Skip to main content
Top

2021 | OriginalPaper | Chapter

4. Nanoparticles as Catalyst for Asphaltenes and Waste Heavy Hydrocarbons Upgrading

Authors : Abdallah D. Manasrah, Tatiana Montoya, Azfar Hassan, Nashaat N. Nassar

Published in: Nanoparticles: An Emerging Technology for Oil Production and Processing Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Oil, either conventional or unconventional, will continue to be the main source of future nonrenewable energy. The high energy demand worldwide is causing a decline in the conventional crude oil reserves, and thus, new alternative and cost-effective technologies for upgrading and recovery of conventional and unconventional oils are needed to sustain industrial activities. Unfortunately, the presence of high asphaltene content in heavy and extra-heavy crude oils can cause many issues such as high viscosity and low specific gravity that hinder processing, production, and transportation. This chapter presents the use of nanoparticle technology as an emerging potential alternative for enhancing heavy oil upgrading and recovery. Because of their unique properties, nanoparticles have considerable potential applications as adsorbents and catalysts in the heavy oil industry, for both surface and subsurface applications. In subsurface applications, the use of nanoparticles may enhance the upgrading and recovery of heavy oil by significantly increasing its H/C atomic ratio and reducing both viscosity and coke formation. Nanoparticles are also employed as adsorbent/catalysts for separating asphaltenes followed by their catalytic decomposition.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference N. Berkowitz, J.G. Speight, The oil sands of Alberta. Fuel 54(3), 138–149 (1975)CrossRef N. Berkowitz, J.G. Speight, The oil sands of Alberta. Fuel 54(3), 138–149 (1975)CrossRef
2.
go back to reference A. Shah et al., A review of novel techniques for heavy oil and bitumen extraction and upgrading. Energy Environ. Sci. 3(6), 700–714 (2010)CrossRef A. Shah et al., A review of novel techniques for heavy oil and bitumen extraction and upgrading. Energy Environ. Sci. 3(6), 700–714 (2010)CrossRef
3.
go back to reference L.C. Castaneda, J.A. Muñoz, J. Ancheyta, Current situation of emerging technologies for upgrading of heavy oils. Catal. Today 220, 248–273 (2014)CrossRef L.C. Castaneda, J.A. Muñoz, J. Ancheyta, Current situation of emerging technologies for upgrading of heavy oils. Catal. Today 220, 248–273 (2014)CrossRef
4.
go back to reference C. Fan et al., The oxidation of heavy oil: Thermogravimetric analysis and non-isothermal kinetics using the distributed activation energy model. Fuel Process. Technol. 119, 146–150 (2014)CrossRef C. Fan et al., The oxidation of heavy oil: Thermogravimetric analysis and non-isothermal kinetics using the distributed activation energy model. Fuel Process. Technol. 119, 146–150 (2014)CrossRef
5.
go back to reference A. Hassan et al., Development of a support for a NiO catalyst for selective adsorption and post-adsorption catalytic steam gasification of thermally converted asphaltenes. Catal. Today 207, 112–118 (2013)CrossRef A. Hassan et al., Development of a support for a NiO catalyst for selective adsorption and post-adsorption catalytic steam gasification of thermally converted asphaltenes. Catal. Today 207, 112–118 (2013)CrossRef
6.
go back to reference L. Carbognani et al., Selective adsorption of thermal cracked heavy molecules. Energy Fuel 22(3), 1739–1746 (2008)CrossRef L. Carbognani et al., Selective adsorption of thermal cracked heavy molecules. Energy Fuel 22(3), 1739–1746 (2008)CrossRef
8.
go back to reference S. Chavan, H. Kini, R. Ghosal, Process for sulfur reduction from high viscosity petroleum oils S. Chavan, H. Kini, R. Ghosal, Process for sulfur reduction from high viscosity petroleum oils
9.
go back to reference C. Wu et al., Mechanism for reducing the viscosity of extra-heavy oil by aquathermolysis with an amphiphilic catalyst. J. Fuel Chem. Technol. 38(6), 684–690 (2010)CrossRef C. Wu et al., Mechanism for reducing the viscosity of extra-heavy oil by aquathermolysis with an amphiphilic catalyst. J. Fuel Chem. Technol. 38(6), 684–690 (2010)CrossRef
10.
go back to reference J. Ancheyta, Modeling and Simulation of Catalytic Reactors for Petroleum Refining (Wiley, 2011)CrossRef J. Ancheyta, Modeling and Simulation of Catalytic Reactors for Petroleum Refining (Wiley, 2011)CrossRef
11.
go back to reference Y. Zhang et al., Fundamentals of petroleum residue cracking gasification for coproduction of oil and syngas. Ind. Eng. Chem. Res. 51(46), 15032–15040 (2012)CrossRef Y. Zhang et al., Fundamentals of petroleum residue cracking gasification for coproduction of oil and syngas. Ind. Eng. Chem. Res. 51(46), 15032–15040 (2012)CrossRef
12.
go back to reference L. Castañeda, J. Muñoz, J. Ancheyta, Combined process schemes for upgrading of heavy petroleum. Fuel 100, 110–127 (2012)CrossRef L. Castañeda, J. Muñoz, J. Ancheyta, Combined process schemes for upgrading of heavy petroleum. Fuel 100, 110–127 (2012)CrossRef
13.
go back to reference L. Atkins, T. Higgins, C. Barnes, Heavy crude oil: global analysis and outlook to 2030. Hart energy consulting report, 2010 L. Atkins, T. Higgins, C. Barnes, Heavy crude oil: global analysis and outlook to 2030. Hart energy consulting report, 2010
14.
go back to reference O. Omole, M. Olieh, T. Osinowo, Thermal visbreaking of heavy oil from the Nigerian tar sand. Fuel 78(12), 1489–1496 (1999)CrossRef O. Omole, M. Olieh, T. Osinowo, Thermal visbreaking of heavy oil from the Nigerian tar sand. Fuel 78(12), 1489–1496 (1999)CrossRef
15.
go back to reference M. Thomas et al., Visbreaking of Safaniya vacuum residue in the presence of additives. Fuel 68(3), 318–322 (1989)CrossRef M. Thomas et al., Visbreaking of Safaniya vacuum residue in the presence of additives. Fuel 68(3), 318–322 (1989)CrossRef
16.
go back to reference F. Rodriguez-Reinoso et al., Delayed coking: Industrial and laboratory aspects. Carbon 36(1), 105–116 (1998)CrossRef F. Rodriguez-Reinoso et al., Delayed coking: Industrial and laboratory aspects. Carbon 36(1), 105–116 (1998)CrossRef
17.
go back to reference E. Furimsky, Characterization of cokes from fluid/flexi-coking of heavy feeds. Fuel Process. Technol. 67(3), 205–230 (2000)CrossRef E. Furimsky, Characterization of cokes from fluid/flexi-coking of heavy feeds. Fuel Process. Technol. 67(3), 205–230 (2000)CrossRef
18.
go back to reference M. Marafi, A. Stanislaus, M. Absi-Halabi, Heavy oil hydrotreating catalyst rejuvenation by leaching of foulant metals with ferric nitrate-organic acid mixed reagents. Appl. Catal. B Environ. 4(1), 19–27 (1994)CrossRef M. Marafi, A. Stanislaus, M. Absi-Halabi, Heavy oil hydrotreating catalyst rejuvenation by leaching of foulant metals with ferric nitrate-organic acid mixed reagents. Appl. Catal. B Environ. 4(1), 19–27 (1994)CrossRef
19.
go back to reference M. Marafi, A. Stanislaus, Preparation of heavy oil hydrotreating catalyst from spent residue hydroprocessing catalysts. Catal. Today 130(2), 421–428 (2008)CrossRef M. Marafi, A. Stanislaus, Preparation of heavy oil hydrotreating catalyst from spent residue hydroprocessing catalysts. Catal. Today 130(2), 421–428 (2008)CrossRef
20.
go back to reference J. Van Dyk, M. Keyser, M. Coertzen, Syngas production from south African coal sources using Sasol–Lurgi gasifiers. Int. J. Coal Geol. 65(3), 243–253 (2006) J. Van Dyk, M. Keyser, M. Coertzen, Syngas production from south African coal sources using Sasol–Lurgi gasifiers. Int. J. Coal Geol. 65(3), 243–253 (2006)
21.
go back to reference H. Liu et al., Effect of pyrolysis time on the gasification reactivity of char with CO2 at elevated temperatures. Fuel 83(7), 1055–1061 (2004)CrossRef H. Liu et al., Effect of pyrolysis time on the gasification reactivity of char with CO2 at elevated temperatures. Fuel 83(7), 1055–1061 (2004)CrossRef
22.
go back to reference R. Hashemi, N.N. Nassar, P. Pereira Almao, Nanoparticle technology for heavy oil in-situ upgrading and recovery enhancement: Opportunities and challenges. Appl. Energy 133, 374–387 (2014)CrossRef R. Hashemi, N.N. Nassar, P. Pereira Almao, Nanoparticle technology for heavy oil in-situ upgrading and recovery enhancement: Opportunities and challenges. Appl. Energy 133, 374–387 (2014)CrossRef
23.
go back to reference E. Mobil, FLEXICOKING™ conversion technology. [cited 2014] E. Mobil, FLEXICOKING™ conversion technology. [cited 2014]
24.
go back to reference C.E. Baukal Jr., The John Zink Hamworthy Combustion Handbook: Volume 1-Fundamentals (CRC Press, 2012)CrossRef C.E. Baukal Jr., The John Zink Hamworthy Combustion Handbook: Volume 1-Fundamentals (CRC Press, 2012)CrossRef
25.
go back to reference C.A. Franco, N.N. Nassar, T. Montoya, F.B. Cortés, NiO and PdO supported on fumed silica nanoparticles for adsorption and catalytic steam gasification of Colombian c7-asphaltenes, in Handbook on Oil Production Research, ed. by J. Ambrosio, (Nova Science Publishers, Inc, Hauppauge, 2014) C.A. Franco, N.N. Nassar, T. Montoya, F.B. Cortés, NiO and PdO supported on fumed silica nanoparticles for adsorption and catalytic steam gasification of Colombian c7-asphaltenes, in Handbook on Oil Production Research, ed. by J. Ambrosio, (Nova Science Publishers, Inc, Hauppauge, 2014)
26.
go back to reference C.A. Franco et al., Adsorption and subsequent oxidation of Colombian Asphaltenes onto nickel and/or palladium oxide supported on Fumed silica nanoparticles. Energy Fuel 27(12), 7336–7347 (2013)CrossRef C.A. Franco et al., Adsorption and subsequent oxidation of Colombian Asphaltenes onto nickel and/or palladium oxide supported on Fumed silica nanoparticles. Energy Fuel 27(12), 7336–7347 (2013)CrossRef
27.
go back to reference N.N. Nassar et al., Comparative study on thermal cracking of Athabasca bitumen. J. Therm. Anal. Calorim. 114(2), 465–472 (2013)CrossRef N.N. Nassar et al., Comparative study on thermal cracking of Athabasca bitumen. J. Therm. Anal. Calorim. 114(2), 465–472 (2013)CrossRef
28.
go back to reference N.N. Nassar, A. Hassan, P. Pereira-Almao, Metal oxide nanoparticles for asphaltene adsorption and oxidation. Energy Fuel 25(3), 1017–1023 (2011)CrossRef N.N. Nassar, A. Hassan, P. Pereira-Almao, Metal oxide nanoparticles for asphaltene adsorption and oxidation. Energy Fuel 25(3), 1017–1023 (2011)CrossRef
29.
go back to reference N.N. Nassar, A. Hassan, P. Pereira-Almao, Application of nanotechnology for heavy oil upgrading: Catalytic steam gasification/cracking of asphaltenes. Energy Fuel 25(4), 1566–1570 (2011)CrossRef N.N. Nassar, A. Hassan, P. Pereira-Almao, Application of nanotechnology for heavy oil upgrading: Catalytic steam gasification/cracking of asphaltenes. Energy Fuel 25(4), 1566–1570 (2011)CrossRef
30.
go back to reference N.N. Nassar, A. Hassan, P. Pereira-Almao, Thermogravimetric studies on catalytic effect of metal oxide nanoparticles on asphaltene pyrolysis under inert conditions. J. Therm. Anal. Calorim. 110(3), 1327–1332 (2012)CrossRef N.N. Nassar, A. Hassan, P. Pereira-Almao, Thermogravimetric studies on catalytic effect of metal oxide nanoparticles on asphaltene pyrolysis under inert conditions. J. Therm. Anal. Calorim. 110(3), 1327–1332 (2012)CrossRef
31.
go back to reference N.N. Nassar, A. Hassan, G. Vitale, Comparing kinetics and mechanism of adsorption and thermo-oxidative decomposition of Athabasca asphaltenes onto TiO2, ZrO2, and CeO2 nanoparticles. Appl. Catal. A Gen. 484, 161–171 (2014)CrossRef N.N. Nassar, A. Hassan, G. Vitale, Comparing kinetics and mechanism of adsorption and thermo-oxidative decomposition of Athabasca asphaltenes onto TiO2, ZrO2, and CeO2 nanoparticles. Appl. Catal. A Gen. 484, 161–171 (2014)CrossRef
32.
go back to reference F.B. Cortés et al., Sorption of Asphaltenes onto nanoparticles of nickel oxide supported on Nanoparticulated silica gel. Energy Fuel 26(3), 1725–1730 (2012)CrossRef F.B. Cortés et al., Sorption of Asphaltenes onto nanoparticles of nickel oxide supported on Nanoparticulated silica gel. Energy Fuel 26(3), 1725–1730 (2012)CrossRef
33.
go back to reference C. Franco et al., Kinetic and thermodynamic equilibrium of asphaltenes sorption onto nanoparticles of nickel oxide supported on nanoparticulated alumina. Fuel 105(0), 408–414 (2013)CrossRef C. Franco et al., Kinetic and thermodynamic equilibrium of asphaltenes sorption onto nanoparticles of nickel oxide supported on nanoparticulated alumina. Fuel 105(0), 408–414 (2013)CrossRef
34.
go back to reference N.N. Nassar, A. Hassan, P. Pereira-Almao, Clarifying the catalytic role of NiO nanoparticles in the oxidation of asphaltenes. Appl. Catal. A Gen. 462, 116–120 (2013)CrossRef N.N. Nassar, A. Hassan, P. Pereira-Almao, Clarifying the catalytic role of NiO nanoparticles in the oxidation of asphaltenes. Appl. Catal. A Gen. 462, 116–120 (2013)CrossRef
35.
go back to reference N.N. Nassar et al., Iron oxide nanoparticles for rapid adsorption and enhanced catalytic oxidation of thermally cracked asphaltenes. Fuel 95, 257–262 (2012)CrossRef N.N. Nassar et al., Iron oxide nanoparticles for rapid adsorption and enhanced catalytic oxidation of thermally cracked asphaltenes. Fuel 95, 257–262 (2012)CrossRef
36.
go back to reference N.N. Nassar, Asphaltene adsorption onto alumina nanoparticles: Kinetics and thermodynamic studies. Energy Fuel 24(8), 4116–4122 (2010)CrossRef N.N. Nassar, Asphaltene adsorption onto alumina nanoparticles: Kinetics and thermodynamic studies. Energy Fuel 24(8), 4116–4122 (2010)CrossRef
37.
go back to reference N.N. Nassar, A. Hassan, P. Pereira-Almao, Comparative oxidation of adsorbed asphaltenes onto transition metal oxide nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 384(1), 145–149 (2011)CrossRef N.N. Nassar, A. Hassan, P. Pereira-Almao, Comparative oxidation of adsorbed asphaltenes onto transition metal oxide nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 384(1), 145–149 (2011)CrossRef
38.
go back to reference N.N. Nassar et al., Kinetics of the catalytic thermo-oxidation of asphaltenes at isothermal conditions on different metal oxide nanoparticle surfaces. Catal. Today 207, 127–132 (2013)CrossRef N.N. Nassar et al., Kinetics of the catalytic thermo-oxidation of asphaltenes at isothermal conditions on different metal oxide nanoparticle surfaces. Catal. Today 207, 127–132 (2013)CrossRef
39.
go back to reference H. Abbas et al., Adsorption of Algerian Asphaltenes onto synthesized Maghemite Iron oxide nanoparticles. Pet. Chem., 1–9 (2020) H. Abbas et al., Adsorption of Algerian Asphaltenes onto synthesized Maghemite Iron oxide nanoparticles. Pet. Chem., 1–9 (2020)
40.
go back to reference P.S. Wallace, et al., Heavy oil upgrading by the separation and gasification of asphaltenes. In 1998 Gasification technologies conference. 1998 P.S. Wallace, et al., Heavy oil upgrading by the separation and gasification of asphaltenes. In 1998 Gasification technologies conference. 1998
41.
go back to reference A.D. Manasrah, G. Vitale, N.N. Nassar, Catalytic oxy-cracking of petroleum coke on copper silicate for production of humic acids. Appl. Catal. B Environ. 264, 118472 (2020)CrossRef A.D. Manasrah, G. Vitale, N.N. Nassar, Catalytic oxy-cracking of petroleum coke on copper silicate for production of humic acids. Appl. Catal. B Environ. 264, 118472 (2020)CrossRef
42.
go back to reference J.J. Adams, Asphaltene adsorption, a literature review. Energy Fuel 28(5), 2831–2856 (2014)CrossRef J.J. Adams, Asphaltene adsorption, a literature review. Energy Fuel 28(5), 2831–2856 (2014)CrossRef
43.
go back to reference E. Alizadeh-Gheshlaghi et al., Investigation of the catalytic activity of nano-sized CuO, Co3O4 and CuCo2O4 powders on thermal decomposition of ammonium perchlorate. Powder Technol. 217, 330–339 (2012)CrossRef E. Alizadeh-Gheshlaghi et al., Investigation of the catalytic activity of nano-sized CuO, Co3O4 and CuCo2O4 powders on thermal decomposition of ammonium perchlorate. Powder Technol. 217, 330–339 (2012)CrossRef
44.
go back to reference X. Luo et al., Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis 18(4), 319–326 (2006)CrossRef X. Luo et al., Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis 18(4), 319–326 (2006)CrossRef
45.
go back to reference M.K.K. Oo et al., Rapid, sensitive DNT vapor detection with UV-assisted photo-chemically synthesized gold nanoparticle SERS substrates. Analyst 136(13), 2811–2817 (2011)CrossRef M.K.K. Oo et al., Rapid, sensitive DNT vapor detection with UV-assisted photo-chemically synthesized gold nanoparticle SERS substrates. Analyst 136(13), 2811–2817 (2011)CrossRef
46.
go back to reference M. Khoobi et al., Polyethyleneimine-modified superparamagnetic Fe3O4 nanoparticles: An efficient, reusable and water tolerance nanocatalyst. J. Magn. Magn. Mater. 375, 217–226 (2015)CrossRef M. Khoobi et al., Polyethyleneimine-modified superparamagnetic Fe3O4 nanoparticles: An efficient, reusable and water tolerance nanocatalyst. J. Magn. Magn. Mater. 375, 217–226 (2015)CrossRef
47.
go back to reference R. Hashemi, N.N. Nassar, P. Pereira-Almao, Transport behavior of multimetallic ultradispersed nanoparticles in an oil-sands-packed bed column at a high temperature and pressure. Energy Fuel 26(3), 1645–1655 (2012)CrossRef R. Hashemi, N.N. Nassar, P. Pereira-Almao, Transport behavior of multimetallic ultradispersed nanoparticles in an oil-sands-packed bed column at a high temperature and pressure. Energy Fuel 26(3), 1645–1655 (2012)CrossRef
48.
go back to reference A.D. Manasrah et al., Surface modification of carbon nanotubes with copper oxide nanoparticles for heat transfer enhancement of nanofluids. RSC Adv. 8(4), 1791–1802 (2018)CrossRef A.D. Manasrah et al., Surface modification of carbon nanotubes with copper oxide nanoparticles for heat transfer enhancement of nanofluids. RSC Adv. 8(4), 1791–1802 (2018)CrossRef
49.
go back to reference W.-X. Zhang, Nanoscale iron particles for environmental remediation: An overview. J. Nanopart. Res. 5(3–4), 323–332 (2003)CrossRef W.-X. Zhang, Nanoscale iron particles for environmental remediation: An overview. J. Nanopart. Res. 5(3–4), 323–332 (2003)CrossRef
50.
go back to reference M.E. Franke, T.J. Koplin, U. Simon, Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter? Small 2(1), 36–50 (2006)CrossRef M.E. Franke, T.J. Koplin, U. Simon, Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter? Small 2(1), 36–50 (2006)CrossRef
51.
go back to reference N.N. Nassar et al., Effect of oxide support on Ni–Pd bimetallic nanocatalysts for steam gasification of nC 7 asphaltenes. Fuel 156, 110–120 (2015)CrossRef N.N. Nassar et al., Effect of oxide support on Ni–Pd bimetallic nanocatalysts for steam gasification of nC 7 asphaltenes. Fuel 156, 110–120 (2015)CrossRef
52.
go back to reference N.N. Nassar, A. Hassan, G. Vitale, Comparing kinetics and mechanism of adsorption and thermo-oxidative decomposition of Athabasca asphaltenes onto TiO2, ZrO2, and CeO2 nanoparticles. Appl. Catal. A Gen. 484, 161–171 (2014)CrossRef N.N. Nassar, A. Hassan, G. Vitale, Comparing kinetics and mechanism of adsorption and thermo-oxidative decomposition of Athabasca asphaltenes onto TiO2, ZrO2, and CeO2 nanoparticles. Appl. Catal. A Gen. 484, 161–171 (2014)CrossRef
53.
go back to reference A. Hassan et al., Catalytic steam gasification of n-C5 asphaltenes by kaolin-based catalysts in a fixed-bed reactor. Appl. Catal. A Gen. 507, 149–161 (2015)CrossRef A. Hassan et al., Catalytic steam gasification of n-C5 asphaltenes by kaolin-based catalysts in a fixed-bed reactor. Appl. Catal. A Gen. 507, 149–161 (2015)CrossRef
54.
go back to reference R. Syunyaev et al., Adsorption of petroleum asphaltenes onto reservoir rock sands studied by near-infrared (NIR) spectroscopy. Energy Fuel 23(3), 1230–1236 (2009)CrossRef R. Syunyaev et al., Adsorption of petroleum asphaltenes onto reservoir rock sands studied by near-infrared (NIR) spectroscopy. Energy Fuel 23(3), 1230–1236 (2009)CrossRef
55.
go back to reference S. Acevedo et al., Adsorption of asphaltenes at the toluene− silica interface: A kinetic study. Energy Fuel 17(2), 257–261 (2003)CrossRef S. Acevedo et al., Adsorption of asphaltenes at the toluene− silica interface: A kinetic study. Energy Fuel 17(2), 257–261 (2003)CrossRef
56.
go back to reference A. Hassan et al., Catalytic steam gasification of athabasca visbroken residue by NiO–kaolin-based catalysts in a fixed-bed reactor. Energy Fuel 31(7), 7396–7404 (2017)CrossRef A. Hassan et al., Catalytic steam gasification of athabasca visbroken residue by NiO–kaolin-based catalysts in a fixed-bed reactor. Energy Fuel 31(7), 7396–7404 (2017)CrossRef
57.
go back to reference M. Castro et al., Predicting adsorption isotherms of asphaltenes in porous materials. Fluid Phase Equilib. 286(2), 113–119 (2009)CrossRef M. Castro et al., Predicting adsorption isotherms of asphaltenes in porous materials. Fluid Phase Equilib. 286(2), 113–119 (2009)CrossRef
58.
go back to reference O.P. Strausz, P.A. Peng, J. Murgich, About the colloidal nature of asphaltenes and the MW of covalent monomeric units. Energy Fuel 16(4), 809–822 (2002)CrossRef O.P. Strausz, P.A. Peng, J. Murgich, About the colloidal nature of asphaltenes and the MW of covalent monomeric units. Energy Fuel 16(4), 809–822 (2002)CrossRef
59.
go back to reference C. Drummond, J. Israelachvili, Fundamental studies of crude oil–surface water interactions and its relationship to reservoir wettability. J. Pet. Sci. Eng. 45(1–2), 61–81 (2004)CrossRef C. Drummond, J. Israelachvili, Fundamental studies of crude oil–surface water interactions and its relationship to reservoir wettability. J. Pet. Sci. Eng. 45(1–2), 61–81 (2004)CrossRef
60.
go back to reference H. Alboudwarej et al., Adsorption of asphaltenes on metals. Ind. Eng. Chem. Res. 44(15), 5585–5592 (2005)CrossRef H. Alboudwarej et al., Adsorption of asphaltenes on metals. Ind. Eng. Chem. Res. 44(15), 5585–5592 (2005)CrossRef
61.
go back to reference D.M. Sztukowski et al., Asphaltene self-association and water-in-hydrocarbon emulsions. J. Colloid Interface Sci. 265(1), 179–186 (2003)CrossRef D.M. Sztukowski et al., Asphaltene self-association and water-in-hydrocarbon emulsions. J. Colloid Interface Sci. 265(1), 179–186 (2003)CrossRef
62.
go back to reference M.S. Akhlaq et al., Adsorption of crude oil colloids on glass plates: Measurements of contact angles and the factors influencing glass surface properties. Colloids Surf. A Physicochem. Eng. Asp. 126(1), 25–32 (1997)CrossRef M.S. Akhlaq et al., Adsorption of crude oil colloids on glass plates: Measurements of contact angles and the factors influencing glass surface properties. Colloids Surf. A Physicochem. Eng. Asp. 126(1), 25–32 (1997)CrossRef
63.
go back to reference K.R. Dean, J.L. McATEE Jr., Asphaltene adsorption on clay. Appl. Clay Sci. 1(4), 313–319 (1986)CrossRef K.R. Dean, J.L. McATEE Jr., Asphaltene adsorption on clay. Appl. Clay Sci. 1(4), 313–319 (1986)CrossRef
64.
go back to reference N.N. Nassar, A. Hassan, P. Pereira-Almao, Effect of surface acidity and basicity of aluminas on asphaltene adsorption and oxidation. J. Colloid Interface Sci. 360(1), 233–238 (2011)CrossRef N.N. Nassar, A. Hassan, P. Pereira-Almao, Effect of surface acidity and basicity of aluminas on asphaltene adsorption and oxidation. J. Colloid Interface Sci. 360(1), 233–238 (2011)CrossRef
65.
go back to reference N.N. Nassar, A. Hassan, P. Pereira-Almao, Effect of the particle size on asphaltene adsorption and catalytic oxidation onto alumina particles. Energy Fuel 25(9), 3961–3965 (2011)CrossRef N.N. Nassar, A. Hassan, P. Pereira-Almao, Effect of the particle size on asphaltene adsorption and catalytic oxidation onto alumina particles. Energy Fuel 25(9), 3961–3965 (2011)CrossRef
66.
go back to reference C.A. Franco et al., Adsorption and subsequent oxidation of colombian asphaltenes onto nickel and/or palladium oxide supported on fumed silica nanoparticles. Energy Fuel 27(12), 7336–7347 (2013)CrossRef C.A. Franco et al., Adsorption and subsequent oxidation of colombian asphaltenes onto nickel and/or palladium oxide supported on fumed silica nanoparticles. Energy Fuel 27(12), 7336–7347 (2013)CrossRef
67.
go back to reference F. Lopez-Linares et al., Adsorption of Athabasca vacuum residues and their visbroken products over macroporous solids: Influence of their molecular characteristics. Energy Fuel 25(9), 4049–4054 (2011)CrossRef F. Lopez-Linares et al., Adsorption of Athabasca vacuum residues and their visbroken products over macroporous solids: Influence of their molecular characteristics. Energy Fuel 25(9), 4049–4054 (2011)CrossRef
68.
go back to reference T. Montoya, et al., Size effects of NiO nanoparticles on the competitive adsorption of quinolin-65 and violanthrone-79: Implications for oil upgrading and recovery. ACS Applied Nano Materials, 2020 T. Montoya, et al., Size effects of NiO nanoparticles on the competitive adsorption of quinolin-65 and violanthrone-79: Implications for oil upgrading and recovery. ACS Applied Nano Materials, 2020
69.
go back to reference C.A. Franco et al., Influence of Asphaltene aggregation on the adsorption and catalytic behavior of nanoparticles. Energy Fuel 29(3), 1610–1621 (2015)CrossRef C.A. Franco et al., Influence of Asphaltene aggregation on the adsorption and catalytic behavior of nanoparticles. Energy Fuel 29(3), 1610–1621 (2015)CrossRef
70.
go back to reference P. Mars, D.W. Van Krevelen, Oxidations carried out by means of vanadium oxide catalysts. Chem. Eng. Sci. 3, 41–59 (1954)CrossRef P. Mars, D.W. Van Krevelen, Oxidations carried out by means of vanadium oxide catalysts. Chem. Eng. Sci. 3, 41–59 (1954)CrossRef
71.
go back to reference N. Hosseinpour et al., Asphaltene adsorption onto acidic/basic metal oxide nanoparticles toward in situ upgrading of reservoir oils by nanotechnology. Langmuir 29(46), 14135–14146 (2013)CrossRef N. Hosseinpour et al., Asphaltene adsorption onto acidic/basic metal oxide nanoparticles toward in situ upgrading of reservoir oils by nanotechnology. Langmuir 29(46), 14135–14146 (2013)CrossRef
72.
go back to reference N. Hosseinpour et al., Enhanced pyrolysis and oxidation of asphaltenes adsorbed onto transition metal oxides nanoparticles towards advanced in-situ combustion EOR processes by nanotechnology. Appl. Catal. A Gen. 477, 159–171 (2014)CrossRef N. Hosseinpour et al., Enhanced pyrolysis and oxidation of asphaltenes adsorbed onto transition metal oxides nanoparticles towards advanced in-situ combustion EOR processes by nanotechnology. Appl. Catal. A Gen. 477, 159–171 (2014)CrossRef
73.
go back to reference C.A. Franco, F.B. Cortés, N.N. Nassar, Adsorptive removal of oil spill from oil-in-fresh water emulsions by hydrophobic alumina nanoparticles functionalized with petroleum vacuum residue. J. Colloid Interface Sci. 425, 168–177 (2014)CrossRef C.A. Franco, F.B. Cortés, N.N. Nassar, Adsorptive removal of oil spill from oil-in-fresh water emulsions by hydrophobic alumina nanoparticles functionalized with petroleum vacuum residue. J. Colloid Interface Sci. 425, 168–177 (2014)CrossRef
74.
go back to reference C.A. Franco et al., Nanoparticles for inhibition of asphaltenes damage: Adsorption study and displacement test on porous media. Energy Fuel 27(6), 2899–2907 (2013)CrossRef C.A. Franco et al., Nanoparticles for inhibition of asphaltenes damage: Adsorption study and displacement test on porous media. Energy Fuel 27(6), 2899–2907 (2013)CrossRef
75.
go back to reference B. Marlow et al., Colloidal stabilization of clays by asphaltenes in hydrocarbon media. Colloids Surf. 24(4), 283–297 (1987)CrossRef B. Marlow et al., Colloidal stabilization of clays by asphaltenes in hydrocarbon media. Colloids Surf. 24(4), 283–297 (1987)CrossRef
76.
go back to reference S.F. Alkafeef, M.K. Algharaib, A.F. Alajmi, Hydrodynamic thickness of petroleum oil adsorbed layers in the pores of reservoir rocks. J. Colloid Interface Sci. 298(1), 13–19 (2006)CrossRef S.F. Alkafeef, M.K. Algharaib, A.F. Alajmi, Hydrodynamic thickness of petroleum oil adsorbed layers in the pores of reservoir rocks. J. Colloid Interface Sci. 298(1), 13–19 (2006)CrossRef
77.
go back to reference P. Ekholm et al., A quartz crystal microbalance study of the adsorption of asphaltenes and resins onto a hydrophilic surface. J. Colloid Interface Sci. 247(2), 342–350 (2002)CrossRef P. Ekholm et al., A quartz crystal microbalance study of the adsorption of asphaltenes and resins onto a hydrophilic surface. J. Colloid Interface Sci. 247(2), 342–350 (2002)CrossRef
78.
go back to reference A.W. Coats, J. Redfern, Kinetic parameters from thermogravimetric data. Nature 201(4914), 68–69 (1964)CrossRef A.W. Coats, J. Redfern, Kinetic parameters from thermogravimetric data. Nature 201(4914), 68–69 (1964)CrossRef
79.
go back to reference T. Ozawa, A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn. 38(11), 1881–1886 (1965)CrossRef T. Ozawa, A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn. 38(11), 1881–1886 (1965)CrossRef
80.
go back to reference J.H. Flynn, L.A. Wall, A quick, direct method for the determination of activation energy from thermogravimetric data. Journal of Polymer Science Part B: Polymer Letters 4(5), 323–328 (1966)CrossRef J.H. Flynn, L.A. Wall, A quick, direct method for the determination of activation energy from thermogravimetric data. Journal of Polymer Science Part B: Polymer Letters 4(5), 323–328 (1966)CrossRef
81.
go back to reference C.D. Doyle, Kinetic analysis of thermogravimetric data. J. Appl. Polym. Sci. 5(15), 285–292 (1961)CrossRef C.D. Doyle, Kinetic analysis of thermogravimetric data. J. Appl. Polym. Sci. 5(15), 285–292 (1961)CrossRef
82.
go back to reference C.D. Doyle, Series approximations to the equation of thermogravimetric data. Nature 207(4994), 290–291 (1965)CrossRef C.D. Doyle, Series approximations to the equation of thermogravimetric data. Nature 207(4994), 290–291 (1965)CrossRef
83.
go back to reference H.E. Kissinger, Reaction kinetics in differential thermal analysis. Anal. Chem. 29(11), 1702–1706 (1957)CrossRef H.E. Kissinger, Reaction kinetics in differential thermal analysis. Anal. Chem. 29(11), 1702–1706 (1957)CrossRef
84.
go back to reference T. Akahira, T. Sunose, Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol) 16(1971), 22–31 (1971) T. Akahira, T. Sunose, Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol) 16(1971), 22–31 (1971)
85.
go back to reference S. Vyazovkin, Modification of the integral isoconversional method to account for variation in the activation energy. J. Comput. Chem. 22(2), 178–183 (2001)CrossRef S. Vyazovkin, Modification of the integral isoconversional method to account for variation in the activation energy. J. Comput. Chem. 22(2), 178–183 (2001)CrossRef
86.
go back to reference T. Montoya et al., Kinetics and mechanisms of the catalytic thermal cracking of asphaltenes adsorbed on supported nanoparticles. Pet. Sci. 13(3), 561–571 (2016)CrossRef T. Montoya et al., Kinetics and mechanisms of the catalytic thermal cracking of asphaltenes adsorbed on supported nanoparticles. Pet. Sci. 13(3), 561–571 (2016)CrossRef
87.
go back to reference A. Amrollahi Biyouki, N. Hosseinpour, N.N. Nassar, Pyrolysis and oxidation of Asphaltene-born coke-like residue formed onto in situ prepared NiO nanoparticles toward advanced in situ combustion enhanced oil recovery processes. Energy Fuel 32(4), 5033–5044 (2018)CrossRef A. Amrollahi Biyouki, N. Hosseinpour, N.N. Nassar, Pyrolysis and oxidation of Asphaltene-born coke-like residue formed onto in situ prepared NiO nanoparticles toward advanced in situ combustion enhanced oil recovery processes. Energy Fuel 32(4), 5033–5044 (2018)CrossRef
88.
go back to reference Manasrah, A.D., Conversion of Petroleum Coke into Valuable Products Using Catalytic and Non-Catalytic Oxy-Cracking Reaction. 2018 Manasrah, A.D., Conversion of Petroleum Coke into Valuable Products Using Catalytic and Non-Catalytic Oxy-Cracking Reaction. 2018
89.
go back to reference C. Sosa, Adsorption of heavy hydrocarbons for the purpose of hydrogen production. 2007, MSc Thesis, University of Calgary, Calgary, AB, Canada C. Sosa, Adsorption of heavy hydrocarbons for the purpose of hydrogen production. 2007, MSc Thesis, University of Calgary, Calgary, AB, Canada
90.
go back to reference R.J. Lang, R.C. Neavel, Behaviour of calcium as a steam gasification catalyst. Fuel 61(7), 620–626 (1982)CrossRef R.J. Lang, R.C. Neavel, Behaviour of calcium as a steam gasification catalyst. Fuel 61(7), 620–626 (1982)CrossRef
91.
go back to reference Y. Wu et al., Monodispersed Pd− Ni nanoparticles: Composition control synthesis and catalytic properties in the Miyaura− Suzuki reaction. Inorg. Chem. 50(6), 2046–2048 (2011)CrossRef Y. Wu et al., Monodispersed Pd− Ni nanoparticles: Composition control synthesis and catalytic properties in the Miyaura− Suzuki reaction. Inorg. Chem. 50(6), 2046–2048 (2011)CrossRef
Metadata
Title
Nanoparticles as Catalyst for Asphaltenes and Waste Heavy Hydrocarbons Upgrading
Authors
Abdallah D. Manasrah
Tatiana Montoya
Azfar Hassan
Nashaat N. Nassar
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-319-12051-5_4