Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 2/2019

17-12-2018

Effect of Vertical Strut Arrangements on Compression Characteristics of 3D Printed Polymer Lattice Structures: Experimental and Computational Study

Authors: Abdalsalam Fadeel, Ahsan Mian, Mohammed Al Rifaie, Raghavan Srinivasan

Published in: Journal of Materials Engineering and Performance | Issue 2/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper discusses the behavior of the three-dimensional (3D) printed polymer lattice core structures during compressive deformation, by both physical testing and computer modeling. Four lattice configurations based on the body-centered cubic (BCC) unit cell were selected to investigate the effect of vertical strut arrangements on stiffness, failure load, and energy absorption per unit mass or the specific energy absorption (SEA). The basic BCC unit cell consists of struts connecting the body center to the corners of the cube. Three variations in the BCC configuration considered in this study are (1) BCCV, with vertical members connecting all nodes of the lattice, (2) BCCA, with vertical members in alternating layers of the lattice, and (3) BCCG, with a gradient in the number of vertical members increasing from none at the top layer to all vertical members at the bottom layer. The unit cell dimensions were 5 mm × 5 mm × 5 mm with strut diameter of 1 mm. The lattice was assembled with 5 cells in the x and y directions and 4 cells in the z direction. Specimens were first made by 3D printing by using a fused deposition modeling printer with acrylonitrile–butadiene–styrene thermoplastic. Specimens were then tested under compression in the z direction under quasi-static conditions. Finite element analysis was used to model the compressive behavior of the different lattice structures. Results from both experiments and finite element models show that the strength of the lattice structures is greater when vertical members are present, and the SEA depends on the lattice geometry and not its mass.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D. Sypeck, Cellular Truss Core Sandwich Structure, Appl. Compos. Mater., 2005, 12(12), p 229–246CrossRef D. Sypeck, Cellular Truss Core Sandwich Structure, Appl. Compos. Mater., 2005, 12(12), p 229–246CrossRef
2.
go back to reference D. Queheillalt and Y. Murty, Mechanical Properties of an Extruded Pyramidal Lattice Truss Sandwich Structure, Scripta Mater., 2008, 58, p 76–79CrossRef D. Queheillalt and Y. Murty, Mechanical Properties of an Extruded Pyramidal Lattice Truss Sandwich Structure, Scripta Mater., 2008, 58, p 76–79CrossRef
3.
go back to reference M.F. Ashby, Material Selection in Mechanical Design, Elsevier Ltd, Burlington, 2011 M.F. Ashby, Material Selection in Mechanical Design, Elsevier Ltd, Burlington, 2011
4.
go back to reference R. Hasana, R. Mines, and P. Fox, Characterization of Selectively Laser Melted Ti-6Al-4V Micro-lattice Struts, Procedia Eng., 2011, 10, p 536–541CrossRef R. Hasana, R. Mines, and P. Fox, Characterization of Selectively Laser Melted Ti-6Al-4V Micro-lattice Struts, Procedia Eng., 2011, 10, p 536–541CrossRef
5.
go back to reference K. Ushijima, W. Cantwell, and D. Chen, Prediction of Mechanical Properties of Micro-lattice Structure Subjected to Multi-axial Loading, Int. J. Mech. Sci., 2013, 68, p 47–55CrossRef K. Ushijima, W. Cantwell, and D. Chen, Prediction of Mechanical Properties of Micro-lattice Structure Subjected to Multi-axial Loading, Int. J. Mech. Sci., 2013, 68, p 47–55CrossRef
6.
go back to reference M. Rezvani and A. Jahan, Effect of Initiator, Design, and Material on Crashworthiness Performance of Thin-Walled Cylindrical Tubes: A Primary Multi-criteria Analysis in Lightweight Design, Thin Walled Struct., 2015, 96, p 169–182CrossRef M. Rezvani and A. Jahan, Effect of Initiator, Design, and Material on Crashworthiness Performance of Thin-Walled Cylindrical Tubes: A Primary Multi-criteria Analysis in Lightweight Design, Thin Walled Struct., 2015, 96, p 169–182CrossRef
7.
go back to reference K. Matlack, A. Bauhofer, S. Krodel, A. Palermo, and C. Daraio, Composite 3D-Printed Metastructures for Low Frequency and Broad Band Vibration Absorption, PNAS, 2016, 113, p 8386–8390CrossRef K. Matlack, A. Bauhofer, S. Krodel, A. Palermo, and C. Daraio, Composite 3D-Printed Metastructures for Low Frequency and Broad Band Vibration Absorption, PNAS, 2016, 113, p 8386–8390CrossRef
8.
go back to reference C. Hammetter, R. Rinaldi, and F. Zok, Pyramidal Lattice Structure for High Strength and Energy Absorption, J. Appl. Mech., 2013, 80, Art no. 041015 C. Hammetter, R. Rinaldi, and F. Zok, Pyramidal Lattice Structure for High Strength and Energy Absorption, J. Appl. Mech., 2013, 80, Art no. 041015
9.
go back to reference S. Sing, W. Yeong, F. Wiria, and B. Tay, Characterization of Titanium Lattice Structure Fabricated by Selective Laser Melting Using an Adapted Compressive Test Method, Exp. Method, 2016, 56, p 735–748 S. Sing, W. Yeong, F. Wiria, and B. Tay, Characterization of Titanium Lattice Structure Fabricated by Selective Laser Melting Using an Adapted Compressive Test Method, Exp. Method, 2016, 56, p 735–748
10.
go back to reference A. Harris, E. Winter, and G.J. McShane, Impact Response of Additively Manufactured Metallic Hybrid Lattice Materials, Int. J. Impact Eng., 2017, 104, p 177–191CrossRef A. Harris, E. Winter, and G.J. McShane, Impact Response of Additively Manufactured Metallic Hybrid Lattice Materials, Int. J. Impact Eng., 2017, 104, p 177–191CrossRef
11.
go back to reference S. Yadlapati, Influence of FDM Build Parameters on Tensile and Compression Behaviors of 3D Printed Polymer Lattice Structures, MS Thesis, Wright State University, 2018 S. Yadlapati, Influence of FDM Build Parameters on Tensile and Compression Behaviors of 3D Printed Polymer Lattice Structures, MS Thesis, Wright State University, 2018
12.
go back to reference S. Belhabib and S. Guessasma, Compression Performance of Hollow Structures: From Topology Optimisation to Design 3D Printing, Int. J. Mech. Sci., 2017, 133, p 728–739CrossRef S. Belhabib and S. Guessasma, Compression Performance of Hollow Structures: From Topology Optimisation to Design 3D Printing, Int. J. Mech. Sci., 2017, 133, p 728–739CrossRef
13.
go back to reference S. Guessasma, S. Belhabib, H. Nouri, and O.B. Hassana, Anisotropic Damage Inferred to 3D Printed Polymers Using Fused Deposition Modelling and Subject to Severe Compression, Eur. Polym. J., 2016, 85, p 324–340CrossRef S. Guessasma, S. Belhabib, H. Nouri, and O.B. Hassana, Anisotropic Damage Inferred to 3D Printed Polymers Using Fused Deposition Modelling and Subject to Severe Compression, Eur. Polym. J., 2016, 85, p 324–340CrossRef
14.
go back to reference J.T. Cantrell, S. Rohde, D. Damiani, R. Gurnani, L. DiSandro, J. Anton, A. Young, A. Jerez, D. Steinbach, C. Kroese, and P.G. Ifju, Experimental Characterization of the Mechanical Properties of 3D-Printed ABS and Polycarbonate Parts, Rapid Prototyp. J., 2017, 23(4), p 811–824CrossRef J.T. Cantrell, S. Rohde, D. Damiani, R. Gurnani, L. DiSandro, J. Anton, A. Young, A. Jerez, D. Steinbach, C. Kroese, and P.G. Ifju, Experimental Characterization of the Mechanical Properties of 3D-Printed ABS and Polycarbonate Parts, Rapid Prototyp. J., 2017, 23(4), p 811–824CrossRef
15.
go back to reference Y. Shen, W. Cantwell, R. Mines, and R. Li, Low-Velocity Impact Performance of Lattice Structure Core Based Sandwich Panel, J. Compos. Mater., 2014, 48, p 3153–3167CrossRef Y. Shen, W. Cantwell, R. Mines, and R. Li, Low-Velocity Impact Performance of Lattice Structure Core Based Sandwich Panel, J. Compos. Mater., 2014, 48, p 3153–3167CrossRef
16.
go back to reference R. Gümrük, R. Mines, and S. Karadeniz, Static Mechanical Behavior of Stainless Steel Micro-lattice Structure Under Different Loading Conditions, Mater. Sci. Eng., 2013, 586, p 392–406CrossRef R. Gümrük, R. Mines, and S. Karadeniz, Static Mechanical Behavior of Stainless Steel Micro-lattice Structure Under Different Loading Conditions, Mater. Sci. Eng., 2013, 586, p 392–406CrossRef
23.
go back to reference M.J. Al Rifaie, Resilience and Toughness Behavior of 3D-Printed Polymer Lattice Structures: Testing and Modeling, MS Thesis, Wright State University, Dayton, Ohio, 2017 M.J. Al Rifaie, Resilience and Toughness Behavior of 3D-Printed Polymer Lattice Structures: Testing and Modeling, MS Thesis, Wright State University, Dayton, Ohio, 2017
Metadata
Title
Effect of Vertical Strut Arrangements on Compression Characteristics of 3D Printed Polymer Lattice Structures: Experimental and Computational Study
Authors
Abdalsalam Fadeel
Ahsan Mian
Mohammed Al Rifaie
Raghavan Srinivasan
Publication date
17-12-2018
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 2/2019
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3810-z

Other articles of this Issue 2/2019

Journal of Materials Engineering and Performance 2/2019 Go to the issue

Premium Partners