on ceria-zirconia mixed oxide catalysts for selective oxidation of glycerol. Appl. Catal. B Environ. 197, 222–235 (2016)
104.
go back to reference U.S. Ozkan, R.B. Watson, The structure–function relationships in selective oxidation reactions over metal oxides. Catal. Today 100, 101–114 (2005) U.S. Ozkan, R.B. Watson, The structure–function relationships in selective oxidation reactions over metal oxides. Catal. Today 100, 101–114 (2005)
105.
go back to reference C.F. Zinola, Carbon monoxide oxidation assisted by interfacial oxygen-water layers. J. Solid State Electrochem. 23, 883–901 (2019) C.F. Zinola, Carbon monoxide oxidation assisted by interfacial oxygen-water layers. J. Solid State Electrochem. 23, 883–901 (2019)
106.
go back to reference O. Senneca, N. Vorobiev, A. Wütscher, F. Cerciello, S. Heuer, C. Wedler, et al., Assessment of combustion rates of coal chars for oxy-combustion applications. Fuel 238, 173–185 (2019) O. Senneca, N. Vorobiev, A. Wütscher, F. Cerciello, S. Heuer, C. Wedler, et al., Assessment of combustion rates of coal chars for oxy-combustion applications. Fuel 238, 173–185 (2019)
107.
go back to reference S. Niksa, G.-S. Liu, R.H. Hurt, Coal conversion submodels for design applications at elevated pressures. Part I. devolatilization and char oxidation. Prog. Energy Combust. Sci. 29, 425–477 (2003) S. Niksa, G.-S. Liu, R.H. Hurt, Coal conversion submodels for design applications at elevated pressures. Part I. devolatilization and char oxidation. Prog. Energy Combust. Sci. 29, 425–477 (2003)
108.
go back to reference A. Zahabi, M.R. Gray, T. Dabros, Kinetics and properties of asphaltene adsorption on surfaces. Energy Fuel 26, 1009–1018 (2012) A. Zahabi, M.R. Gray, T. Dabros, Kinetics and properties of asphaltene adsorption on surfaces. Energy Fuel 26, 1009–1018 (2012)
109.
go back to reference V. Calemma, P. Iwanski, M. Nali, R. Scotti, L. Montanari, Structural characterization of asphaltenes of different origins. Energy Fuel 9, 225–230 (1995) V. Calemma, P. Iwanski, M. Nali, R. Scotti, L. Montanari, Structural characterization of asphaltenes of different origins. Energy Fuel 9, 225–230 (1995)
110.
go back to reference G. Duffy, L. Morpeth, A. Cousins, D. Roberts, J. Edwards, Investigation of the effect of total pressure on performance of the catalytic water–gas shift reaction using simulated coal-derived syngases. Catal. Commun. 11, 272–275 (2009) G. Duffy, L. Morpeth, A. Cousins, D. Roberts, J. Edwards, Investigation of the effect of total pressure on performance of the catalytic water–gas shift reaction using simulated coal-derived syngases. Catal. Commun. 11, 272–275 (2009)
111.
go back to reference G. Chinchen, R. Logan, M. Spencer, Water-gas shift reaction over an iron oxide/chromium oxide catalyst.: II: Stability of activity. Appl. Catal. 12, 89–96 (1984) G. Chinchen, R. Logan, M. Spencer, Water-gas shift reaction over an iron oxide/chromium oxide catalyst.: II: Stability of activity. Appl. Catal. 12, 89–96 (1984)
112.
go back to reference G. Chinchen, R. Logan, M. Spencer, Water-gas shift reaction over an iron oxide/chromium oxide catalyst.: I: Mass transport effects. Appl. Catal. 12, 69–88 (1984) G. Chinchen, R. Logan, M. Spencer, Water-gas shift reaction over an iron oxide/chromium oxide catalyst.: I: Mass transport effects. Appl. Catal. 12, 69–88 (1984)
113.
go back to reference K. Atwood, M. Arnold, E. Appel, Water-gas shift reaction. Effect of pressure on rate over an Iron-oxide-chromium oxide catalyst. Industrial & Engineering Chemistry 42, 1600–1602 (1950) K. Atwood, M. Arnold, E. Appel, Water-gas shift reaction. Effect of pressure on rate over an Iron-oxide-chromium oxide catalyst. Industrial & Engineering Chemistry 42, 1600–1602 (1950)
114.
go back to reference C.A. Bennett, R.S. Kistler, K. Nangia, W. Al-Ghawas, N. Al-Hajji, A. Al-Jemaz, Observation of an isokinetic temperature and compensation effect for high-temperature crude oil fouling. Heat Transfer Engineering 30, 794–804 (2009) C.A. Bennett, R.S. Kistler, K. Nangia, W. Al-Ghawas, N. Al-Hajji, A. Al-Jemaz, Observation of an isokinetic temperature and compensation effect for high-temperature crude oil fouling. Heat Transfer Engineering 30, 794–804 (2009)
115.
go back to reference A.K. Galwey, M. Mortimer, Compensation effects and compensation defects in kinetic and mechanistic interpretations of heterogeneous chemical reactions. Int. J. Chem. Kinet. 38, 464–473 (2006) A.K. Galwey, M. Mortimer, Compensation effects and compensation defects in kinetic and mechanistic interpretations of heterogeneous chemical reactions. Int. J. Chem. Kinet. 38, 464–473 (2006)
116.
go back to reference G. Gottstein, L. Shvindlerman, The compensation effect in thermally activated interface processes. Interface Science 6, 267–278 (1998) G. Gottstein, L. Shvindlerman, The compensation effect in thermally activated interface processes. Interface Science 6, 267–278 (1998)
117.
go back to reference R. Javadli, A. de Klerk, Desulfurization of heavy oil–oxidative desulfurization (ODS) as potential upgrading pathway for oil sands derived bitumen. Energy Fuel 26, 594–602 (2012) R. Javadli, A. de Klerk, Desulfurization of heavy oil–oxidative desulfurization (ODS) as potential upgrading pathway for oil sands derived bitumen. Energy Fuel 26, 594–602 (2012)
118.
go back to reference K. Czajka, A. Kisiela, W. Moroń, W. Ferens, W. Rybak, Pyrolysis of solid fuels: Thermochemical behaviour, kinetics and compensation effect. Fuel Process. Technol. 142, 42–53 (2016) K. Czajka, A. Kisiela, W. Moroń, W. Ferens, W. Rybak, Pyrolysis of solid fuels: Thermochemical behaviour, kinetics and compensation effect. Fuel Process. Technol. 142, 42–53 (2016)
119.
go back to reference B. Wei, P. Zou, X. Zhang, X. Xu, C. Wood, Y. Li, Investigations of structure–property–thermal degradation kinetics alterations of Tahe Asphaltenes caused by low temperature oxidation. Energy Fuel 32, 1506–1514 (2018) B. Wei, P. Zou, X. Zhang, X. Xu, C. Wood, Y. Li, Investigations of structure–property–thermal degradation kinetics alterations of Tahe Asphaltenes caused by low temperature oxidation. Energy Fuel 32, 1506–1514 (2018)
120.
go back to reference W. Zijun, L. Wenjie, Q. Guohe, Q. Jialin, Structural characterization of gudao asphaltene by ruthenium ion catalyzed oxidation. Pet. Sci. Technol. 15, 559–577 (1997) W. Zijun, L. Wenjie, Q. Guohe, Q. Jialin, Structural characterization of gudao asphaltene by ruthenium ion catalyzed oxidation. Pet. Sci. Technol. 15, 559–577 (1997)
121.
go back to reference C. Li, Q. Xin, Spillover and migration of surface species on catalysts, in Proceedings of the 4th International Conference on Spillover, (1997), p. 18 C. Li, Q. Xin, Spillover and migration of surface species on catalysts, in Proceedings of the 4th International Conference on Spillover, (1997), p. 18
122.
go back to reference K. Fujimoto, Catalyst design based on spillover theory, in Studies in Surface Science and Catalysis, vol. 77, (Elsevier, 1993), pp. 9–16 K. Fujimoto, Catalyst design based on spillover theory, in Studies in Surface Science and Catalysis, vol. 77, (Elsevier, 1993), pp. 9–16
123.
go back to reference O.E. Medina, C. Caro-Vélez, J. Gallego, F.B. Cortés, S.H. Lopera, C.A. Franco, Upgrading of extra-heavy crude oils by dispersed injection of NiO–PdO/CeO2±δ Nanocatalyst-based Nanofluids in the steam. Nano 9, 1755 (2019) O.E. Medina, C. Caro-Vélez, J. Gallego, F.B. Cortés, S.H. Lopera, C.A. Franco, Upgrading of extra-heavy crude oils by dispersed injection of NiO–PdO/CeO2±δ Nanocatalyst-based Nanofluids in the steam. Nano 9, 1755 (2019)
124.
go back to reference F. Buciuman, F. Patcas, T. Hahn, A spillover approach to oxidation catalysis over copper and manganese mixed oxides. Chem. Eng. Process. Process Intensif. 38, 563–569 (1999) F. Buciuman, F. Patcas, T. Hahn, A spillover approach to oxidation catalysis over copper and manganese mixed oxides. Chem. Eng. Process. Process Intensif. 38, 563–569 (1999)
125.
go back to reference J.R. Alvarez-Idaboy, N. Mora-Diez, A. Vivier-Bunge, A quantum chemical and classical transition state theory explanation of negative activation energies in OH addition to substituted ethenes. J. Am. Chem. Soc. 122, 3715–3720 (2000) J.R. Alvarez-Idaboy, N. Mora-Diez, A. Vivier-Bunge, A quantum chemical and classical transition state theory explanation of negative activation energies in OH addition to substituted ethenes. J. Am. Chem. Soc. 122, 3715–3720 (2000)
126.
go back to reference W.C. Conner Jr., A general explanation for the compensation effect: The relationship between ΔS‡ and activation energy. J. Catal. 78, 238–246 (1982) W.C. Conner Jr., A general explanation for the compensation effect: The relationship between ΔS‡ and activation energy. J. Catal. 78, 238–246 (1982)
Metadata
Title
Effect of Pressure on Thermo-oxidation and Thermocatalytic Oxidation of n-C7 Asphaltenes
Authors
Oscar E. Medina
Jaime Gallego
Farid B. Cortés
Camilo A. Franco
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-319-12051-5_5