Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 11/2017

09-02-2017

Electrical characteristics of Au/n-Si (MS) Schottky Diodes (SDs) with and without different rates (graphene + Ca1.9Pr0.1Co4Ox-doped poly(vinyl alcohol)) interfacial layer

Authors: H. G. Çetinkaya, Ş. Altındal, I. Orak, I. Uslu

Published in: Journal of Materials Science: Materials in Electronics | Issue 11/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In order to see effects of interfacial (with and without different graphene (GP) + Ca1.9Pr0.1Co4Ox-doped PVA) layer on the electrical characteristics of conventional Au/n-Si (MS) contacts. Therefore, Au/(GP + Ca1.9Pr0.1Co4Ox-doped PVA)/n-Si (MPS) structures were fabricated with different rates of (%3 GP, %7 GP) PVA and were fabricated on same n-Si wafer. Au/n-Si (MS), Au/PVA/n-Si, Au/%3GP + Ca1.9Pr0.1Co4Ox-doped PVA/n-Si and Au/%7GP + Ca1.9Pr0.1Co4Ox-doped PVA/n-Si structures were fabricated and their main electrical characteristics compared each other by using current–voltage (I–V) methods. The forward and reverse bias current voltage (I–V) characteristics of with and without GP + Ca1.9Pr0.1Co4Ox-doped PVA/n-Si at room temperature were studied to investigate its main electrical parameters. The energy density distribution profile of the interface states (Nss) was obtained from the forward bias I–V data by taking into account voltage dependent ideality factor (n(v)) and effective barrier height (Φe) and they increase from at about mid-gap energy of Si to bottom of conductance band edge. In addition, voltage dependent profile of resistivity of the structure was obtained from I–V data for four different structures. The analysis of experimental results reveals that the existence of GP + Ca1.9Pr0.1Co4Ox-doped PVA interfacial layer improves the performance of MS structure. In order to determine the dominant current-transport mechanism (CTM) in the whole forward bias region of these structures, the double logarithmic forward bias I–V plots were also drawn. These plots exhibit two distinct linear region with different slopes which are corresponding to intermediate and high forward bias voltages. The slope of these plots show that in the region 1 (low biases) the dominant CTM is trap-charge-limited current (TCLC), whereas in the region 2 (high biases) is space-charge-limited current (SCLC) for four diodes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H. Uslu, Ş. Altindal, T. Tunç, I. Uslu, T.S. Mammadov. J. Appl. Polym. Sci. 120, 322–328 (2011)CrossRef H. Uslu, Ş. Altindal, T. Tunç, I. Uslu, T.S. Mammadov. J. Appl. Polym. Sci. 120, 322–328 (2011)CrossRef
2.
go back to reference A. Kaya, H. G. Çetinkaya, Ş. Altındal, I. Uslu, Int. J. Mod. Phys. B. 30, 1650090–107 (2016)CrossRef A. Kaya, H. G. Çetinkaya, Ş. Altındal, I. Uslu, Int. J. Mod. Phys. B. 30, 1650090–107 (2016)CrossRef
3.
go back to reference A. Kaya, S. Alialy, S. Demirezen, M. Balbaşı, S.A. Yerişkin, A. Aytimur, Ceram. Int. 42, 3322–3329 (2016)CrossRef A. Kaya, S. Alialy, S. Demirezen, M. Balbaşı, S.A. Yerişkin, A. Aytimur, Ceram. Int. 42, 3322–3329 (2016)CrossRef
5.
go back to reference H. G. Çetinkaya, Ş. Altındal, I. Uslu, J. Mater. Sci. 26, 3186–3195 (2015) H. G. Çetinkaya, Ş. Altındal, I. Uslu, J. Mater. Sci. 26, 3186–3195 (2015)
6.
go back to reference V. Rajagopal Reddy, J. Phys. 89(5), 463–469 (2015) V. Rajagopal Reddy, J. Phys. 89(5), 463–469 (2015)
7.
go back to reference I. Karteri, Ş. Karataş, A.A. Al-Ghamdi, F. Yakuphanoğlu. Synth. Met. 199, 241–245 (2015)CrossRef I. Karteri, Ş. Karataş, A.A. Al-Ghamdi, F. Yakuphanoğlu. Synth. Met. 199, 241–245 (2015)CrossRef
10.
go back to reference M. Gökçen, T. Tunç, Ş. Altindal, I. Uslu, Master-Sci. Eng. B. 177, 416–420 (2012)CrossRef M. Gökçen, T. Tunç, Ş. Altindal, I. Uslu, Master-Sci. Eng. B. 177, 416–420 (2012)CrossRef
11.
go back to reference M. Gökçen, T. Tunç, Ş. Altindal, I. Uslu, J. Appl. Phys. 12, 525–530 (2012) M. Gökçen, T. Tunç, Ş. Altindal, I. Uslu, J. Appl. Phys. 12, 525–530 (2012)
14.
go back to reference I. Tantis, G.C. Pssaras, D. Tasis, Express Polym. Lett. 6, 283–292 (2012)CrossRef I. Tantis, G.C. Pssaras, D. Tasis, Express Polym. Lett. 6, 283–292 (2012)CrossRef
15.
go back to reference B.P. Singh, B.K. Jena, S. Bhattacharjee, L. Besra, Surf. Coat. Technol. 232, 475–481 (2013)CrossRef B.P. Singh, B.K. Jena, S. Bhattacharjee, L. Besra, Surf. Coat. Technol. 232, 475–481 (2013)CrossRef
16.
17.
18.
go back to reference Z. Liu, Q. Liu, Y. Huang, Y. Ma, S. Yin, X. Zhang, W. Sun, Y. Chen, Adv. Mater. 20, 3924–3930 (2008)CrossRef Z. Liu, Q. Liu, Y. Huang, Y. Ma, S. Yin, X. Zhang, W. Sun, Y. Chen, Adv. Mater. 20, 3924–3930 (2008)CrossRef
19.
go back to reference A. Singh, M.A. Uddin, T. Sudarshan, G. Koley, Nano Micro. Small 10, 1555–1565 (2014) A. Singh, M.A. Uddin, T. Sudarshan, G. Koley, Nano Micro. Small 10, 1555–1565 (2014)
20.
21.
go back to reference S. Reddy, X. Han, Q.Y. Zhu, M.L.Q. Mai, W. Chen, Microelectron. Eng. 83, 281–285 (2006)CrossRef S. Reddy, X. Han, Q.Y. Zhu, M.L.Q. Mai, W. Chen, Microelectron. Eng. 83, 281–285 (2006)CrossRef
24.
go back to reference K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666–669 (2004)CrossRef K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666–669 (2004)CrossRef
25.
go back to reference X.N. Luan, L. Chen, J.D. Zhang, G.Y. Qu, J.C. Flake, Y. Wang, Electrochim. Acta. 111, 216–222 (2013)CrossRef X.N. Luan, L. Chen, J.D. Zhang, G.Y. Qu, J.C. Flake, Y. Wang, Electrochim. Acta. 111, 216–222 (2013)CrossRef
26.
go back to reference L. Ravagnan, F. Siviero, C. Lenardi, P. Piseri, E. Barborini, P. Milani, C.S. Casari, A. Li Bassi, C.E. Bottani, Phys. Rev. Lett. 89, 285506 (2002)CrossRef L. Ravagnan, F. Siviero, C. Lenardi, P. Piseri, E. Barborini, P. Milani, C.S. Casari, A. Li Bassi, C.E. Bottani, Phys. Rev. Lett. 89, 285506 (2002)CrossRef
27.
go back to reference R.H. Friend, R.W. Gymer, A.B. Holmes, J.H. Burroughes, R.N. Marks, C. Taliani, D.D.C. Bradley, D.A. Dos Santos, J.L. Bredas, M. Logdlund, W.R. Salaneck, Nature 397, 121–128 (1999)CrossRef R.H. Friend, R.W. Gymer, A.B. Holmes, J.H. Burroughes, R.N. Marks, C. Taliani, D.D.C. Bradley, D.A. Dos Santos, J.L. Bredas, M. Logdlund, W.R. Salaneck, Nature 397, 121–128 (1999)CrossRef
28.
go back to reference S.M. Sze, Physics of Semiconductor Devices. (Wiley, New York, 1985) S.M. Sze, Physics of Semiconductor Devices. (Wiley, New York, 1985)
29.
go back to reference E.H. Rhoderick, Metal-Semiconductor Contacts, (Oxford University Press, London, 1978) E.H. Rhoderick, Metal-Semiconductor Contacts, (Oxford University Press, London, 1978)
30.
go back to reference B.L. Sharma, Metal-Semiconductor Schottky Barrier Junctions and Their Applications. (Plenum Press, New York, 1984)CrossRef B.L. Sharma, Metal-Semiconductor Schottky Barrier Junctions and Their Applications. (Plenum Press, New York, 1984)CrossRef
32.
go back to reference E. Arslan, S. Bütün, Y. Şafak, H. Uslu, I. Taşcıoğlu, Ş. Altındal, E. Özbay, Microelectron. Reliab. 51, 370–375 (2011)CrossRef E. Arslan, S. Bütün, Y. Şafak, H. Uslu, I. Taşcıoğlu, Ş. Altındal, E. Özbay, Microelectron. Reliab. 51, 370–375 (2011)CrossRef
33.
34.
36.
go back to reference Y.S. Ocak, M. Kulakcı, T. Kılıcoğlu, R. Turan, K. Akkılıc, Synth. Met. 159, 1603 (2009)CrossRef Y.S. Ocak, M. Kulakcı, T. Kılıcoğlu, R. Turan, K. Akkılıc, Synth. Met. 159, 1603 (2009)CrossRef
37.
go back to reference V. Rajagopal Reddy, V. Janardhanah, J.-W. Ju, H.-J. Yun, C.-J. Choi Solid State Commun. 179, 34 (2014)CrossRef V. Rajagopal Reddy, V. Janardhanah, J.-W. Ju, H.-J. Yun, C.-J. Choi Solid State Commun. 179, 34 (2014)CrossRef
Metadata
Title
Electrical characteristics of Au/n-Si (MS) Schottky Diodes (SDs) with and without different rates (graphene + Ca1.9Pr0.1Co4Ox-doped poly(vinyl alcohol)) interfacial layer
Authors
H. G. Çetinkaya
Ş. Altındal
I. Orak
I. Uslu
Publication date
09-02-2017
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 11/2017
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-017-6490-9

Other articles of this Issue 11/2017

Journal of Materials Science: Materials in Electronics 11/2017 Go to the issue