Skip to main content
Top
Published in: Cellulose 11/2018

07-09-2018 | Original Paper

Effect of wettability and surface free energy of collection substrates on the structure and morphology of dry-spun cellulose nanofibril filaments

Authors: Shokoofeh Ghasemi, Mehdi Tajvidi, Douglas J. Gardner, Douglas W. Bousfield, Stephen M. Shaler

Published in: Cellulose | Issue 11/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Utilization of cellulose nanofibrils (CNF) for filament production is a comparatively new approach, which can broaden nanocellulose applications by providing continuous long filaments suitable for composite and textile applications. Methods are proposed for the spinning of filaments from cellulose nanofibril suspensions, which are mainly categorized into two groups, i.e. dry-spinning and wet-spinning. For the dry-spinning method, the substrate on which the filament is spun will have a significant influence on the properties of the filament because the as-spun CNF will initially contact it. In this work, the influence of different collection substrates on the properties of CNF filament was studied. Filaments with an average diameter of 0.1 mm were spun on different collection substrates including Teflon tape, Teflon film and glass. The influence of adding oil, as a friction modifier, on the surface properties of the substrate and the structure of the resultant filaments was evaluated. Wettability of each substrate in the absence of oil, and the presence of a thin layer and a thick layer of oil was studied. Circularity of the filaments was measured using image analysis of the cross sections and was correlated with the surface properties of the substrates. It was found that while the surface properties of the collection substrate were related to the uniformity and cross section circularity of the filaments, those spun on a thick layer of oil had the best circular shape irrespective of the substrate material. The results of this study can be used to optimize dry-spinning of CNF filaments.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abitbol T, Rivkin A, Cao Y, Nevo Y, Abraham E, Ben-Shalom T, Lapidot S, Shoseyov O (2016) Nanocellulose, a tiny fiber with huge applications. Curr Opin Biotechnol 39:76–88CrossRefPubMed Abitbol T, Rivkin A, Cao Y, Nevo Y, Abraham E, Ben-Shalom T, Lapidot S, Shoseyov O (2016) Nanocellulose, a tiny fiber with huge applications. Curr Opin Biotechnol 39:76–88CrossRefPubMed
go back to reference Amini E, Tajvidi M, Gardner DJ, Bousfield DW (2017) Utilization of cellulose nanofibrils as a binder for particleboard manufacture. BioRes 12:4093–4110CrossRef Amini E, Tajvidi M, Gardner DJ, Bousfield DW (2017) Utilization of cellulose nanofibrils as a binder for particleboard manufacture. BioRes 12:4093–4110CrossRef
go back to reference Clemons C (2016) Nanocellulose in spun continuous fibers: a review and future outlook. J Renew Mater 5:327–339CrossRef Clemons C (2016) Nanocellulose in spun continuous fibers: a review and future outlook. J Renew Mater 5:327–339CrossRef
go back to reference Diop CIK, Tajvidi M, Bilodeau MA, Bousfield DW, Hunt JF (2017a) Evaluation of the incorporation of lignocellulose nanofibrils as sustainable adhesive replacement in medium density fiberboards. Ind Crops Prod 109:27–36CrossRef Diop CIK, Tajvidi M, Bilodeau MA, Bousfield DW, Hunt JF (2017a) Evaluation of the incorporation of lignocellulose nanofibrils as sustainable adhesive replacement in medium density fiberboards. Ind Crops Prod 109:27–36CrossRef
go back to reference Diop CIK, Tajvidi M, Bilodeau MA, Bousfield DW, Hunt JF (2017b) Isolation of lignocellulose nanofibrils (LCNF) and application as adhesive replacement in wood composites: example of fiberboard. Cellulose 24:3037–3050CrossRef Diop CIK, Tajvidi M, Bilodeau MA, Bousfield DW, Hunt JF (2017b) Isolation of lignocellulose nanofibrils (LCNF) and application as adhesive replacement in wood composites: example of fiberboard. Cellulose 24:3037–3050CrossRef
go back to reference Dufresne A (2012) Nanocellulose: from nature to high performance tailored materials. De Gruyter, p 460 Dufresne A (2012) Nanocellulose: from nature to high performance tailored materials. De Gruyter, p 460
go back to reference Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227CrossRef Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227CrossRef
go back to reference Gardner DJ, Oporto GS, Mills R, Samir MASA (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhes Sci Technol 22:545–567CrossRef Gardner DJ, Oporto GS, Mills R, Samir MASA (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhes Sci Technol 22:545–567CrossRef
go back to reference Gardner DJ, Blumentritt M, Wang L, Yildirim N (2014) Adhesion theories in wood adhesive bonding. Rev Adhes Adhes 2:127–172CrossRef Gardner DJ, Blumentritt M, Wang L, Yildirim N (2014) Adhesion theories in wood adhesive bonding. Rev Adhes Adhes 2:127–172CrossRef
go back to reference Ghasemi S, Tajvidi M, Bousfield DW, Gardner DJ, Gramlich WM (2017) Dry-spun neat cellulose nanofibril filaments: influence of drying temperature and nanofibril structure on filament properties. Polymers 9:1–13CrossRef Ghasemi S, Tajvidi M, Bousfield DW, Gardner DJ, Gramlich WM (2017) Dry-spun neat cellulose nanofibril filaments: influence of drying temperature and nanofibril structure on filament properties. Polymers 9:1–13CrossRef
go back to reference Ghasemi S, Tajvidi M, Bousfield DW, Gardner DJ (2018) Reinforcement of natural fiber yarns by cellulose nanomaterials: a multi-scale study. Ind Crops Prod 111:471–481CrossRef Ghasemi S, Tajvidi M, Bousfield DW, Gardner DJ (2018) Reinforcement of natural fiber yarns by cellulose nanomaterials: a multi-scale study. Ind Crops Prod 111:471–481CrossRef
go back to reference Grande R, Trovatti E, Carvalho A, Gandini A (2017) Continuous microfiber drawing by interfacial charge complexation between anionic cellulose nanofibers and cationic chitosan. J Mater Chem A 5:13098–13103CrossRef Grande R, Trovatti E, Carvalho A, Gandini A (2017) Continuous microfiber drawing by interfacial charge complexation between anionic cellulose nanofibers and cationic chitosan. J Mater Chem A 5:13098–13103CrossRef
go back to reference Håkansson KMO, Fall AB, Lundell F, Yu S, Krywka C, Roth SV, Santoro G, Kvick M, Prahl Wittberg L, Wågberg L, Söderberg LD (2014) Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nat Commun 5:4018CrossRefPubMed Håkansson KMO, Fall AB, Lundell F, Yu S, Krywka C, Roth SV, Santoro G, Kvick M, Prahl Wittberg L, Wågberg L, Söderberg LD (2014) Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nat Commun 5:4018CrossRefPubMed
go back to reference Hooshmand S, Aitomäki Y, Norberg N, Mathew AP, Oksman K (2015) Dry-spun single-filament fibers comprising solely cellulose nanofibers from bioresidue. ACS Appl Mater Interfaces 7:13022–13028CrossRefPubMed Hooshmand S, Aitomäki Y, Norberg N, Mathew AP, Oksman K (2015) Dry-spun single-filament fibers comprising solely cellulose nanofibers from bioresidue. ACS Appl Mater Interfaces 7:13022–13028CrossRefPubMed
go back to reference Hooshmand S, Aitomäki Y, Berglund L, Mathew AP, Oksman K (2017) Enhanced alignment and mechanical properties through the use of hydroxyethyl cellulose in solvent-free native cellulose spun filaments. Compos Sci Technol 150:79–86CrossRef Hooshmand S, Aitomäki Y, Berglund L, Mathew AP, Oksman K (2017) Enhanced alignment and mechanical properties through the use of hydroxyethyl cellulose in solvent-free native cellulose spun filaments. Compos Sci Technol 150:79–86CrossRef
go back to reference Iwamoto S, Isogai A, Iwata T (2011) Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers. Biomacromolecules 12:831–836CrossRefPubMed Iwamoto S, Isogai A, Iwata T (2011) Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers. Biomacromolecules 12:831–836CrossRefPubMed
go back to reference Kaelble DH (1920) Dispersion-polar surface tension properties of organic solids. J Adhes 2:66–81CrossRef Kaelble DH (1920) Dispersion-polar surface tension properties of organic solids. J Adhes 2:66–81CrossRef
go back to reference Kafy A, Kim HC, Zhai L, Kim JW, Hai LV, Kang TJ, Kim J (2017) Cellulose long fibers fabricated from cellulose nanofibers and its strong and tough characteristics. Sci Rep 7:1–8CrossRef Kafy A, Kim HC, Zhai L, Kim JW, Hai LV, Kang TJ, Kim J (2017) Cellulose long fibers fabricated from cellulose nanofibers and its strong and tough characteristics. Sci Rep 7:1–8CrossRef
go back to reference Leng W, Hunt JF, Tajvidi M (2017a) Screw and nail withdrawal strength and water soak properties of wet-formed cellulose nanofibrils bonded particleboard. BioRes 12:7692–7710CrossRef Leng W, Hunt JF, Tajvidi M (2017a) Screw and nail withdrawal strength and water soak properties of wet-formed cellulose nanofibrils bonded particleboard. BioRes 12:7692–7710CrossRef
go back to reference Leng W, Hunt JF, Tajvidi M (2017b) Effects of density, cellulose nanofibrils addition ratio, pressing method, and particle size on the bending properties of wet-formed particleboard. BioRes 12:4986–5000CrossRef Leng W, Hunt JF, Tajvidi M (2017b) Effects of density, cellulose nanofibrils addition ratio, pressing method, and particle size on the bending properties of wet-formed particleboard. BioRes 12:4986–5000CrossRef
go back to reference Lundahl MJ, Klar V, Wang L, Ago M, Rojas OJ (2016a) Spinning of cellulose nanofibrils into filaments: a review. Ind Eng Chem Res 2:8–19 Lundahl MJ, Klar V, Wang L, Ago M, Rojas OJ (2016a) Spinning of cellulose nanofibrils into filaments: a review. Ind Eng Chem Res 2:8–19
go back to reference Lundahl MJ, Cunha AG, Rojo E, Papageorgiou AC, Rautkari L, Arboleda JC, Rojas OJ (2016b) Strength and water interactions of cellulose I filaments wet-spun from cellulose nanofibril hydrogels. Sci Rep 6:1–14CrossRef Lundahl MJ, Cunha AG, Rojo E, Papageorgiou AC, Rautkari L, Arboleda JC, Rojas OJ (2016b) Strength and water interactions of cellulose I filaments wet-spun from cellulose nanofibril hydrogels. Sci Rep 6:1–14CrossRef
go back to reference Mashkour M, Kimura T, Kimura F, Mashkour M, Tajvidi M (2014) One-dimensional core-shell cellulose-akaganeite hybrid nanocrystals: synthesis, characterization, and magnetic field induced self-assembly. RSC Adv 4:52542–52549CrossRef Mashkour M, Kimura T, Kimura F, Mashkour M, Tajvidi M (2014) One-dimensional core-shell cellulose-akaganeite hybrid nanocrystals: synthesis, characterization, and magnetic field induced self-assembly. RSC Adv 4:52542–52549CrossRef
go back to reference Mohammadi P, Toivonen MS, Ikkala O, Wagermaier W, Linder MB (2017) Aligning cellulose nanofibril dispersions for tougher fibers. Sci Rep 7:1–10CrossRef Mohammadi P, Toivonen MS, Ikkala O, Wagermaier W, Linder MB (2017) Aligning cellulose nanofibril dispersions for tougher fibers. Sci Rep 7:1–10CrossRef
go back to reference Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefPubMed Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefPubMed
go back to reference Nechyporchuk O, Bordes R, Köhnke T (2017) Wet spinning of flame-retardant cellulosic fibers supported by interfacial complexation of cellulose nanofibrils with silica nanoparticles. ACS Appl Mater Interfaces 9:39069–39077CrossRefPubMed Nechyporchuk O, Bordes R, Köhnke T (2017) Wet spinning of flame-retardant cellulosic fibers supported by interfacial complexation of cellulose nanofibrils with silica nanoparticles. ACS Appl Mater Interfaces 9:39069–39077CrossRefPubMed
go back to reference Oksman K, Aitomäki Y, Mathew AP, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou X, Hooshmand S (2016) Review of the recent developments in cellulose nanocomposite processing. Compos Part-A Appl Sci 83:2–18CrossRef Oksman K, Aitomäki Y, Mathew AP, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou X, Hooshmand S (2016) Review of the recent developments in cellulose nanocomposite processing. Compos Part-A Appl Sci 83:2–18CrossRef
go back to reference Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747CrossRef Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747CrossRef
go back to reference Rabel W (1971) Einige Aspekte der Benetzungstheorie und ihre Anwendung auf die Untersuchung und Veränderung der Oberflächeneigenschaften von Polymeren. In Farbe und Lack 77:997–1005 Rabel W (1971) Einige Aspekte der Benetzungstheorie und ihre Anwendung auf die Untersuchung und Veränderung der Oberflächeneigenschaften von Polymeren. In Farbe und Lack 77:997–1005
go back to reference Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14:170–172CrossRefPubMed Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14:170–172CrossRefPubMed
go back to reference Shen Y, Orelma H, Sneck A, Kataja K, Salmela J, Qvintus P, Suurnäkki A, Harlin A (2016) High velocity dry spinning of nanofibrillated cellulose (CNF) filaments on an adhesion controlled surface with low friction. Cellulose 23:3393–3398CrossRef Shen Y, Orelma H, Sneck A, Kataja K, Salmela J, Qvintus P, Suurnäkki A, Harlin A (2016) High velocity dry spinning of nanofibrillated cellulose (CNF) filaments on an adhesion controlled surface with low friction. Cellulose 23:3393–3398CrossRef
go back to reference Tajvidi M, Gardner DJ, Bousfield DW (2016) Cellulose nanomaterials as binders: laminate and particulate systems. J Renew Mater 4:365–376CrossRef Tajvidi M, Gardner DJ, Bousfield DW (2016) Cellulose nanomaterials as binders: laminate and particulate systems. J Renew Mater 4:365–376CrossRef
go back to reference Toivonen MS, Kurki-Suonio S, Wagermaier W, Hynninen V, Hietala S, Ikkala O (2017) Interfacial polyelectrolyte complex spinning of cellulose nanofibrils for advanced bicomponent fibers. Biomacromol 18:1293–1301CrossRef Toivonen MS, Kurki-Suonio S, Wagermaier W, Hynninen V, Hietala S, Ikkala O (2017) Interfacial polyelectrolyte complex spinning of cellulose nanofibrils for advanced bicomponent fibers. Biomacromol 18:1293–1301CrossRef
go back to reference Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. In J Appl Polym Sci Appl Polym Symp 37:815–827 Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. In J Appl Polym Sci Appl Polym Symp 37:815–827
go back to reference Wilhelmy L (1863) Ueber die Abhängigkeit der Capillaritäts‐Constanten des Alkohols von Substanz und Gestalt des benetzten festen Körpers. Annalen der Physik 195(6):177–217CrossRef Wilhelmy L (1863) Ueber die Abhängigkeit der Capillaritäts‐Constanten des Alkohols von Substanz und Gestalt des benetzten festen Körpers. Annalen der Physik 195(6):177–217CrossRef
go back to reference Yousefi Shivyari N, Tajvidi M, Bousfield DW, Gardner DJ (2016) Production and characterization of laminates of paper and cellulose nanofibrils. ACS Appl Mater Interfaces 8:25520–25528CrossRefPubMed Yousefi Shivyari N, Tajvidi M, Bousfield DW, Gardner DJ (2016) Production and characterization of laminates of paper and cellulose nanofibrils. ACS Appl Mater Interfaces 8:25520–25528CrossRefPubMed
Metadata
Title
Effect of wettability and surface free energy of collection substrates on the structure and morphology of dry-spun cellulose nanofibril filaments
Authors
Shokoofeh Ghasemi
Mehdi Tajvidi
Douglas J. Gardner
Douglas W. Bousfield
Stephen M. Shaler
Publication date
07-09-2018
Publisher
Springer Netherlands
Published in
Cellulose / Issue 11/2018
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-018-2029-3

Other articles of this Issue 11/2018

Cellulose 11/2018 Go to the issue