Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 5/2018

12-04-2018

Effects of Stress Ratio and Microstructure on Fatigue Failure Behavior of Polycrystalline Nickel Superalloy

Authors: H. Zhang, Z. W. Guan, Q. Y. Wang, Y. J. Liu, J. K. Li

Published in: Journal of Materials Engineering and Performance | Issue 5/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effects of microstructure and stress ratio on high cycle fatigue of nickel superalloy Nimonic 80A were investigated. The stress ratios of 0.1, 0.5 and 0.8 were chosen to perform fatigue tests in a frequency of 110 Hz. Cleavage failure was observed, and three competing failure crack initiation modes were discovered by a scanning electron microscope, which were classified as surface without facets, surface with facets and subsurface with facets. With increasing the stress ratio from 0.1 to 0.8, the occurrence probability of surface and subsurface with facets also increased and reached the maximum value at R = 0.5, meanwhile the probability of surface initiation without facets decreased. The effect of microstructure on the fatigue fracture behavior at different stress ratios was also observed and discussed. Based on the Goodman diagram, it was concluded that the fatigue strength of 50% probability of failure at R = 0.1, 0.5 and 0.8 is lower than the modified Goodman line.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. Miao, T.M. Pollock, and J. Wayne Jones, Microstructural Extremes and the Transition from Fatigue Crack Initiation to Small Crack Growth in a Polycrystalline Nickel-Base Superalloy, Acta Mater., 2012, 60(6), p 2840–2854CrossRef J. Miao, T.M. Pollock, and J. Wayne Jones, Microstructural Extremes and the Transition from Fatigue Crack Initiation to Small Crack Growth in a Polycrystalline Nickel-Base Superalloy, Acta Mater., 2012, 60(6), p 2840–2854CrossRef
2.
go back to reference B. Larrouy, P. Villechaise, J. Cormier, and O. Berteaux, Grain Boundary–Slip Bands Interactions: Impact on the Fatigue Crack Initiation in a Polycrystalline Forged Ni-Based Superalloy, Acta Mater., 2015, 99, p 325–336CrossRef B. Larrouy, P. Villechaise, J. Cormier, and O. Berteaux, Grain Boundary–Slip Bands Interactions: Impact on the Fatigue Crack Initiation in a Polycrystalline Forged Ni-Based Superalloy, Acta Mater., 2015, 99, p 325–336CrossRef
3.
go back to reference T. Nicholas and J.R. Zuiker, On the Use of the Goodman Diagram for High Cycle Fatigue Design, Int. J. Fract., 1996, 80(2–3), p 219–235CrossRef T. Nicholas and J.R. Zuiker, On the Use of the Goodman Diagram for High Cycle Fatigue Design, Int. J. Fract., 1996, 80(2–3), p 219–235CrossRef
4.
go back to reference B.A. Cowles, High Cycle Fatigue in Aircraft Gas Turbines—An Industry Perspective, Int. J. Fract., 1996, 80(2), p 147–163CrossRef B.A. Cowles, High Cycle Fatigue in Aircraft Gas Turbines—An Industry Perspective, Int. J. Fract., 1996, 80(2), p 147–163CrossRef
5.
go back to reference T. Nicholas, Critical Issues in High Cycle Fatigue, Int. J. Fatigue, 1999, 21(99), p S221–S231CrossRef T. Nicholas, Critical Issues in High Cycle Fatigue, Int. J. Fatigue, 1999, 21(99), p S221–S231CrossRef
6.
go back to reference H. Oguma and T. Nakamura, Fatigue Crack Propagation Properties of Ti-6Al-4 V in Vacuum Environments, Int. J. Fatigue, 2013, 50, p 89–93CrossRef H. Oguma and T. Nakamura, Fatigue Crack Propagation Properties of Ti-6Al-4 V in Vacuum Environments, Int. J. Fatigue, 2013, 50, p 89–93CrossRef
7.
go back to reference Y. Gao, M. Kumar, R.K. Nalla, and R.O. Ritchie, High-Cycle Fatigue of Nickel-Based Superalloy ME3 at Ambient and Elevated Temperatures: Role of Grain-Boundary Engineering, Metall. Mater. Trans. A, 2005, 36A(12), p 3325–3333CrossRef Y. Gao, M. Kumar, R.K. Nalla, and R.O. Ritchie, High-Cycle Fatigue of Nickel-Based Superalloy ME3 at Ambient and Elevated Temperatures: Role of Grain-Boundary Engineering, Metall. Mater. Trans. A, 2005, 36A(12), p 3325–3333CrossRef
8.
go back to reference M.J. Caton and S.K. Jha, Small Fatigue Crack Growth and Failure Mode Transitions in a Ni-Base Superalloy at Elevated Temperature, Int. J. Fatigue, 2010, 32(9), p 1461–1472CrossRef M.J. Caton and S.K. Jha, Small Fatigue Crack Growth and Failure Mode Transitions in a Ni-Base Superalloy at Elevated Temperature, Int. J. Fatigue, 2010, 32(9), p 1461–1472CrossRef
9.
go back to reference X. Huang, L. Wang, Y. Hu, G. Guo, D. Salmon, Y. Li, and W. Zhao, Fatigue Crack Propagation Behavior of Ni-Based Superalloys After Overloading at Elevated Temperatures, Progr. Nat. Sci. Mat. Int., 2016, 26(2), p 197–203CrossRef X. Huang, L. Wang, Y. Hu, G. Guo, D. Salmon, Y. Li, and W. Zhao, Fatigue Crack Propagation Behavior of Ni-Based Superalloys After Overloading at Elevated Temperatures, Progr. Nat. Sci. Mat. Int., 2016, 26(2), p 197–203CrossRef
10.
go back to reference K.S. Chan, Roles of Microstructure in Fatigue Crack Initiation, Int. J. Fatigue, 2010, 32(9), p 1428–1447CrossRef K.S. Chan, Roles of Microstructure in Fatigue Crack Initiation, Int. J. Fatigue, 2010, 32(9), p 1428–1447CrossRef
11.
go back to reference S.R. Yeratapally, M.G. Glavicic, M. Hardy, and M.D. Sangid, Microstructure Based Fatigue Life Prediction Framework for Polycrystalline Nickel-Base Superalloys with Emphasis on the Role Played by Twin Boundaries in Crack Initiation, Acta Mater., 2016, 107, p 152–167CrossRef S.R. Yeratapally, M.G. Glavicic, M. Hardy, and M.D. Sangid, Microstructure Based Fatigue Life Prediction Framework for Polycrystalline Nickel-Base Superalloys with Emphasis on the Role Played by Twin Boundaries in Crack Initiation, Acta Mater., 2016, 107, p 152–167CrossRef
12.
go back to reference T. Alp and A. Wazzan, The Influence of Microstructure on the Tensile and Fatigue Behavior of SAE 6150 Steel, J. Mater. Eng. Perform., 2002, 11(4), p 351–359CrossRef T. Alp and A. Wazzan, The Influence of Microstructure on the Tensile and Fatigue Behavior of SAE 6150 Steel, J. Mater. Eng. Perform., 2002, 11(4), p 351–359CrossRef
13.
go back to reference J. Liu, Q. Zhang, Z. Zuo, and Y. Xiong, Effect of Fatigue Behavior on Microstructural Features in a Cast Al-12Si-CuNiMg Alloy Under High Cycle Fatigue Loading, J. Mater. Eng. Perform., 2013, 22(12), p 3834–3839CrossRef J. Liu, Q. Zhang, Z. Zuo, and Y. Xiong, Effect of Fatigue Behavior on Microstructural Features in a Cast Al-12Si-CuNiMg Alloy Under High Cycle Fatigue Loading, J. Mater. Eng. Perform., 2013, 22(12), p 3834–3839CrossRef
14.
go back to reference K. Tamada, T. Kakiuchi, and Y. Uematsu, Crystallographic Analysis of Fatigue Crack Initiation Behavior in Coarse-Grained Magnesium Alloy Under Tension-Tension Loading Cycles, J. Mater. Eng. Perform., 2017, 26(7), p 3169–3179CrossRef K. Tamada, T. Kakiuchi, and Y. Uematsu, Crystallographic Analysis of Fatigue Crack Initiation Behavior in Coarse-Grained Magnesium Alloy Under Tension-Tension Loading Cycles, J. Mater. Eng. Perform., 2017, 26(7), p 3169–3179CrossRef
15.
go back to reference B. Oberwinkler, Modeling the Fatigue Crack Growth Behavior of Ti-6Al-4 V by Considering Grain Size and Stress Ratio, Mater. Sci. Eng. A, 2011, 528(18), p 5983–5992CrossRef B. Oberwinkler, Modeling the Fatigue Crack Growth Behavior of Ti-6Al-4 V by Considering Grain Size and Stress Ratio, Mater. Sci. Eng. A, 2011, 528(18), p 5983–5992CrossRef
16.
go back to reference X. Liu, C. Sun, and Y. Hong, Effects of Stress Ratio on High-Cycle and Very-High-Cycle Fatigue Behavior of a Ti–6Al–4 V Alloy, Mater. Sci. Eng. A, 2015, 622, p 228–235CrossRef X. Liu, C. Sun, and Y. Hong, Effects of Stress Ratio on High-Cycle and Very-High-Cycle Fatigue Behavior of a Ti–6Al–4 V Alloy, Mater. Sci. Eng. A, 2015, 622, p 228–235CrossRef
17.
go back to reference L. Bertini, L. Le Bone, C. Santus, F. Chiesi, and L. Tognarelli, High Load Ratio Fatigue Strength and Mean Stress Evolution of Quenched and Tempered 42CrMo4 Steel, J. Mater. Eng. Perform., 2017, 26(8), p 3784–3793CrossRef L. Bertini, L. Le Bone, C. Santus, F. Chiesi, and L. Tognarelli, High Load Ratio Fatigue Strength and Mean Stress Evolution of Quenched and Tempered 42CrMo4 Steel, J. Mater. Eng. Perform., 2017, 26(8), p 3784–3793CrossRef
18.
go back to reference O. Hatamleh, S. Forth, and A.P. Reynolds, Fatigue Crack Growth of Peened Friction Stir-Welded 7075 Aluminum Alloy under Different Load Ratios, J. Mater. Eng. Perform., 2010, 19(1), p 99–106CrossRef O. Hatamleh, S. Forth, and A.P. Reynolds, Fatigue Crack Growth of Peened Friction Stir-Welded 7075 Aluminum Alloy under Different Load Ratios, J. Mater. Eng. Perform., 2010, 19(1), p 99–106CrossRef
19.
go back to reference S.D. Antolovich, Microstructural Aspects of Fatigue in Ni-Base Superalloys, Philos. Trans., 2015, 373, p 2038 S.D. Antolovich, Microstructural Aspects of Fatigue in Ni-Base Superalloys, Philos. Trans., 2015, 373, p 2038
20.
go back to reference J. Miao, T.M. Pollock, and J. Wayne Jones, Crystallographic Fatigue Crack Initiation in Nickel-Based Superalloy René 88DT at Elevated Temperature, Acta Mater., 2009, 57(20), p 5964–5974CrossRef J. Miao, T.M. Pollock, and J. Wayne Jones, Crystallographic Fatigue Crack Initiation in Nickel-Based Superalloy René 88DT at Elevated Temperature, Acta Mater., 2009, 57(20), p 5964–5974CrossRef
21.
go back to reference G.L. Miao, X.G. Yang, and D.Q. Shi, Competing Fatigue Failure Behaviors of Ni-Based Superalloy FGH96 at Elevated Temperature, Mat. Sci. Eng. A Struct., 2016, 668, p 66–72CrossRef G.L. Miao, X.G. Yang, and D.Q. Shi, Competing Fatigue Failure Behaviors of Ni-Based Superalloy FGH96 at Elevated Temperature, Mat. Sci. Eng. A Struct., 2016, 668, p 66–72CrossRef
22.
go back to reference K.O. Findley and A. Saxena, Low Cycle Fatigue in Rene 88DT at 650 °C: Crack Nucleation Mechanisms and Modeling, Metall. Mat. Trans. A, 2006, 37(5), p 1469–1475CrossRef K.O. Findley and A. Saxena, Low Cycle Fatigue in Rene 88DT at 650 °C: Crack Nucleation Mechanisms and Modeling, Metall. Mat. Trans. A, 2006, 37(5), p 1469–1475CrossRef
23.
go back to reference S.K. Jha, J.M. Larsen, and A.H. Rosenberger, Towards a Physics-Based Description of Fatigue Variability Behavior in Probabilistic Life-Prediction, Eng. Fract. Mech., 2009, 76(5), p 681–694CrossRef S.K. Jha, J.M. Larsen, and A.H. Rosenberger, Towards a Physics-Based Description of Fatigue Variability Behavior in Probabilistic Life-Prediction, Eng. Fract. Mech., 2009, 76(5), p 681–694CrossRef
24.
go back to reference S.K. Jha, M.J. Caton, and J.M. Larsen, A New Paradigm of Fatigue Variability Behavior and Implications for Life Prediction, Mater. Sci. Eng. A, 2007, 468–470, p 23–32CrossRef S.K. Jha, M.J. Caton, and J.M. Larsen, A New Paradigm of Fatigue Variability Behavior and Implications for Life Prediction, Mater. Sci. Eng. A, 2007, 468–470, p 23–32CrossRef
25.
go back to reference Metallic Materials—Fatigue Testing—Axial Force-Controlled Method, ISO 1099:2006, International Organization for Standardization 2006 Metallic Materials—Fatigue Testing—Axial Force-Controlled Method, ISO 1099:2006, International Organization for Standardization 2006
26.
go back to reference X. Liu, C. Sun, and Y. Hong, Faceted Crack Initiation Characteristics for High-Cycle and Very-High-Cycle Fatigue of a Titanium Alloy Under Different Stress Ratios, Int. J. Fatigue, 2016, 92, p 434–441CrossRef X. Liu, C. Sun, and Y. Hong, Faceted Crack Initiation Characteristics for High-Cycle and Very-High-Cycle Fatigue of a Titanium Alloy Under Different Stress Ratios, Int. J. Fatigue, 2016, 92, p 434–441CrossRef
27.
go back to reference K. Manigandan, T.S. Srivatsan, T. Quick, S. Sastry, and M.L. Schmidt, Influence of Microstructure and Load Ratio on Cyclic Fatigue and Final Fracture Behavior of Two High Strength Steels, Mater. Des., 2014, 55, p 727–739CrossRef K. Manigandan, T.S. Srivatsan, T. Quick, S. Sastry, and M.L. Schmidt, Influence of Microstructure and Load Ratio on Cyclic Fatigue and Final Fracture Behavior of Two High Strength Steels, Mater. Des., 2014, 55, p 727–739CrossRef
28.
go back to reference A. Pineau, A.A. Benzerga, and T. Pardoen, Failure of Metals I: Brittle and Ductile Fracture, Acta Mater., 2016, 107, p 424–483CrossRef A. Pineau, A.A. Benzerga, and T. Pardoen, Failure of Metals I: Brittle and Ductile Fracture, Acta Mater., 2016, 107, p 424–483CrossRef
29.
go back to reference S.K. Jha, J.M. Larsen, A.H. Rosenberger, and G.A. Hartman, Dual Fatigue Failure Modes in Ti–6Al–2Sn–4Zr–6Mo and Consequences on Probabilistic Life Prediction, Scripta Mater., 2003, 48(12), p 1637–1642CrossRef S.K. Jha, J.M. Larsen, A.H. Rosenberger, and G.A. Hartman, Dual Fatigue Failure Modes in Ti–6Al–2Sn–4Zr–6Mo and Consequences on Probabilistic Life Prediction, Scripta Mater., 2003, 48(12), p 1637–1642CrossRef
30.
go back to reference S.K. Jha, J.M. Larsen, and A.H. Rosenberger, The Role of Competing Mechanisms in the Fatigue Life Variability of a Nearly Fully-Lamellar γ-TiAl Based Alloy, Acta Mater., 2005, 53(5), p 1293–1304CrossRef S.K. Jha, J.M. Larsen, and A.H. Rosenberger, The Role of Competing Mechanisms in the Fatigue Life Variability of a Nearly Fully-Lamellar γ-TiAl Based Alloy, Acta Mater., 2005, 53(5), p 1293–1304CrossRef
31.
go back to reference A.H. Fischer, A. Abel, M. Lepper, A.E. Zitzelsberger, and A. von Glasow, Modeling Bimodal Electromigration Failure Distributions, Microelectron. Reliab., 2001, 41(3), p 445–453CrossRef A.H. Fischer, A. Abel, M. Lepper, A.E. Zitzelsberger, and A. von Glasow, Modeling Bimodal Electromigration Failure Distributions, Microelectron. Reliab., 2001, 41(3), p 445–453CrossRef
32.
go back to reference S. Tanaka, M. Ichikawa, and S. Akita, A Probabilistic Investigation of Fatigue Life and Cumulative Cycle Ratio, Eng. Fract. Mech., 1984, 20(3), p 501–513CrossRef S. Tanaka, M. Ichikawa, and S. Akita, A Probabilistic Investigation of Fatigue Life and Cumulative Cycle Ratio, Eng. Fract. Mech., 1984, 20(3), p 501–513CrossRef
33.
go back to reference P.J. Laz, B.A. Craig, and B.M. Hillberry, A Probabilistic Total Fatigue Life Model Incorporating Material Inhomogeneities, Stress Level and Fracture Mechanics, Int. J. Fatigue, 2001, 23(1), p 119–127CrossRef P.J. Laz, B.A. Craig, and B.M. Hillberry, A Probabilistic Total Fatigue Life Model Incorporating Material Inhomogeneities, Stress Level and Fracture Mechanics, Int. J. Fatigue, 2001, 23(1), p 119–127CrossRef
34.
go back to reference S. Stanzl-Tschegg and B. Schönbauer, Near-Threshold Fatigue Crack Propagation and Internal Cracks in Steel, Procedia Eng., 2010, 2(1), p 1547–1555CrossRef S. Stanzl-Tschegg and B. Schönbauer, Near-Threshold Fatigue Crack Propagation and Internal Cracks in Steel, Procedia Eng., 2010, 2(1), p 1547–1555CrossRef
35.
go back to reference R.H.V. Stone, T.B. Cox, J.R. Low, and J.A. Psioda, Microstructural Aspects of Fracture by Dimpled Rupture, Int. Metals Rev., 2013, 30(1), p 157–180 R.H.V. Stone, T.B. Cox, J.R. Low, and J.A. Psioda, Microstructural Aspects of Fracture by Dimpled Rupture, Int. Metals Rev., 2013, 30(1), p 157–180
36.
go back to reference A. Kolyshkin, M. Zimmermann, E. Kaufmann, and H.-J. Christ, Experimental Investigation and Analytical Description of the Damage Evolution in a Ni-Based Superalloy Beyond 106 Loading Cycles, Int. J. Fatigue, 2016, 93, p 272–280CrossRef A. Kolyshkin, M. Zimmermann, E. Kaufmann, and H.-J. Christ, Experimental Investigation and Analytical Description of the Damage Evolution in a Ni-Based Superalloy Beyond 106 Loading Cycles, Int. J. Fatigue, 2016, 93, p 272–280CrossRef
37.
go back to reference C. Stocker, M. Zimmermann, and H.J. Christ, Localized Cyclic Deformation and Corresponding Dislocation Arrangements of Polycrystalline Ni-Base Superalloys and Pure Nickel in the VHCF Regime, Int. J. Fatigue, 2011, 33(1), p 2–9CrossRef C. Stocker, M. Zimmermann, and H.J. Christ, Localized Cyclic Deformation and Corresponding Dislocation Arrangements of Polycrystalline Ni-Base Superalloys and Pure Nickel in the VHCF Regime, Int. J. Fatigue, 2011, 33(1), p 2–9CrossRef
38.
go back to reference C. Blochwitz, R. Richter, W. Tirschler, and K. Obrtlik, The Effect of Local Textures on Microcrack Propagation in Fatigued F.C.C. Metals, Mater. Sci. Eng. A, 1997, 234, p 563–566CrossRef C. Blochwitz, R. Richter, W. Tirschler, and K. Obrtlik, The Effect of Local Textures on Microcrack Propagation in Fatigued F.C.C. Metals, Mater. Sci. Eng. A, 1997, 234, p 563–566CrossRef
39.
go back to reference S.E. Stanzl-Tschegg, O. Plasser, E.K. Tschegg, and A.K. Vasudevan, Influence of Microstructure and Load Ratio on Fatigue Threshold Behavior in 7075 Aluminum Alloy, Int. J. Fatigue, 1999, 21, p S255–S262CrossRef S.E. Stanzl-Tschegg, O. Plasser, E.K. Tschegg, and A.K. Vasudevan, Influence of Microstructure and Load Ratio on Fatigue Threshold Behavior in 7075 Aluminum Alloy, Int. J. Fatigue, 1999, 21, p S255–S262CrossRef
Metadata
Title
Effects of Stress Ratio and Microstructure on Fatigue Failure Behavior of Polycrystalline Nickel Superalloy
Authors
H. Zhang
Z. W. Guan
Q. Y. Wang
Y. J. Liu
J. K. Li
Publication date
12-04-2018
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 5/2018
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3331-9

Other articles of this Issue 5/2018

Journal of Materials Engineering and Performance 5/2018 Go to the issue

Premium Partners