Skip to main content
Top
Published in: Acta Mechanica 10/2020

04-07-2020 | Original Paper

Effect of Stone–Wales defects on the mechanical behavior of boron nitride nanotubes

Authors: Vijay Choyal, S. I. Kundalwal

Published in: Acta Mechanica | Issue 10/2020

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The transversely isotropic response of pristine as well as defective boron nitride nanotubes (BNNTs) containing Stone–Wales (SW) defects was comprehensively studied via molecular dynamic simulations with a three-body Tersoff force field. The elastic properties and the failure behavior of BNNTs were studied under the transversely isotropic loading conditions, namely uniaxial tension, twisting moment, in-plane shear and in-plane biaxial tension. The effect of chirality, diameter and SW defect density was taken into consideration. The failure mechanism of BNNTs under each loading condition was explained in detail. Our study reveals that the elastic moduli of zigzag BNNTs are higher than for armchair tubes and decrease as the diameter of the tube increases. The effect of SW defects is found to be higher on the elastic properties of smaller diameter BNNTs than for larger diameter tubes, regardless of chirality. The higher defect density reduces the axial Young’s modulus, shear, plane strain bulk and in-plane shear moduli by 11%, 18%, 9% and 7%, respectively. The SW defects affect the (1) longitudinal shear moduli of BNNTs more profoundly irrespective of chirality and (2) the mechanical behavior of zigzag BNNTs stronger compared to armchair ones. It is also found that the mechanical properties of BNNTs are functions of chirality and diameter, especially for small diameter tubes.
Literature
1.
go back to reference Rubio, A., Corkill, J.L., Cohen, M.L.: Theory of graphitic boron nitride nanotubes. Phys. Rev. B. 49, 5081–5084 (1994) Rubio, A., Corkill, J.L., Cohen, M.L.: Theory of graphitic boron nitride nanotubes. Phys. Rev. B. 49, 5081–5084 (1994)
2.
go back to reference Chen, Y., Zou, J., Campbell, S.J., Caer, G.Le: Boron nitride nanotubes: pronounced resistance to oxidation. Appl. Phys. Lett. 84, 2430–2432 (2004) Chen, Y., Zou, J., Campbell, S.J., Caer, G.Le: Boron nitride nanotubes: pronounced resistance to oxidation. Appl. Phys. Lett. 84, 2430–2432 (2004)
3.
go back to reference Blase, X., Rubio, A., Louie, S.G., Cohen, M.L.: Stability and band gap constancy of boron nitride nanotubes. EPL 28, 335–340 (1994) Blase, X., Rubio, A., Louie, S.G., Cohen, M.L.: Stability and band gap constancy of boron nitride nanotubes. EPL 28, 335–340 (1994)
4.
go back to reference Choyal, V., Choyal, V.K., Kundalwal, S.I.: Effect of atom vacancies on elastic and electronic properties of transversely isotropic boron nitride nanotubes: a comprehensive computational study. Comput. Mater. Sci. 156, 332–345 (2019) Choyal, V., Choyal, V.K., Kundalwal, S.I.: Effect of atom vacancies on elastic and electronic properties of transversely isotropic boron nitride nanotubes: a comprehensive computational study. Comput. Mater. Sci. 156, 332–345 (2019)
5.
go back to reference Verma, V., Jindal, V.K., Dharamvir, K.: Elastic moduli of a boron nitride nanotube. Nanotechnology 18, 435711 (2007) Verma, V., Jindal, V.K., Dharamvir, K.: Elastic moduli of a boron nitride nanotube. Nanotechnology 18, 435711 (2007)
6.
go back to reference Mortazavi, B., Rémond, Y.: Investigation of tensile response and thermal conductivity of boron-nitride nanosheets using molecular dynamics simulations. Phys. E Low Dimens. Syst. Nanostruct. 44, 1846–1852 (2012) Mortazavi, B., Rémond, Y.: Investigation of tensile response and thermal conductivity of boron-nitride nanosheets using molecular dynamics simulations. Phys. E Low Dimens. Syst. Nanostruct. 44, 1846–1852 (2012)
7.
go back to reference Alian, A.R., Kundalwal, S.I., Meguid, S.A.: Multiscale modeling of carbon nanotube epoxy composites. Polymer (Guildf) 70, 149–160 (2015) Alian, A.R., Kundalwal, S.I., Meguid, S.A.: Multiscale modeling of carbon nanotube epoxy composites. Polymer (Guildf) 70, 149–160 (2015)
8.
go back to reference Qi, J., Qian, X., Qi, L., Feng, J., Shi, D., Li, J.: Strain-engineering of band gaps in piezoelectric boron nitride nanoribbons. Nano Lett. 12, 1224–1228 (2012) Qi, J., Qian, X., Qi, L., Feng, J., Shi, D., Li, J.: Strain-engineering of band gaps in piezoelectric boron nitride nanoribbons. Nano Lett. 12, 1224–1228 (2012)
9.
go back to reference Zobelli, A., Ewels, C.P., Gloter, A., Seifert, G., Stephan, O., Csillag, S., Colliex, C.: Defective structure of BN nanotubes: from single vacancies to dislocation lines. Nano Lett. 6, 1955–1960 (2006) Zobelli, A., Ewels, C.P., Gloter, A., Seifert, G., Stephan, O., Csillag, S., Colliex, C.: Defective structure of BN nanotubes: from single vacancies to dislocation lines. Nano Lett. 6, 1955–1960 (2006)
10.
go back to reference Dumitrica, T., Yakobson, B.I.: Rate theory of yield in boron nitride nanotubes. Phys. Rev. B Condens. Matter Mater. Phys. 72, 1–5 (2005) Dumitrica, T., Yakobson, B.I.: Rate theory of yield in boron nitride nanotubes. Phys. Rev. B Condens. Matter Mater. Phys. 72, 1–5 (2005)
11.
go back to reference Schmidt, T.M., Baierle, R.J., Piquini, P., Fazzio, A.: Theoretical study of native defects in BN nanotubes. Phys. Rev. B 67, 1–4 (2003) Schmidt, T.M., Baierle, R.J., Piquini, P., Fazzio, A.: Theoretical study of native defects in BN nanotubes. Phys. Rev. B 67, 1–4 (2003)
12.
go back to reference Song, J., Jiang, H., Wu, J., Huang, Y., Hwang, K.C.: Stone–Wales transformation in boron nitride nanotubes. Scr. Mater. 57, 571–574 (2007) Song, J., Jiang, H., Wu, J., Huang, Y., Hwang, K.C.: Stone–Wales transformation in boron nitride nanotubes. Scr. Mater. 57, 571–574 (2007)
13.
go back to reference Tian, Y., Xu, B., Yu, D., Ma, Y., Wang, Y., Jiang, Y., Hu, W., Tang, C., Gao, Y., Luo, K., Zhao, Z., Wang, L.M., Wen, B., He, J., Liu, Z.: Ultrahard nanotwinned cubic boron nitride. Nature 493, 385–388 (2013) Tian, Y., Xu, B., Yu, D., Ma, Y., Wang, Y., Jiang, Y., Hu, W., Tang, C., Gao, Y., Luo, K., Zhao, Z., Wang, L.M., Wen, B., He, J., Liu, Z.: Ultrahard nanotwinned cubic boron nitride. Nature 493, 385–388 (2013)
14.
go back to reference Huang, Q., Yu, D., Xu, B., Hu, W., Ma, Y., Wang, Y., Zhao, Z., Wen, B., He, J., Liu, Z., Tian, Y.: Nanotwinned diamond with unprecedented hardness and stability. Nature 510, 250–253 (2014) Huang, Q., Yu, D., Xu, B., Hu, W., Ma, Y., Wang, Y., Zhao, Z., Wen, B., He, J., Liu, Z., Tian, Y.: Nanotwinned diamond with unprecedented hardness and stability. Nature 510, 250–253 (2014)
15.
go back to reference Kundalwal, S.I., Meguid, S.A., Weng, G.J.: Strain gradient polarization in graphene. Carbon N. Y. 117, 462–472 (2017) Kundalwal, S.I., Meguid, S.A., Weng, G.J.: Strain gradient polarization in graphene. Carbon N. Y. 117, 462–472 (2017)
16.
go back to reference Parvaneh, V., Shariati, M.: Effect of defects and loading on prediction of Young’s modulus of SWCNTs. Acta Mech. 216, 281–289 (2011)MATH Parvaneh, V., Shariati, M.: Effect of defects and loading on prediction of Young’s modulus of SWCNTs. Acta Mech. 216, 281–289 (2011)MATH
17.
go back to reference Kundalwal, S.I., Choyal, V.: Transversely isotropic elastic properties of carbon nanotubes containing vacancy defects using MD. Acta Mech. 229, 2571–2584 (2018) Kundalwal, S.I., Choyal, V.: Transversely isotropic elastic properties of carbon nanotubes containing vacancy defects using MD. Acta Mech. 229, 2571–2584 (2018)
18.
go back to reference Kothari, R., Kundalwal, S.I., Sahu, S.K.: Transversely isotropic thermal properties of carbon nanotubes containing vacancies. Acta Mech. 229, 2787–2800 (2018) Kothari, R., Kundalwal, S.I., Sahu, S.K.: Transversely isotropic thermal properties of carbon nanotubes containing vacancies. Acta Mech. 229, 2787–2800 (2018)
20.
go back to reference Song, X., Hu, J., Zeng, H.: Two-dimensional semiconductors: recent progress and future perspectives. J. Mater. Chem. C 1, 2952–2969 (2013) Song, X., Hu, J., Zeng, H.: Two-dimensional semiconductors: recent progress and future perspectives. J. Mater. Chem. C 1, 2952–2969 (2013)
21.
go back to reference Wu, X., Yang, J., Hou, J.G., Zhu, Q.: Defects-enhanced dissociation of \(\text{ H}_{2}\) on boron nitride nanotubes. J. Chem. Phys. 124, 0–5 (2006) Wu, X., Yang, J., Hou, J.G., Zhu, Q.: Defects-enhanced dissociation of \(\text{ H}_{2}\) on boron nitride nanotubes. J. Chem. Phys. 124, 0–5 (2006)
22.
go back to reference Li, Y., Zhou, Z., Golberg, D., Bando, Y., Rague, P.Von: Stone–Wales defects in single-walled boron nitride nanotubes : formation energies, electronic structures, and reactivity. J. Phys. Chem. C 112, 1365–1370 (2008) Li, Y., Zhou, Z., Golberg, D., Bando, Y., Rague, P.Von: Stone–Wales defects in single-walled boron nitride nanotubes : formation energies, electronic structures, and reactivity. J. Phys. Chem. C 112, 1365–1370 (2008)
23.
go back to reference Lehtinen, O., Dumur, E., Kotakoski, J., Krasheninnikov, A.V., Nordlund, K., Keinonen, J.: Production of defects in hexagonal boron nitride monolayer under ion irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 269, 1327–1331 (2011) Lehtinen, O., Dumur, E., Kotakoski, J., Krasheninnikov, A.V., Nordlund, K., Keinonen, J.: Production of defects in hexagonal boron nitride monolayer under ion irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 269, 1327–1331 (2011)
24.
go back to reference Griebel, M., Hamaekers, J., Heber, F.: A molecular dynamics study on the impact of defects and functionalization on the Young modulus of boron-nitride nanotubes. Comput. Mater. Sci. 45, 1097–1103 (2009) Griebel, M., Hamaekers, J., Heber, F.: A molecular dynamics study on the impact of defects and functionalization on the Young modulus of boron-nitride nanotubes. Comput. Mater. Sci. 45, 1097–1103 (2009)
25.
go back to reference Ebrahimi-Nejad, S., Shokuhfar, A., Hosseini-Sadegh, A., Zare-Shahabadi, A.: Effects of structural defects on the compressive buckling of boron nitride nanotubes. Phys. E Low Dimens. Syst. Nanostruct. 48, 53–60 (2013) Ebrahimi-Nejad, S., Shokuhfar, A., Hosseini-Sadegh, A., Zare-Shahabadi, A.: Effects of structural defects on the compressive buckling of boron nitride nanotubes. Phys. E Low Dimens. Syst. Nanostruct. 48, 53–60 (2013)
26.
go back to reference Sarma, J.V.N., Group, M., Chowdhury, R., Jayaganthan, R., Scarpa, F.: Atomistic studies on tensile mechanics of BN nanotubes in the presence of defects. Int J Nanosci 13, 1–9 (2014) Sarma, J.V.N., Group, M., Chowdhury, R., Jayaganthan, R., Scarpa, F.: Atomistic studies on tensile mechanics of BN nanotubes in the presence of defects. Int J Nanosci 13, 1–9 (2014)
27.
go back to reference Anoop Krishnan, N.M., Ghosh, D.: Defect induced plasticity and failure mechanism of boron nitride nanotubes under tension. J. Appl. Phys. 116, 044313 (2014) Anoop Krishnan, N.M., Ghosh, D.: Defect induced plasticity and failure mechanism of boron nitride nanotubes under tension. J. Appl. Phys. 116, 044313 (2014)
28.
go back to reference Roohi, H., Jahantab, M., Yakta, M.: Effect of the Stone–Wales (SW) defect on the response of BNNT to axial tension and compression: a quantum chemical study. Struct. Chem. 26, 11–22 (2015) Roohi, H., Jahantab, M., Yakta, M.: Effect of the Stone–Wales (SW) defect on the response of BNNT to axial tension and compression: a quantum chemical study. Struct. Chem. 26, 11–22 (2015)
29.
go back to reference Zeighampour, H., Tadi Beni, Y.: Buckling analysis of boron nitride nanotube with and without defect using molecular dynamic simulation. Mol. Simul. 46, 1–10 (2019) Zeighampour, H., Tadi Beni, Y.: Buckling analysis of boron nitride nanotube with and without defect using molecular dynamic simulation. Mol. Simul. 46, 1–10 (2019)
30.
go back to reference Aliofkhazraei, M., Ali, N., Milne, W.I., William, I., Ozkan, C.S., Mitura, S., Gervasoni, J.L.: Graphene Science Handbook. Mechanical and Chemical Properties, vol. 297. CRC Press, Boca Raton (2016) Aliofkhazraei, M., Ali, N., Milne, W.I., William, I., Ozkan, C.S., Mitura, S., Gervasoni, J.L.: Graphene Science Handbook. Mechanical and Chemical Properties, vol. 297. CRC Press, Boca Raton (2016)
31.
go back to reference Azevedo, S., Rosas, A., MacHado, M., Kaschny, J.R., Chacham, H.: Effects of deformation on the electronic properties of B-C-N nanotubes. J. Solid State Chem. 197, 254–260 (2013) Azevedo, S., Rosas, A., MacHado, M., Kaschny, J.R., Chacham, H.: Effects of deformation on the electronic properties of B-C-N nanotubes. J. Solid State Chem. 197, 254–260 (2013)
32.
go back to reference Kudin, K.N., Scuseria, G.E., Yakobson, B.I.: BN, and C nanoshell elasticity from ab initio computations. Phys. Rev. B Condens. Matter Mater. Phys. 64, 1–10 (2001) Kudin, K.N., Scuseria, G.E., Yakobson, B.I.: BN, and C nanoshell elasticity from ab initio computations. Phys. Rev. B Condens. Matter Mater. Phys. 64, 1–10 (2001)
33.
go back to reference Bettinger, H.F., Dumitrică, T., Scuseria, G.E., Yakobson, B.I.: Mechanically induced defects and strength of BN nanotubes. Phys. Rev. B Condens. Matter Mater. Phys. 65, 1–4 (2002) Bettinger, H.F., Dumitrică, T., Scuseria, G.E., Yakobson, B.I.: Mechanically induced defects and strength of BN nanotubes. Phys. Rev. B Condens. Matter Mater. Phys. 65, 1–4 (2002)
34.
go back to reference Song, J., Wu, J., Huang, Y., Hwang, K.C.: Continuum modeling of boron nitride nanotubes. Nanotechnology 19, 445705 (2008) Song, J., Wu, J., Huang, Y., Hwang, K.C.: Continuum modeling of boron nitride nanotubes. Nanotechnology 19, 445705 (2008)
35.
go back to reference Ansari, R., Mirnezhad, M., Sahmani, S.: Prediction of chirality- and size-dependent elastic properties of single-walled boron nitride nanotubes based on an accurate molecular mechanics model. Superlattices Microstruct. 80, 196–205 (2015) Ansari, R., Mirnezhad, M., Sahmani, S.: Prediction of chirality- and size-dependent elastic properties of single-walled boron nitride nanotubes based on an accurate molecular mechanics model. Superlattices Microstruct. 80, 196–205 (2015)
36.
go back to reference Li, C., Chou, T.-W.: Static and dynamic properties of single-walled boron nitride nanotubes. J. Nanosci. Nanotechnol. 6, 54–60 (2006) Li, C., Chou, T.-W.: Static and dynamic properties of single-walled boron nitride nanotubes. J. Nanosci. Nanotechnol. 6, 54–60 (2006)
37.
go back to reference Santosh, M., Maiti, P., Sood, A.K.: Elastic properties of boron nitride nanotubes and their comparison with carbon nanotubes. J. Nanosci. Nanotechnol. 9, 5425–5430 (2009) Santosh, M., Maiti, P., Sood, A.K.: Elastic properties of boron nitride nanotubes and their comparison with carbon nanotubes. J. Nanosci. Nanotechnol. 9, 5425–5430 (2009)
38.
go back to reference Choyal, V., Choyal, V.K., Kundalwal, S.I.: Transversely isotropic elastic properties of vacancy defected boron nitride nanotubes using molecular dynamics simulations. In: 2018 IEEE 13th Nanotechnology Materials and Devices Conference, pp. 1–4 (2018) Choyal, V., Choyal, V.K., Kundalwal, S.I.: Transversely isotropic elastic properties of vacancy defected boron nitride nanotubes using molecular dynamics simulations. In: 2018 IEEE 13th Nanotechnology Materials and Devices Conference, pp. 1–4 (2018)
39.
go back to reference Li, L., Chen, Y., Stachurski, Z.H.: Progress in natural science: materials international boron nitride nanotube reinforced polyurethane composites. Prog. Nat. Sci. Mater. Int. 23, 170–173 (2013) Li, L., Chen, Y., Stachurski, Z.H.: Progress in natural science: materials international boron nitride nanotube reinforced polyurethane composites. Prog. Nat. Sci. Mater. Int. 23, 170–173 (2013)
40.
go back to reference Trivedi, S., Sharma, S.C., Harsha, S.P.: Evaluations of young’ s modulus of boron nitride nanotube reinforced nano-composites. Procedia Mater. Sci. 6, 1899–1905 (2014) Trivedi, S., Sharma, S.C., Harsha, S.P.: Evaluations of young’ s modulus of boron nitride nanotube reinforced nano-composites. Procedia Mater. Sci. 6, 1899–1905 (2014)
41.
go back to reference Gao, C., Feng, P., Peng, S., Shuai, C.: Carbon nanotubes, graphene and boron nitride nanotubes reinforced bioactive ceramics for bone repair. Acta Biomater. 61, 1–20 (2017) Gao, C., Feng, P., Peng, S., Shuai, C.: Carbon nanotubes, graphene and boron nitride nanotubes reinforced bioactive ceramics for bone repair. Acta Biomater. 61, 1–20 (2017)
42.
go back to reference Zhang, J., Peng, X.: Superior interfacial mechanical properties of boron nitride-carbon nanotube reinforced nanocomposites: a molecular dynamics study. Mater. Chem. Phys. 198, 250–257 (2017) Zhang, J., Peng, X.: Superior interfacial mechanical properties of boron nitride-carbon nanotube reinforced nanocomposites: a molecular dynamics study. Mater. Chem. Phys. 198, 250–257 (2017)
43.
go back to reference Cong, Z., Lee, S.: Study of mechanical behavior of BNNT-reinforced aluminum composites using molecular dynamics simulations. Compos. Struct. 194, 80–86 (2018) Cong, Z., Lee, S.: Study of mechanical behavior of BNNT-reinforced aluminum composites using molecular dynamics simulations. Compos. Struct. 194, 80–86 (2018)
44.
go back to reference Plimpton, S.J.: Computational Limits of Classical Molecular Dynamics Simulations 1 Introduction 2 Parallel MD. LAMMPS, Sandia Natl. Lab, pp. 1–8 (1995) Plimpton, S.J.: Computational Limits of Classical Molecular Dynamics Simulations 1 Introduction 2 Parallel MD. LAMMPS, Sandia Natl. Lab, pp. 1–8 (1995)
45.
go back to reference Tersoff, J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B. 37, 6991–7000 (1988) Tersoff, J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B. 37, 6991–7000 (1988)
46.
go back to reference Kinaci, A., Haskins, J.B., Sevik, C., ÇagIn, T.: Thermal conductivity of BN-C nanostructures. Phys. Rev. B Condens. Matter Mater. Phys. 86, 1–8 (2012) Kinaci, A., Haskins, J.B., Sevik, C., ÇagIn, T.: Thermal conductivity of BN-C nanostructures. Phys. Rev. B Condens. Matter Mater. Phys. 86, 1–8 (2012)
47.
go back to reference Bian, L., Gao, M.: Nanomechanics model for properties of carbon nanotubes. Acta Mech. 229, 4521–4538 (2018)MathSciNet Bian, L., Gao, M.: Nanomechanics model for properties of carbon nanotubes. Acta Mech. 229, 4521–4538 (2018)MathSciNet
48.
go back to reference Shen, L., Li, J.: Transversely isotropic elastic properties of single-walled carbon nanotubes. Phys. Rev. B. 69, 045414 (2004) Shen, L., Li, J.: Transversely isotropic elastic properties of single-walled carbon nanotubes. Phys. Rev. B. 69, 045414 (2004)
49.
go back to reference Wernik, J.M., Meguid, S.A.: Atomistic-based continuum modeling of the nonlinear behavior of carbon nanotubes. Acta Mech. 212, 167–179 (2010)MATH Wernik, J.M., Meguid, S.A.: Atomistic-based continuum modeling of the nonlinear behavior of carbon nanotubes. Acta Mech. 212, 167–179 (2010)MATH
50.
go back to reference Dewapriya, M.A.N., Rajapakse, R.K.N.D.: Molecular dynamics simulations and continuum modeling of temperature and strain rate dependent fracture strength of graphene with vacancy defects. J. Appl. Mech. Trans. ASME 81, 1–9 (2014) Dewapriya, M.A.N., Rajapakse, R.K.N.D.: Molecular dynamics simulations and continuum modeling of temperature and strain rate dependent fracture strength of graphene with vacancy defects. J. Appl. Mech. Trans. ASME 81, 1–9 (2014)
51.
go back to reference Moon, W.H., Hwang, H.J.: Theoretical study of defects of BN nanotubes: a molecular-mechanics study. Phys. E Low Dimens. Syst. Nanostruct. 28, 419–422 (2005) Moon, W.H., Hwang, H.J.: Theoretical study of defects of BN nanotubes: a molecular-mechanics study. Phys. E Low Dimens. Syst. Nanostruct. 28, 419–422 (2005)
52.
go back to reference Azadi, S., Moradian, R., Shafaee, A.M.: The effect of Stone–Wales defect orientations on the electronic properties of single-walled carbon nanotubes. Comput. Mater. Sci. 49, 699–703 (2010) Azadi, S., Moradian, R., Shafaee, A.M.: The effect of Stone–Wales defect orientations on the electronic properties of single-walled carbon nanotubes. Comput. Mater. Sci. 49, 699–703 (2010)
53.
go back to reference Xiao, J.R., Gama, B.A., Gillespie, J.W.: An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes. Int. J. Solids Struct. 42, 3075–3092 (2005)MATH Xiao, J.R., Gama, B.A., Gillespie, J.W.: An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes. Int. J. Solids Struct. 42, 3075–3092 (2005)MATH
54.
go back to reference Genoese, A., Genoese, A., Salerno, G.: On the nanoscale behaviour of single-wall C, BN and SiC nanotubes. Acta Mech. 230, 1105–1128 (2019)MathSciNetMATH Genoese, A., Genoese, A., Salerno, G.: On the nanoscale behaviour of single-wall C, BN and SiC nanotubes. Acta Mech. 230, 1105–1128 (2019)MathSciNetMATH
55.
go back to reference Kundalwal, S.I.: Review on micromechanics of nano- and micro-fiber reinforced composites. Polym. Compos. 39, 4243–4274 (2017) Kundalwal, S.I.: Review on micromechanics of nano- and micro-fiber reinforced composites. Polym. Compos. 39, 4243–4274 (2017)
56.
go back to reference Wang, H., Ding, N., Zhao, X., Wu, C.L.: Defective boron nitride nanotubes: mechanical properties, electronic structures and failure behaviors. J. Phys. D Appl. Phys. 51, 125303 (2018) Wang, H., Ding, N., Zhao, X., Wu, C.L.: Defective boron nitride nanotubes: mechanical properties, electronic structures and failure behaviors. J. Phys. D Appl. Phys. 51, 125303 (2018)
57.
go back to reference Nguyen, D.T.: The size effect in mechanics properties of boron nitride nanotube under tension. Vietnam J. Sci. Technol. 55, 475–483 (2017) Nguyen, D.T.: The size effect in mechanics properties of boron nitride nanotube under tension. Vietnam J. Sci. Technol. 55, 475–483 (2017)
Metadata
Title
Effect of Stone–Wales defects on the mechanical behavior of boron nitride nanotubes
Authors
Vijay Choyal
S. I. Kundalwal
Publication date
04-07-2020
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 10/2020
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-020-02748-x

Other articles of this Issue 10/2020

Acta Mechanica 10/2020 Go to the issue

Premium Partners