Skip to main content
Top
Published in: Microsystem Technologies 4/2020

24-10-2019 | Technical Paper

Effects of temperature and channel thickness on digital and analog performance of InAs quantum well nMOSFETs

Authors: Sumedha Dasgupta, Chandrima Mondal, Abhijit Biswas

Published in: Microsystem Technologies | Issue 4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Among various III–V semiconductors, InAs stands out promising, due largely to its outstanding electron mobility and injection velocity alongside better electrostatic integrity in a thin-body architecture. Using well-calibrated TCAD simulation we systematically investigate and analyze the logic performance in terms of ON-current, OFF-current, ON–OFF current ratio and intrinsic delay and also analog performance in terms of transconductance, output conductance, transconductance generation factor and intrinsic voltage gain of InAs quantum well nMOSFETs for channel thicknesses of 5, 8 and 10 nm at channel length of 14 nm. Also we report the variation of such parameters with temperature ranging from 300 down to 150 K. Our findings reveal that InAs quantum well device with a channel thickness of 10 nm exhibits the highest value of ON-current at 300 K which is 27.54% larger than that of 5 nm channel device. The lowest intrinsic delay is obtained at 300 K for the device with channel thickness of 10 nm. Additionally the lowest value of OFF-current is obtained at 150 K while the highest ION/IOFF ratio is attained at 300 K for device with channel thickness of 5 nm. Moreover, our findings show that while 5-nm-thick channel InAs device yields improved output conductance, transconductance efficiency and intrinsic voltage gain compared to other InAs devices, 10-nm-thick channel InAs device exhibits improvement in transconductance compared to other InAs devices, for the entire range of temperature. Our work advocates the use of InAs quantum well MOSFETs for analog and digital applications in more advanced technology nodes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference ATLAS Users’ Manual (2014) A device simulation software package. Silvaco Int, Santa Clara ATLAS Users’ Manual (2014) A device simulation software package. Silvaco Int, Santa Clara
go back to reference Dasgupta S, Mondal C, Biswas A (2015) Impact of channel thickness of nanoscale InAs on insulator MOSFETs for analog/RF circuit applications. In: Proceedings of 4th international conference on innovations in electronics and communication engineering (ICIECE), pp383-387 Dasgupta S, Mondal C, Biswas A (2015) Impact of channel thickness of nanoscale InAs on insulator MOSFETs for analog/RF circuit applications. In: Proceedings of 4th international conference on innovations in electronics and communication engineering (ICIECE), pp383-387
go back to reference Dasgupta S, Mondal C, Biswas A (2019) Effect of temperature on digital performance of InAs quantum well nMOSFETs. In: Proceedings of 6th international conference on microelectronics, circuits and systems (MICRO), pp 72–77 Dasgupta S, Mondal C, Biswas A (2019) Effect of temperature on digital performance of InAs quantum well nMOSFETs. In: Proceedings of 6th international conference on microelectronics, circuits and systems (MICRO), pp 72–77
go back to reference Del Alamo JA (2011) Nanometer-scale electronics with III–V compound semiconductors. Nature 479:317CrossRef Del Alamo JA (2011) Nanometer-scale electronics with III–V compound semiconductors. Nature 479:317CrossRef
go back to reference Dutta T, Kumar S, Rastogi P, Agarwal A, Chauhan YS (2016) Impact of channel thickness variation on bandstructure and source-to-drain tunneling in ultra-thin body III–V MOSFETs. J Electron Devices Soc 4(2):66–71CrossRef Dutta T, Kumar S, Rastogi P, Agarwal A, Chauhan YS (2016) Impact of channel thickness variation on bandstructure and source-to-drain tunneling in ultra-thin body III–V MOSFETs. J Electron Devices Soc 4(2):66–71CrossRef
go back to reference Ford AC, Ho JC, Chueh YL, Tseng YC, Fan Z, Guo J, Bokor J, Javey A (2009) Carrier transport in high mobility InAs nanowire junctionless transistors diameter-dependent electron mobility of InAs nanowires. Nano Lett 9(1):360–365CrossRef Ford AC, Ho JC, Chueh YL, Tseng YC, Fan Z, Guo J, Bokor J, Javey A (2009) Carrier transport in high mobility InAs nanowire junctionless transistors diameter-dependent electron mobility of InAs nanowires. Nano Lett 9(1):360–365CrossRef
go back to reference Gupta N, Song Y, Holloway GW, Sinha U, Haapamaki CM, LaPierre RR, Baugh J (2013) Temperature-dependent electron mobility in InAs nanowires. Nanotechnology 24(22):225202CrossRef Gupta N, Song Y, Holloway GW, Sinha U, Haapamaki CM, LaPierre RR, Baugh J (2013) Temperature-dependent electron mobility in InAs nanowires. Nanotechnology 24(22):225202CrossRef
go back to reference Harman TC, Goering HL, Beer AC (1956) Electrical properties of n-type InAs. Phys Rev 104(6):1562–1564CrossRef Harman TC, Goering HL, Beer AC (1956) Electrical properties of n-type InAs. Phys Rev 104(6):1562–1564CrossRef
go back to reference Kim TW, Hill RJW, Young CD, Veksler D, Morassi L, Oktybrshky S, Kang J, Kim DH, del Alamo JA, Hobbs C, Kirsch PD, Jammy R (2012) InAs quantum-well MOSFET (Lg  = 100 nm) with record high gm, fT and fmax. In: IEEE symposium on VLSI technology digest of technical papers, pp 179–180 Kim TW, Hill RJW, Young CD, Veksler D, Morassi L, Oktybrshky S, Kang J, Kim DH, del Alamo JA, Hobbs C, Kirsch PD, Jammy R (2012) InAs quantum-well MOSFET (Lg  = 100 nm) with record high gm, fT and fmax. In: IEEE symposium on VLSI technology digest of technical papers, pp 179–180
go back to reference Konar A, Mathew J, Nayak K, Bajaj M, Pandey RK, Dhara S, Murali KVRM, Deshmukh M (2015) Carrier transport in high mobility InAs nanowire junctionless transistors. Nano Lett 15:1684–1690CrossRef Konar A, Mathew J, Nayak K, Bajaj M, Pandey RK, Dhara S, Murali KVRM, Deshmukh M (2015) Carrier transport in high mobility InAs nanowire junctionless transistors. Nano Lett 15:1684–1690CrossRef
go back to reference Lee S, Huang CY, Cohen-Elias D, Law JM, Chobpattanna V, Kramer S, Thibeault BJ, Mitchell W, Stemmer S, Gossard AC, Rodwell MJW (2013) High performance raised source/drain InAs/In0.53Ga0.47As channel metal-oxide semiconductor field-effect-transistors with reduced leakage using a vertical spacer. Appl Phys Lett 103(2):233503CrossRef Lee S, Huang CY, Cohen-Elias D, Law JM, Chobpattanna V, Kramer S, Thibeault BJ, Mitchell W, Stemmer S, Gossard AC, Rodwell MJW (2013) High performance raised source/drain InAs/In0.53Ga0.47As channel metal-oxide semiconductor field-effect-transistors with reduced leakage using a vertical spacer. Appl Phys Lett 103(2):233503CrossRef
go back to reference Lee S, Huang CY, Elias DC, Thibeault BJ, Mitchell W, Chobpattana V, Stemmer S, Ossard AC, Rodwell MJW (2014) Highly scalable raised source/drain InAs quantum well MOSFETs exhibiting ION  = 482μA/μm at IOFF  = 100 nA/μm and VDD  = 0.5 V. IEEE Electron Device Lett 35(6):621–623CrossRef Lee S, Huang CY, Elias DC, Thibeault BJ, Mitchell W, Chobpattana V, Stemmer S, Ossard AC, Rodwell MJW (2014) Highly scalable raised source/drain InAs quantum well MOSFETs exhibiting ION  = 482μA/μm at IOFF  = 100 nA/μm and VDD  = 0.5 V. IEEE Electron Device Lett 35(6):621–623CrossRef
go back to reference Li T, Shen R, Sun M, Pan D, Zhang J, Xu J, Zhao J, Chen Q (2018) Improving the electrical properties of InAs nanowire field effect transistors by covering them with Y2O3/HfO2 layers. Nanoscale 10:18492–18501CrossRef Li T, Shen R, Sun M, Pan D, Zhang J, Xu J, Zhao J, Chen Q (2018) Improving the electrical properties of InAs nanowire field effect transistors by covering them with Y2O3/HfO2 layers. Nanoscale 10:18492–18501CrossRef
go back to reference Lubow A, Ismail-Beigi S, Ma TP (2010) Comparison of drive currents in metal-oxide-semiconductor field effect transistors made of Si, Ge, GaAs, InGaAs and InAs channels. Appl Phys Lett 96(12):122105CrossRef Lubow A, Ismail-Beigi S, Ma TP (2010) Comparison of drive currents in metal-oxide-semiconductor field effect transistors made of Si, Ge, GaAs, InGaAs and InAs channels. Appl Phys Lett 96(12):122105CrossRef
go back to reference Nah J, Fang H, Wang C, Takei K, Lee MH, Plis E, Krishna S, Javey A (2012) III–V complementary metal-oxide-semiconductor electronics on silicon substrates. Nano Lett 12(7):3592–3595CrossRef Nah J, Fang H, Wang C, Takei K, Lee MH, Plis E, Krishna S, Javey A (2012) III–V complementary metal-oxide-semiconductor electronics on silicon substrates. Nano Lett 12(7):3592–3595CrossRef
go back to reference Nilsson HA, Caroff P, Thelander C, Lind E, Karlstrom O, Wernersson LE (2010) Temperature dependent properties of InSb and InAs nanowire field-effect transistors. Appl Phys Lett 96(15):153505CrossRef Nilsson HA, Caroff P, Thelander C, Lind E, Karlstrom O, Wernersson LE (2010) Temperature dependent properties of InSb and InAs nanowire field-effect transistors. Appl Phys Lett 96(15):153505CrossRef
go back to reference Rode DL (1971) Electron transport in InSb, InAs, and InP. Phys Rev B 3(10):3287–3299CrossRef Rode DL (1971) Electron transport in InSb, InAs, and InP. Phys Rev B 3(10):3287–3299CrossRef
go back to reference Takei K, Chuang S, Fang H, Kapadia R, Liu CH, Nah J, Kim HS, Plis E, Krishna S, Chueh YL, Javey A (2011) Benchmarking the performance of ultrathin body InAs-on-insulator transistors as a function of body thickness. Appl Phys Lett 99(10):103507CrossRef Takei K, Chuang S, Fang H, Kapadia R, Liu CH, Nah J, Kim HS, Plis E, Krishna S, Chueh YL, Javey A (2011) Benchmarking the performance of ultrathin body InAs-on-insulator transistors as a function of body thickness. Appl Phys Lett 99(10):103507CrossRef
go back to reference Takei K, Kapadia R, Fang H, Plis E, Krishna S, Javey A (2013) High quality interfaces of InAs-on-insulator field-effect transistors with ZrO2 gate dielectrics. Appl Phys Lett 102(15):153513CrossRef Takei K, Kapadia R, Fang H, Plis E, Krishna S, Javey A (2013) High quality interfaces of InAs-on-insulator field-effect transistors with ZrO2 gate dielectrics. Appl Phys Lett 102(15):153513CrossRef
go back to reference Varshni YP (1967) Temperature dependence of the energy gap in semiconductors. Physica 34:149–154CrossRef Varshni YP (1967) Temperature dependence of the energy gap in semiconductors. Physica 34:149–154CrossRef
go back to reference Yeo I, Dong Song J, Lee J (2011) Temperature-dependent energy band gap variation in self-organized InAs quantum dots. Appl Phys Lett 99(15):151909CrossRef Yeo I, Dong Song J, Lee J (2011) Temperature-dependent energy band gap variation in self-organized InAs quantum dots. Appl Phys Lett 99(15):151909CrossRef
go back to reference Yokoyama M, Yokoyama H, Takenaka M, Takagi S (2014) III–V single structure CMOS by using ultrathin body InAs/GaSb-OI channels on Si. In: Proceedings of VLSI Tech, p 978 Yokoyama M, Yokoyama H, Takenaka M, Takagi S (2014) III–V single structure CMOS by using ultrathin body InAs/GaSb-OI channels on Si. In: Proceedings of VLSI Tech, p 978
Metadata
Title
Effects of temperature and channel thickness on digital and analog performance of InAs quantum well nMOSFETs
Authors
Sumedha Dasgupta
Chandrima Mondal
Abhijit Biswas
Publication date
24-10-2019
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 4/2020
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-019-04657-z

Other articles of this Issue 4/2020

Microsystem Technologies 4/2020 Go to the issue