Skip to main content
Top
Published in: Journal of Computational Electronics 3/2016

17-05-2016

Energy gap renormalization and diamagnetic susceptibility in quantum wires with different cross-sectional shape

Authors: Z. Avazzadeh, R. Khordad, H. Bahramiyan, S. A. Mohammadi

Published in: Journal of Computational Electronics | Issue 3/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, we investigate the effect of the cross-sectional shape on the energy gap renormalization and diamagnetic susceptibility in various quantum wires. To this end, we consider quantum wires with different cross-sectional shapes such as circular, square, hexagonal, and triangular. First, we employ the finite-element method and Arnoldi algorithm to solve the Schrödinger equation. Then, we calculate the energy levels, wavefunctions, binding energy, energy gap renormalization, and diamagnetic susceptibility. Our numerical results show that the binding energy decreases when the cross-sectional area is increased for all the quantum wires. Moreover, it is inferred that the cross-sectional shape is not important for large cross-sectional area when calculating the binding energy. Indeed, the main parameter is the cross-sectional area rather than the length of a side. The energy gap renormalization decreases with increasing cross-sectional area, regardless of the impurity concentration. We observe that the highest and lowest energy gap renormalization correspond to triangular and circular quantum wires, respectively. The absolute value of the diamagnetic susceptibility increases with increasing cross-sectional area for all the quantum wires investigated.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Duque, C.M., Mora-Ramos, M.E., Duque, C.A.: Quantum disc plus inverse square potential. An analytical model for two-dimensional quantum rings: study of nonlinear optical properties. Ann. Phys. 524, 327–337 (2012)CrossRefMATH Duque, C.M., Mora-Ramos, M.E., Duque, C.A.: Quantum disc plus inverse square potential. An analytical model for two-dimensional quantum rings: study of nonlinear optical properties. Ann. Phys. 524, 327–337 (2012)CrossRefMATH
2.
go back to reference Gao, P.X., Ding, Y., Mai, W., Hughes, W.L., Lao, C., Wang, Z.L.: Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science 309, 1700–1704 (2005)CrossRef Gao, P.X., Ding, Y., Mai, W., Hughes, W.L., Lao, C., Wang, Z.L.: Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science 309, 1700–1704 (2005)CrossRef
3.
go back to reference Mongillo, M., Spathis, P., Katsaros, G., Gentile, P., De Franceschi, S.: Multifunctional devices and logic gates with undoped silicon nanowires. Nano Lett. 12, 3074–3079 (2012)CrossRef Mongillo, M., Spathis, P., Katsaros, G., Gentile, P., De Franceschi, S.: Multifunctional devices and logic gates with undoped silicon nanowires. Nano Lett. 12, 3074–3079 (2012)CrossRef
5.
go back to reference Garcia, J.C., Justo, J.F.: Twisted ultrathin silicon nanowires: a possible torsion electromechanical nanodevice. Europhys. Lett. 108, 36006–36011 (2014)CrossRef Garcia, J.C., Justo, J.F.: Twisted ultrathin silicon nanowires: a possible torsion electromechanical nanodevice. Europhys. Lett. 108, 36006–36011 (2014)CrossRef
6.
go back to reference Elnathan, R., Kwiat, M., Pevzner, A., Engel, Y., Burstein, L., Khatchtourints, A., Lichtenstein, A., Kantaev, R., Patolsky, F.: Biorecognition layer engineering: overcoming screening limitations of nanowire-based FET devices. Nano Lett. 12, 5245–5254 (2012)CrossRef Elnathan, R., Kwiat, M., Pevzner, A., Engel, Y., Burstein, L., Khatchtourints, A., Lichtenstein, A., Kantaev, R., Patolsky, F.: Biorecognition layer engineering: overcoming screening limitations of nanowire-based FET devices. Nano Lett. 12, 5245–5254 (2012)CrossRef
7.
go back to reference Ogale, S.B.: Thin Films and Heterostructures for Oxide Electronics. Springer, New York (2005) Ogale, S.B.: Thin Films and Heterostructures for Oxide Electronics. Springer, New York (2005)
8.
go back to reference Suenaga, K., Colliex, C., Demoncy, N., Loiseau, A., Pascard, H., Willaime, F.: Synthesis of nanoparticles and nanotubes with well-separated layers of boron nitride and carbon. Science 278, 653–655 (1997)CrossRef Suenaga, K., Colliex, C., Demoncy, N., Loiseau, A., Pascard, H., Willaime, F.: Synthesis of nanoparticles and nanotubes with well-separated layers of boron nitride and carbon. Science 278, 653–655 (1997)CrossRef
9.
go back to reference Khordad, R., Bahramiyan, H.: Electron-phonon interaction effect on the energy levels and diamagnetic susceptibility of quantum wires: Parallelogram and triangle cross section. J. Appl. Phys. 115, 124314–124320 (2014)CrossRef Khordad, R., Bahramiyan, H.: Electron-phonon interaction effect on the energy levels and diamagnetic susceptibility of quantum wires: Parallelogram and triangle cross section. J. Appl. Phys. 115, 124314–124320 (2014)CrossRef
10.
go back to reference Duque, C.A., Mora-Ramos, M.E., Kasapoglu, E., Ungan, F., Yesilgul, U., Sakiroglu, S., Sari, H., Sokmen, I.: Impurity-related linear and nonlinear optical response in quantum-well wires with triangular cross section. J. Lumin. 143, 304–313 (2013)CrossRef Duque, C.A., Mora-Ramos, M.E., Kasapoglu, E., Ungan, F., Yesilgul, U., Sakiroglu, S., Sari, H., Sokmen, I.: Impurity-related linear and nonlinear optical response in quantum-well wires with triangular cross section. J. Lumin. 143, 304–313 (2013)CrossRef
11.
go back to reference Khordad, R.: Refractive index change and absorption coefficient of T shaped quantum wires: comparing with experimental results. Opt. Quant. Electron. 46, 283–293 (2014)MathSciNetCrossRef Khordad, R.: Refractive index change and absorption coefficient of T shaped quantum wires: comparing with experimental results. Opt. Quant. Electron. 46, 283–293 (2014)MathSciNetCrossRef
12.
go back to reference Khordad, R., Bahramiyan, H.: The energy levels, binding energy and third harmonic generation of a hexagon-shaped quantum wire. Mod. Phys. Lett. B 29, 1550078–1550092 (2015)CrossRef Khordad, R., Bahramiyan, H.: The energy levels, binding energy and third harmonic generation of a hexagon-shaped quantum wire. Mod. Phys. Lett. B 29, 1550078–1550092 (2015)CrossRef
13.
go back to reference Mohan, P., Motohisa, J., Fukui, T.: Fabrication of core-multishell heterostructure nanowires by selective area metalorganic vapor phase epitaxy. Appl. Phys. Lett. 88, 133105–133110 (2006)CrossRef Mohan, P., Motohisa, J., Fukui, T.: Fabrication of core-multishell heterostructure nanowires by selective area metalorganic vapor phase epitaxy. Appl. Phys. Lett. 88, 133105–133110 (2006)CrossRef
14.
go back to reference Khordad, R.: Second and third-harmonic generation of parallelogram quantum wires: electric field. Indian J. Phys. 88, 275–281 (2014)CrossRef Khordad, R.: Second and third-harmonic generation of parallelogram quantum wires: electric field. Indian J. Phys. 88, 275–281 (2014)CrossRef
15.
go back to reference Makhanets, O.M., Gutsul, V.I., Tsiupak, N.R., Voitsekhivska, O.M.: Exciton spectrum in multi-shell hexagonal semiconductor nanotube. Condens. Matter Phys. 15, 33704–33712 (2012)CrossRef Makhanets, O.M., Gutsul, V.I., Tsiupak, N.R., Voitsekhivska, O.M.: Exciton spectrum in multi-shell hexagonal semiconductor nanotube. Condens. Matter Phys. 15, 33704–33712 (2012)CrossRef
16.
go back to reference Khordad, R., Bahramiyan, H.: Strain effect on the absorption threshold energy of silicon circular nanowires. Commun. Theor. Phys. 65, 87–91 (2016)CrossRef Khordad, R., Bahramiyan, H.: Strain effect on the absorption threshold energy of silicon circular nanowires. Commun. Theor. Phys. 65, 87–91 (2016)CrossRef
17.
go back to reference Sakaki, H.: Quantum wires, quantum boxes and related structures: physics, device potentials and structural requirements. Surf. Sci. 267, 623–629 (1992)CrossRef Sakaki, H.: Quantum wires, quantum boxes and related structures: physics, device potentials and structural requirements. Surf. Sci. 267, 623–629 (1992)CrossRef
18.
go back to reference Rurali, R.: Colloquium: Structural, electronic, and transport properties of silicon nanowires. Rev. Mod. Phys. 82, 427–450 (2010)CrossRef Rurali, R.: Colloquium: Structural, electronic, and transport properties of silicon nanowires. Rev. Mod. Phys. 82, 427–450 (2010)CrossRef
19.
go back to reference Reimann, S.M., Manninen, M.: Electronic structure of quantum dots. Rev. Mod. Phys. 74, 1328–1342 (2002)CrossRef Reimann, S.M., Manninen, M.: Electronic structure of quantum dots. Rev. Mod. Phys. 74, 1328–1342 (2002)CrossRef
20.
go back to reference Ermolaev, A.M., Rashba, G.I.: Impurity states of electrons in quantum dots in external magnetic fields. Eur. Phys. J. 66, 223–226 (2008)CrossRefMATH Ermolaev, A.M., Rashba, G.I.: Impurity states of electrons in quantum dots in external magnetic fields. Eur. Phys. J. 66, 223–226 (2008)CrossRefMATH
21.
go back to reference Hayrapetyan, D.B., Kazaryan, E.M., Tevosyan, HKh: Impurity states in a cylindrical quantum dot with the modified Pöschl-Teller potential. J. Contemp. Phys. 49, 119–122 (2014)CrossRef Hayrapetyan, D.B., Kazaryan, E.M., Tevosyan, HKh: Impurity states in a cylindrical quantum dot with the modified Pöschl-Teller potential. J. Contemp. Phys. 49, 119–122 (2014)CrossRef
22.
go back to reference Bastard, G.: Hydrogenic impurity states in a quantum well: a simple model. Phys. Rev. B 24, 4714–4718 (1981)CrossRef Bastard, G.: Hydrogenic impurity states in a quantum well: a simple model. Phys. Rev. B 24, 4714–4718 (1981)CrossRef
23.
go back to reference Khordad, R., Bahramiyan, H.: Study of impurity position effect in pyramid and cone like quantum dots. Eur. Phys. J. Appl. Phys. 67, 20402–20408 (2014)CrossRef Khordad, R., Bahramiyan, H.: Study of impurity position effect in pyramid and cone like quantum dots. Eur. Phys. J. Appl. Phys. 67, 20402–20408 (2014)CrossRef
24.
go back to reference Coden, D.S.A., Romero, R.H., Ferrón, A., Gomez, S.S.: Impurity effects in two-electron coupled quantum dots: entanglement modulation. J. Phys. B 46, 065501–065502 (2013)CrossRef Coden, D.S.A., Romero, R.H., Ferrón, A., Gomez, S.S.: Impurity effects in two-electron coupled quantum dots: entanglement modulation. J. Phys. B 46, 065501–065502 (2013)CrossRef
25.
go back to reference Yu, E.: Perlin, Nonlinear susceptibilities of quantum dots. Opt. Spectrosc. 88, 439–445 (2008) Yu, E.: Perlin, Nonlinear susceptibilities of quantum dots. Opt. Spectrosc. 88, 439–445 (2008)
26.
go back to reference Rezaei, G., Azami, S.M., Vaseghi, B.: Electronic states and nonlinear optical properties of a two-dimensional hexagonal quantum dot: effects of impurity, geometrical size and confinement potential. Phys. Stat. Sol. B 249, 1459–1464 (2012)CrossRef Rezaei, G., Azami, S.M., Vaseghi, B.: Electronic states and nonlinear optical properties of a two-dimensional hexagonal quantum dot: effects of impurity, geometrical size and confinement potential. Phys. Stat. Sol. B 249, 1459–1464 (2012)CrossRef
27.
go back to reference Al-Hayek, I., Sandouqa, A.S.: Energy and binding energy of donor impurity in quantum dot with Gaussian confinement. Superlatt. Microstruc. 85, 216–225 (2015) Al-Hayek, I., Sandouqa, A.S.: Energy and binding energy of donor impurity in quantum dot with Gaussian confinement. Superlatt. Microstruc. 85, 216–225 (2015)
28.
go back to reference Baghramyan, H.M., Barseghyan, M.G., Duque, C.A., Kirakosyan, A.A.: Binding energy of hydrogenic donor impurity in \(\text{GaAs}/\text{ Ga }_{1-x} \text{ Al }_{x} \text{ AsGaAs }/\text{ Ga1-xAlxAs }\) concentric double quantum rings: effects of geometry, hydrostatic pressure, temperature, and aluminum concentration. Phys. E 48, 164–170(2013) Baghramyan, H.M., Barseghyan, M.G., Duque, C.A., Kirakosyan, A.A.: Binding energy of hydrogenic donor impurity in \(\text{GaAs}/\text{ Ga }_{1-x} \text{ Al }_{x} \text{ AsGaAs }/\text{ Ga1-xAlxAs }\) concentric double quantum rings: effects of geometry, hydrostatic pressure, temperature, and aluminum concentration. Phys. E 48, 164–170(2013)
29.
go back to reference Zhao, Z.R., Liang, X.X.: Phonon effect on binding energies of impurity states in cylindrical quantum wires of polar semiconductors under an electric field. Phys. E 40, 3086–3091 (2008)CrossRef Zhao, Z.R., Liang, X.X.: Phonon effect on binding energies of impurity states in cylindrical quantum wires of polar semiconductors under an electric field. Phys. E 40, 3086–3091 (2008)CrossRef
30.
go back to reference Safarpour, Gh, Barati, M., Zamani, A., Niknam, E.: Binding energy and optical properties of an off-center hydrogenic donor impurity in a spherical quantum dot placed at the center of a cylindrical nano-wire. J. Lumin. 145, 990–996 (2014)CrossRef Safarpour, Gh, Barati, M., Zamani, A., Niknam, E.: Binding energy and optical properties of an off-center hydrogenic donor impurity in a spherical quantum dot placed at the center of a cylindrical nano-wire. J. Lumin. 145, 990–996 (2014)CrossRef
31.
go back to reference Bryant, G.W.: Hydrogenic impurity states in quantum-well wires. Phys. Rev. B 29, 6632–6639 (1984)CrossRef Bryant, G.W.: Hydrogenic impurity states in quantum-well wires. Phys. Rev. B 29, 6632–6639 (1984)CrossRef
32.
go back to reference Brown, J.W., Spector, H.N.: Hydrogen impurities in quantum well wires. J. Appl. Phys. 59, 1179–1185 (1986)CrossRef Brown, J.W., Spector, H.N.: Hydrogen impurities in quantum well wires. J. Appl. Phys. 59, 1179–1185 (1986)CrossRef
33.
go back to reference Hsieh, C.Y.: Off-center donor impurity in multilayered quantum wires. J. Appl. Phys. 91, 2326–2331 (2002)CrossRef Hsieh, C.Y.: Off-center donor impurity in multilayered quantum wires. J. Appl. Phys. 91, 2326–2331 (2002)CrossRef
34.
go back to reference Nithiananthi, P., Jayakumar, K.: Effect of \(\Gamma \)-X band crossover and impurity location on the diamagnetic susceptibility of a donor in a quantum well. Solid State Commun. 138, 305–308 (2006)CrossRef Nithiananthi, P., Jayakumar, K.: Effect of \(\Gamma \)-X band crossover and impurity location on the diamagnetic susceptibility of a donor in a quantum well. Solid State Commun. 138, 305–308 (2006)CrossRef
35.
go back to reference Kilicarslan, E., Sakiroglu, S., Koksal, M., Sari, H., Sokmen, I.: The effects of the magnetic field and dielectric screening on the diamagnetic susceptibility of a donor in a quantum well with anisotropic effective mass. Phys. E 42, 1531–1535 (2010)CrossRef Kilicarslan, E., Sakiroglu, S., Koksal, M., Sari, H., Sokmen, I.: The effects of the magnetic field and dielectric screening on the diamagnetic susceptibility of a donor in a quantum well with anisotropic effective mass. Phys. E 42, 1531–1535 (2010)CrossRef
36.
go back to reference Akbas, H., Bulut, P., Dane, C., Skarlatos, Y.: The diamagnetic susceptibility of hydrogenic donor in two-dimensional semiconductors with anisotropic effective mass of carriers. Superlatt. Microstruc. 51, 455–461 (2012)CrossRef Akbas, H., Bulut, P., Dane, C., Skarlatos, Y.: The diamagnetic susceptibility of hydrogenic donor in two-dimensional semiconductors with anisotropic effective mass of carriers. Superlatt. Microstruc. 51, 455–461 (2012)CrossRef
37.
go back to reference Mmadi, A., Rahmani, K., Zorkani, I., Jorio, A.: Diamagnetic susceptibility of a magneto-donor in Inhomogeneous Quantum Dots. Superlatt. Microstruc. 57, 27–36 (2013)CrossRef Mmadi, A., Rahmani, K., Zorkani, I., Jorio, A.: Diamagnetic susceptibility of a magneto-donor in Inhomogeneous Quantum Dots. Superlatt. Microstruc. 57, 27–36 (2013)CrossRef
38.
go back to reference Khordad, R.: Diamagnetic susceptibility of hydrogenic donor impurity in a V-groove \(\text{ GaAs }/\text{ Ga }_{1-x} \text{ Al }_{x}\text{ As }\) quantum wire. Eur. Phys. J. 78, 399–403 (2010)CrossRef Khordad, R.: Diamagnetic susceptibility of hydrogenic donor impurity in a V-groove \(\text{ GaAs }/\text{ Ga }_{1-x} \text{ Al }_{x}\text{ As }\) quantum wire. Eur. Phys. J. 78, 399–403 (2010)CrossRef
39.
go back to reference Khordad, R., Bahramiyan, H.: Absorption threshold frequency of silicon nanowires: Effect of cross section shape. Opt. Commun. 334, 84–89 (2015)CrossRef Khordad, R., Bahramiyan, H.: Absorption threshold frequency of silicon nanowires: Effect of cross section shape. Opt. Commun. 334, 84–89 (2015)CrossRef
40.
go back to reference Brenner, S.C., Scott, L.R.: The mathematical theory of the finite element methods, 3rd edn. Springer, New York (2008)CrossRefMATH Brenner, S.C., Scott, L.R.: The mathematical theory of the finite element methods, 3rd edn. Springer, New York (2008)CrossRefMATH
41.
go back to reference Reddy, J.N.: An introduction to the finite element method, 2nd edn. McGraw-Hill Inc, New York (1993) Reddy, J.N.: An introduction to the finite element method, 2nd edn. McGraw-Hill Inc, New York (1993)
42.
go back to reference Saad, Y.: Numerical Methods for Large Eigenvalue Problems, 2nd edn. SIAM, Philadelphia (2011)CrossRefMATH Saad, Y.: Numerical Methods for Large Eigenvalue Problems, 2nd edn. SIAM, Philadelphia (2011)CrossRefMATH
43.
go back to reference Arnoldi, W.E.: The principle of minimized iterations in the solution of the matrix eigenvalue problem. Quart. Appl. Math. 9, 17 (1951)MathSciNetMATH Arnoldi, W.E.: The principle of minimized iterations in the solution of the matrix eigenvalue problem. Quart. Appl. Math. 9, 17 (1951)MathSciNetMATH
44.
go back to reference Kittel, C.: Introduction to Solid State Physics. Wiley, New York (1998)MATH Kittel, C.: Introduction to Solid State Physics. Wiley, New York (1998)MATH
Metadata
Title
Energy gap renormalization and diamagnetic susceptibility in quantum wires with different cross-sectional shape
Authors
Z. Avazzadeh
R. Khordad
H. Bahramiyan
S. A. Mohammadi
Publication date
17-05-2016
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 3/2016
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-016-0824-3

Other articles of this Issue 3/2016

Journal of Computational Electronics 3/2016 Go to the issue