Skip to main content
Top

2023 | OriginalPaper | Chapter

21. Electrochemical Biosensors

Authors : Mayank Garg, Arushi Gupta, Amit L. Sharma, Suman Singh

Published in: Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Semiconductors made from group 12 and 16 elements are referred to as group II–VI semiconductors. These include group 12 elements such as cadmium and zinc and group 16 elements, called chalcogens, such as sulfur, selenium, and telluride. Combination of these elements results in various core–shell structures such as cadmium selenide, cadmium sulfide, cadmium telluride, and various zinc-based chalcogens. These elements have low band gap and have high optical activity. As a result, these materials have been largely explored for the development of optical-based biosensors, especially fluorescent and chemiluminescent based.
Other than optical activity, these materials exhibit good electrochemical properties as well due to their low band gap but still these core–shell materials have been less exploited for utilizing their electrochemical properties for applications like electrochemical biosensing. Electrochemical (bio)sensors have been the driving force for researchers since long due to their robustness, miniaturization possibility, and simplicity in fabrication and usage. These are widely employed for number of applications like food quality, water quality, and point-of-care devices for biomedical domain. This chapter is intended to give an overview of the various group II–VI semiconductors, their functionalization methods, and newly explored electrochemical-based biosensing applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abbas M, Torati S, Lee C, Rinaldi C, Kim C. Fe3O4/SiO2 core/shell nanocubes: novel coating approach with tunable silica thickness and enhancement in stability and biocompatibility. J Nanomed Nanotechnol. 2014;5(6):1–8.CrossRef Abbas M, Torati S, Lee C, Rinaldi C, Kim C. Fe3O4/SiO2 core/shell nanocubes: novel coating approach with tunable silica thickness and enhancement in stability and biocompatibility. J Nanomed Nanotechnol. 2014;5(6):1–8.CrossRef
2.
go back to reference Asadpour-Zeynali K, Mollarasouli F. Novel electrochemical biosensor based on PVP capped CoFe2O4@CdSe core-shell nanoparticles modified electrode for ultra-trace level determination of rifampicin by square wave adsorptive stripping voltammetry. Biosens Bioelectron. 2017;92:509–16. Asadpour-Zeynali K, Mollarasouli F. Novel electrochemical biosensor based on PVP capped CoFe2O4@CdSe core-shell nanoparticles modified electrode for ultra-trace level determination of rifampicin by square wave adsorptive stripping voltammetry. Biosens Bioelectron. 2017;92:509–16.
3.
go back to reference Avelino KYPS, Silva RR, da Silva Junior AG, Oliveira MDL, Andrade CAS. Smart applications of bionanosensors for BCR/ABL fusion gene detection in leukemia. J King Saud Univ Sci. 2017;29(4):413–23.CrossRef Avelino KYPS, Silva RR, da Silva Junior AG, Oliveira MDL, Andrade CAS. Smart applications of bionanosensors for BCR/ABL fusion gene detection in leukemia. J King Saud Univ Sci. 2017;29(4):413–23.CrossRef
4.
go back to reference Azandaryani AH, Kashanian S, Jamshidnejad-Tosaramandani T. Recent insights into effective nanomaterials and biomacromolecules conjugation in advanced drug targeting. Curr Pharm Biotechnol. 2019;20(7):526–41.CrossRef Azandaryani AH, Kashanian S, Jamshidnejad-Tosaramandani T. Recent insights into effective nanomaterials and biomacromolecules conjugation in advanced drug targeting. Curr Pharm Biotechnol. 2019;20(7):526–41.CrossRef
5.
go back to reference Bałczewski P, Kudelska W, Bodzioch A. 4.12 – 1,3-dithioles. In: Katritzky AR, Ramsden CA, Scriven EFV, Taylor RJK, editors. Comprehensive heterocyclic chemistry III. Oxford: Elsevier; 2008. p. 955–1090.CrossRef Bałczewski P, Kudelska W, Bodzioch A. 4.12 – 1,3-dithioles. In: Katritzky AR, Ramsden CA, Scriven EFV, Taylor RJK, editors. Comprehensive heterocyclic chemistry III. Oxford: Elsevier; 2008. p. 955–1090.CrossRef
6.
go back to reference Batista Deroco P, Giarola JDF, Wachholz Júnior D, Arantes Lorga G, Tatsuo Kubota L. Chapter four – Paper-based electrochemical sensing devices. In: Merkoçi A, editor. Comprehensive analytical chemistry., vol. 89. Elsevier; 2020. p. 91–137. Batista Deroco P, Giarola JDF, Wachholz Júnior D, Arantes Lorga G, Tatsuo Kubota L. Chapter four – Paper-based electrochemical sensing devices. In: Merkoçi A, editor. Comprehensive analytical chemistry., vol. 89. Elsevier; 2020. p. 91–137.
7.
go back to reference Castle JR, Ward WK. Amperometric glucose sensors: sources of error and potential benefit of redundancy. J Diabetes Sci Technol. 2010;4(1):211–5.CrossRef Castle JR, Ward WK. Amperometric glucose sensors: sources of error and potential benefit of redundancy. J Diabetes Sci Technol. 2010;4(1):211–5.CrossRef
8.
go back to reference Choma J, Dziura A, Jamioła D, Nyga P, Jaroniec M. Preparation and properties of silica–gold core–shell particles. Colloids Surf A Physicochem Eng Asp. 2011;373(1–3):167–71.CrossRef Choma J, Dziura A, Jamioła D, Nyga P, Jaroniec M. Preparation and properties of silica–gold core–shell particles. Colloids Surf A Physicochem Eng Asp. 2011;373(1–3):167–71.CrossRef
9.
go back to reference Deshpande S, Sharma S, Koul V, Singh N. Core–shell nanoparticles as an efficient, sustained, and triggered drug-delivery system. ACS Omega. 2017;2(10):6455–63.CrossRef Deshpande S, Sharma S, Koul V, Singh N. Core–shell nanoparticles as an efficient, sustained, and triggered drug-delivery system. ACS Omega. 2017;2(10):6455–63.CrossRef
10.
go back to reference Dhas NL, Raval NJ, Kudarha RR, Acharya NS, Acharya SR. Core–shell nanoparticles as a drug delivery platform for tumor targeting. Inorganic frameworks as smart nanomedicines: Elsevier; 2018. p. 387–448. Dhas NL, Raval NJ, Kudarha RR, Acharya NS, Acharya SR. Core–shell nanoparticles as a drug delivery platform for tumor targeting. Inorganic frameworks as smart nanomedicines: Elsevier; 2018. p. 387–448.
11.
go back to reference Feng H-P, Tang L, Zeng G-M, Zhou Y, Deng Y-C, Ren X, Song B, Liang C, Wei M-Y, Yu J-F. Core-shell nanomaterials: applications in energy storage and conversion. Adv Colloid Interface Sci. 2019;267:26–46.CrossRef Feng H-P, Tang L, Zeng G-M, Zhou Y, Deng Y-C, Ren X, Song B, Liang C, Wei M-Y, Yu J-F. Core-shell nanomaterials: applications in energy storage and conversion. Adv Colloid Interface Sci. 2019;267:26–46.CrossRef
12.
go back to reference Garg M, Chatterjee M, Sharma AL, Singh S. Label-free approach for electrochemical ferritin sensing using biosurfactant stabilized tungsten disulfide quantum dots. Biosens Bioelectron. 2020;151:111979.CrossRef Garg M, Chatterjee M, Sharma AL, Singh S. Label-free approach for electrochemical ferritin sensing using biosurfactant stabilized tungsten disulfide quantum dots. Biosens Bioelectron. 2020;151:111979.CrossRef
13.
go back to reference Garg M, Rani R, Sharma AL, Singh S. White graphene quantum dots as electrochemical sensing platform for ferritin. Faraday Discuss. 2021;217:204–12.CrossRef Garg M, Rani R, Sharma AL, Singh S. White graphene quantum dots as electrochemical sensing platform for ferritin. Faraday Discuss. 2021;217:204–12.CrossRef
14.
go back to reference Ghrera AS, Pandey CM, Ali MA, Malhotra BD. Quantum dot-based microfluidic biosensor for cancer detection. Appl Phys Lett. 2015;106(19):193703.CrossRef Ghrera AS, Pandey CM, Ali MA, Malhotra BD. Quantum dot-based microfluidic biosensor for cancer detection. Appl Phys Lett. 2015;106(19):193703.CrossRef
15.
go back to reference Grieshaber D, MacKenzie R, Vörös J, Reimhult E. Electrochemical biosensors – sensor principles and architectures. Sensors (Basel). 2008;8(3):1400–58.CrossRef Grieshaber D, MacKenzie R, Vörös J, Reimhult E. Electrochemical biosensors – sensor principles and architectures. Sensors (Basel). 2008;8(3):1400–58.CrossRef
16.
go back to reference Guan J-G, Miao Y-Q, Zhang Q-J. Impedimetric biosensors. J Biosci Bioeng. 2004;97(4):219–6.CrossRef Guan J-G, Miao Y-Q, Zhang Q-J. Impedimetric biosensors. J Biosci Bioeng. 2004;97(4):219–6.CrossRef
17.
go back to reference Gupta A, Bhardwaj SK, Sharma AL, Kim K-H, Deep A. Development of an advanced electrochemical biosensing platform for E. coli using hybrid metal-organic framework/polyaniline composite. Environ Res. 2019;171:395–402.CrossRef Gupta A, Bhardwaj SK, Sharma AL, Kim K-H, Deep A. Development of an advanced electrochemical biosensing platform for E. coli using hybrid metal-organic framework/polyaniline composite. Environ Res. 2019;171:395–402.CrossRef
18.
go back to reference Holzinger M, Le Goff A, Cosnier S. Nanomaterials for biosensing applications: a review. Front Chem. 2014;2:63.CrossRef Holzinger M, Le Goff A, Cosnier S. Nanomaterials for biosensing applications: a review. Front Chem. 2014;2:63.CrossRef
19.
go back to reference Jankiewicz B, Jamiola D, Choma J, Jaroniec M. Silica–metal core–shell nanostructures. Adv Colloid Interf Sci. 2012;170(1–2):28–47.CrossRef Jankiewicz B, Jamiola D, Choma J, Jaroniec M. Silica–metal core–shell nanostructures. Adv Colloid Interf Sci. 2012;170(1–2):28–47.CrossRef
20.
go back to reference Kalambate PK, Huang Z, Li Y, Shen Y, Xie M, Huang Y, Srivastava AK. Core@ shell nanomaterials based sensing devices: a review. TrAC Trends Anal Chem. 2019;115:147–61.CrossRef Kalambate PK, Huang Z, Li Y, Shen Y, Xie M, Huang Y, Srivastava AK. Core@ shell nanomaterials based sensing devices: a review. TrAC Trends Anal Chem. 2019;115:147–61.CrossRef
21.
go back to reference Khaliq N, Rasheed MA, Khan M, Maqbool M, Ahmad M, Karim S, Nisar A, Schmuki P, Cho SO, Ali G. Voltage-switchable biosensor with gold nanoparticles on TiO2 nanotubes decorated with CdS quantum dots for the detection of cholesterol and H2O2. ACS Appl Mater Interfaces. 2021;13(3):3653–68. Khaliq N, Rasheed MA, Khan M, Maqbool M, Ahmad M, Karim S, Nisar A, Schmuki P, Cho SO, Ali G. Voltage-switchable biosensor with gold nanoparticles on TiO2 nanotubes decorated with CdS quantum dots for the detection of cholesterol and H2O2. ACS Appl Mater Interfaces. 2021;13(3):3653–68.
22.
go back to reference Kotanen CN, Moussy FG, Carrara S, Guiseppi-Elie A. Implantable enzyme amperometric biosensors. Biosens Bioelectron. 2012;35(1):14–26.CrossRef Kotanen CN, Moussy FG, Carrara S, Guiseppi-Elie A. Implantable enzyme amperometric biosensors. Biosens Bioelectron. 2012;35(1):14–26.CrossRef
23.
go back to reference Kucukkolbasi S, Erdogan ZO, Baslak C, Sogut D, Kus M. A highly sensitive ascorbic acid sensor based on graphene oxide/CdTe quantum dots-modified glassy carbon electrode. Russ J Electrochem. 2019;55(2):107–14.CrossRef Kucukkolbasi S, Erdogan ZO, Baslak C, Sogut D, Kus M. A highly sensitive ascorbic acid sensor based on graphene oxide/CdTe quantum dots-modified glassy carbon electrode. Russ J Electrochem. 2019;55(2):107–14.CrossRef
24.
go back to reference Kumar R, Mondal K, Panda PK, Kaushik A, Abolhassani R, Ahuja R, Rubahn H-G, Mishra YK. Core–shell nanostructures: perspectives towards drug delivery applications. J Mater Chem B. 2020;8(39):8992–9027.CrossRef Kumar R, Mondal K, Panda PK, Kaushik A, Abolhassani R, Ahuja R, Rubahn H-G, Mishra YK. Core–shell nanostructures: perspectives towards drug delivery applications. J Mater Chem B. 2020;8(39):8992–9027.CrossRef
25.
go back to reference Marín S, Merkoçi A. Nanomaterials based electrochemical sensing applications for safety and security. Electroanalysis. 2012;24(3):459–69.CrossRef Marín S, Merkoçi A. Nanomaterials based electrochemical sensing applications for safety and security. Electroanalysis. 2012;24(3):459–69.CrossRef
26.
go back to reference Moazampour M, Zare HR, Shekari Z. Femtomolar determination of an ovarian cancer biomarker (miR-200a) in blood plasma using a label free electrochemical biosensor based on l-cysteine functionalized ZnS quantum dots. Anal Methods. 2021;13(17):2021–9.CrossRef Moazampour M, Zare HR, Shekari Z. Femtomolar determination of an ovarian cancer biomarker (miR-200a) in blood plasma using a label free electrochemical biosensor based on l-cysteine functionalized ZnS quantum dots. Anal Methods. 2021;13(17):2021–9.CrossRef
27.
go back to reference Pandey P, Datta M, Malhotra B. Prospects of nanomaterials in biosensors. Anal Lett. 2008;41(2):159–209.CrossRef Pandey P, Datta M, Malhotra B. Prospects of nanomaterials in biosensors. Anal Lett. 2008;41(2):159–209.CrossRef
28.
go back to reference Rahman MM, Karim MR, Alam MM, Zaman MB, Alharthi N, Alharbi H, Asiri AM. Facile and efficient 3-chlorophenol sensor development based on photoluminescent core-shell CdSe/ZnS quantum dots. Sci Rep. 2020;10(1):557.CrossRef Rahman MM, Karim MR, Alam MM, Zaman MB, Alharthi N, Alharbi H, Asiri AM. Facile and efficient 3-chlorophenol sensor development based on photoluminescent core-shell CdSe/ZnS quantum dots. Sci Rep. 2020;10(1):557.CrossRef
29.
go back to reference Ramli RA, Laftah WA, Hashim S. Core–shell polymers: a review. RSC Adv. 2013;3(36):15543–65.CrossRef Ramli RA, Laftah WA, Hashim S. Core–shell polymers: a review. RSC Adv. 2013;3(36):15543–65.CrossRef
30.
go back to reference Rani R, Deep A, Mizaikoff B, Singh S. Copper based organic framework modified electrosensor for selective and sensitive detection of ciprofloxacin. Electroanalysis. 2020;32(11):2442–51.CrossRef Rani R, Deep A, Mizaikoff B, Singh S. Copper based organic framework modified electrosensor for selective and sensitive detection of ciprofloxacin. Electroanalysis. 2020;32(11):2442–51.CrossRef
31.
go back to reference Rani R, Deep A, Mizaikoff B, Singh S. Zirconium metal organic framework based opto-electrochemical sensor for nitrofurazone detection. J Electroanal Chem. 2022;909:116124.CrossRef Rani R, Deep A, Mizaikoff B, Singh S. Zirconium metal organic framework based opto-electrochemical sensor for nitrofurazone detection. J Electroanal Chem. 2022;909:116124.CrossRef
32.
go back to reference Rowland CE, Brown CW III, Delehanty JB, Medintz IL. Nanomaterial-based sensors for the detection of biological threat agents. Mater Today. 2016;19(8):464–77.CrossRef Rowland CE, Brown CW III, Delehanty JB, Medintz IL. Nanomaterial-based sensors for the detection of biological threat agents. Mater Today. 2016;19(8):464–77.CrossRef
33.
go back to reference Shankar SS, Rai A, Ahmad A, Sastry M. Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci. 2004;275(2):496–502.CrossRef Shankar SS, Rai A, Ahmad A, Sastry M. Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci. 2004;275(2):496–502.CrossRef
34.
go back to reference Singh S, Jain DVS, Singla ML. Sol–gel based composite of gold nanoparticles as matrix for tyrosinase for amperometric catechol biosensor. Sensors Actuators B Chem. 2013;182:161–9.CrossRef Singh S, Jain DVS, Singla ML. Sol–gel based composite of gold nanoparticles as matrix for tyrosinase for amperometric catechol biosensor. Sensors Actuators B Chem. 2013;182:161–9.CrossRef
35.
go back to reference Singh S, Kaur V, Kumar N. Core–shell nanostructures: an insight into their synthetic approaches. In: Metal semiconductor core-shell nanostructures for energy and environmental applications. Elsevier; 2017. p. 35–50. Singh S, Kaur V, Kumar N. Core–shell nanostructures: an insight into their synthetic approaches. In: Metal semiconductor core-shell nanostructures for energy and environmental applications. Elsevier; 2017. p. 35–50.
36.
go back to reference Xia L, Xu L, Song J, Xu R, Liu D, Dong B, Song H. CdS quantum dots modified CuO inverse opal electrodes for ultrasensitive electrochemical and photoelectrochemical biosensor. Sci Rep. 2015;5(1):10838.CrossRef Xia L, Xu L, Song J, Xu R, Liu D, Dong B, Song H. CdS quantum dots modified CuO inverse opal electrodes for ultrasensitive electrochemical and photoelectrochemical biosensor. Sci Rep. 2015;5(1):10838.CrossRef
37.
go back to reference Yoon J, Cho H-Y, Shin M, Choi HK, Lee T, Choi J-W. Flexible electrochemical biosensors for healthcare monitoring. J Mater Chem B. 2020;8(33):7303–18.CrossRef Yoon J, Cho H-Y, Shin M, Choi HK, Lee T, Choi J-W. Flexible electrochemical biosensors for healthcare monitoring. J Mater Chem B. 2020;8(33):7303–18.CrossRef
38.
go back to reference Yu H-W, Zhang Z, Jiang J-H, Pan H-Z, Chang D. Simple strategy for sensitive detection of dopamine using CdTe QDs modified glassy carbon electrode. J Clin Lab Anal. 2018;32(3):e21320.CrossRef Yu H-W, Zhang Z, Jiang J-H, Pan H-Z, Chang D. Simple strategy for sensitive detection of dopamine using CdTe QDs modified glassy carbon electrode. J Clin Lab Anal. 2018;32(3):e21320.CrossRef
39.
go back to reference Yuan Y, Hu T, Zhong X, Zhu M, Chai Y, Yuan R. Highly sensitive photoelectrochemical biosensor based on quantum dots sensitizing Bi2Te3 nanosheets and DNA-amplifying strategies. ACS Appl Mater Interfaces. 2020;12(20):21624–9.CrossRef Yuan Y, Hu T, Zhong X, Zhu M, Chai Y, Yuan R. Highly sensitive photoelectrochemical biosensor based on quantum dots sensitizing Bi2Te3 nanosheets and DNA-amplifying strategies. ACS Appl Mater Interfaces. 2020;12(20):21624–9.CrossRef
40.
go back to reference Zhong M, Yang L, Yang H, Cheng C, Deng W, Tan Y, Xie Q, Yao S. An electrochemical immunobiosensor for ultrasensitive detection of Escherichia coli O157:H7 using CdS quantum dots-encapsulated metal-organic frameworks as signal-amplifying tags. Biosens Bioelectron. 2019;126:493–500.CrossRef Zhong M, Yang L, Yang H, Cheng C, Deng W, Tan Y, Xie Q, Yao S. An electrochemical immunobiosensor for ultrasensitive detection of Escherichia coli O157:H7 using CdS quantum dots-encapsulated metal-organic frameworks as signal-amplifying tags. Biosens Bioelectron. 2019;126:493–500.CrossRef
41.
go back to reference Zhu L, Hao H, Ding C, Gan H, Jiang S, Zhang G, Bi J, Yan S, Hou H. A novel photoelectrochemical aptamer sensor based on cdte quantum dots enhancement and exonuclease i-assisted signal amplification for listeria monocytogenes detection. Foods. 2021;10(12):2896.CrossRef Zhu L, Hao H, Ding C, Gan H, Jiang S, Zhang G, Bi J, Yan S, Hou H. A novel photoelectrochemical aptamer sensor based on cdte quantum dots enhancement and exonuclease i-assisted signal amplification for listeria monocytogenes detection. Foods. 2021;10(12):2896.CrossRef
Metadata
Title
Electrochemical Biosensors
Authors
Mayank Garg
Arushi Gupta
Amit L. Sharma
Suman Singh
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-24000-3_21

Premium Partners