Skip to main content
Erschienen in: Journal of Computational Electronics 3/2016

17.05.2016

Energy gap renormalization and diamagnetic susceptibility in quantum wires with different cross-sectional shape

verfasst von: Z. Avazzadeh, R. Khordad, H. Bahramiyan, S. A. Mohammadi

Erschienen in: Journal of Computational Electronics | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, we investigate the effect of the cross-sectional shape on the energy gap renormalization and diamagnetic susceptibility in various quantum wires. To this end, we consider quantum wires with different cross-sectional shapes such as circular, square, hexagonal, and triangular. First, we employ the finite-element method and Arnoldi algorithm to solve the Schrödinger equation. Then, we calculate the energy levels, wavefunctions, binding energy, energy gap renormalization, and diamagnetic susceptibility. Our numerical results show that the binding energy decreases when the cross-sectional area is increased for all the quantum wires. Moreover, it is inferred that the cross-sectional shape is not important for large cross-sectional area when calculating the binding energy. Indeed, the main parameter is the cross-sectional area rather than the length of a side. The energy gap renormalization decreases with increasing cross-sectional area, regardless of the impurity concentration. We observe that the highest and lowest energy gap renormalization correspond to triangular and circular quantum wires, respectively. The absolute value of the diamagnetic susceptibility increases with increasing cross-sectional area for all the quantum wires investigated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Duque, C.M., Mora-Ramos, M.E., Duque, C.A.: Quantum disc plus inverse square potential. An analytical model for two-dimensional quantum rings: study of nonlinear optical properties. Ann. Phys. 524, 327–337 (2012)CrossRefMATH Duque, C.M., Mora-Ramos, M.E., Duque, C.A.: Quantum disc plus inverse square potential. An analytical model for two-dimensional quantum rings: study of nonlinear optical properties. Ann. Phys. 524, 327–337 (2012)CrossRefMATH
2.
Zurück zum Zitat Gao, P.X., Ding, Y., Mai, W., Hughes, W.L., Lao, C., Wang, Z.L.: Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science 309, 1700–1704 (2005)CrossRef Gao, P.X., Ding, Y., Mai, W., Hughes, W.L., Lao, C., Wang, Z.L.: Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science 309, 1700–1704 (2005)CrossRef
3.
Zurück zum Zitat Mongillo, M., Spathis, P., Katsaros, G., Gentile, P., De Franceschi, S.: Multifunctional devices and logic gates with undoped silicon nanowires. Nano Lett. 12, 3074–3079 (2012)CrossRef Mongillo, M., Spathis, P., Katsaros, G., Gentile, P., De Franceschi, S.: Multifunctional devices and logic gates with undoped silicon nanowires. Nano Lett. 12, 3074–3079 (2012)CrossRef
5.
Zurück zum Zitat Garcia, J.C., Justo, J.F.: Twisted ultrathin silicon nanowires: a possible torsion electromechanical nanodevice. Europhys. Lett. 108, 36006–36011 (2014)CrossRef Garcia, J.C., Justo, J.F.: Twisted ultrathin silicon nanowires: a possible torsion electromechanical nanodevice. Europhys. Lett. 108, 36006–36011 (2014)CrossRef
6.
Zurück zum Zitat Elnathan, R., Kwiat, M., Pevzner, A., Engel, Y., Burstein, L., Khatchtourints, A., Lichtenstein, A., Kantaev, R., Patolsky, F.: Biorecognition layer engineering: overcoming screening limitations of nanowire-based FET devices. Nano Lett. 12, 5245–5254 (2012)CrossRef Elnathan, R., Kwiat, M., Pevzner, A., Engel, Y., Burstein, L., Khatchtourints, A., Lichtenstein, A., Kantaev, R., Patolsky, F.: Biorecognition layer engineering: overcoming screening limitations of nanowire-based FET devices. Nano Lett. 12, 5245–5254 (2012)CrossRef
7.
Zurück zum Zitat Ogale, S.B.: Thin Films and Heterostructures for Oxide Electronics. Springer, New York (2005) Ogale, S.B.: Thin Films and Heterostructures for Oxide Electronics. Springer, New York (2005)
8.
Zurück zum Zitat Suenaga, K., Colliex, C., Demoncy, N., Loiseau, A., Pascard, H., Willaime, F.: Synthesis of nanoparticles and nanotubes with well-separated layers of boron nitride and carbon. Science 278, 653–655 (1997)CrossRef Suenaga, K., Colliex, C., Demoncy, N., Loiseau, A., Pascard, H., Willaime, F.: Synthesis of nanoparticles and nanotubes with well-separated layers of boron nitride and carbon. Science 278, 653–655 (1997)CrossRef
9.
Zurück zum Zitat Khordad, R., Bahramiyan, H.: Electron-phonon interaction effect on the energy levels and diamagnetic susceptibility of quantum wires: Parallelogram and triangle cross section. J. Appl. Phys. 115, 124314–124320 (2014)CrossRef Khordad, R., Bahramiyan, H.: Electron-phonon interaction effect on the energy levels and diamagnetic susceptibility of quantum wires: Parallelogram and triangle cross section. J. Appl. Phys. 115, 124314–124320 (2014)CrossRef
10.
Zurück zum Zitat Duque, C.A., Mora-Ramos, M.E., Kasapoglu, E., Ungan, F., Yesilgul, U., Sakiroglu, S., Sari, H., Sokmen, I.: Impurity-related linear and nonlinear optical response in quantum-well wires with triangular cross section. J. Lumin. 143, 304–313 (2013)CrossRef Duque, C.A., Mora-Ramos, M.E., Kasapoglu, E., Ungan, F., Yesilgul, U., Sakiroglu, S., Sari, H., Sokmen, I.: Impurity-related linear and nonlinear optical response in quantum-well wires with triangular cross section. J. Lumin. 143, 304–313 (2013)CrossRef
11.
Zurück zum Zitat Khordad, R.: Refractive index change and absorption coefficient of T shaped quantum wires: comparing with experimental results. Opt. Quant. Electron. 46, 283–293 (2014)MathSciNetCrossRef Khordad, R.: Refractive index change and absorption coefficient of T shaped quantum wires: comparing with experimental results. Opt. Quant. Electron. 46, 283–293 (2014)MathSciNetCrossRef
12.
Zurück zum Zitat Khordad, R., Bahramiyan, H.: The energy levels, binding energy and third harmonic generation of a hexagon-shaped quantum wire. Mod. Phys. Lett. B 29, 1550078–1550092 (2015)CrossRef Khordad, R., Bahramiyan, H.: The energy levels, binding energy and third harmonic generation of a hexagon-shaped quantum wire. Mod. Phys. Lett. B 29, 1550078–1550092 (2015)CrossRef
13.
Zurück zum Zitat Mohan, P., Motohisa, J., Fukui, T.: Fabrication of core-multishell heterostructure nanowires by selective area metalorganic vapor phase epitaxy. Appl. Phys. Lett. 88, 133105–133110 (2006)CrossRef Mohan, P., Motohisa, J., Fukui, T.: Fabrication of core-multishell heterostructure nanowires by selective area metalorganic vapor phase epitaxy. Appl. Phys. Lett. 88, 133105–133110 (2006)CrossRef
14.
Zurück zum Zitat Khordad, R.: Second and third-harmonic generation of parallelogram quantum wires: electric field. Indian J. Phys. 88, 275–281 (2014)CrossRef Khordad, R.: Second and third-harmonic generation of parallelogram quantum wires: electric field. Indian J. Phys. 88, 275–281 (2014)CrossRef
15.
Zurück zum Zitat Makhanets, O.M., Gutsul, V.I., Tsiupak, N.R., Voitsekhivska, O.M.: Exciton spectrum in multi-shell hexagonal semiconductor nanotube. Condens. Matter Phys. 15, 33704–33712 (2012)CrossRef Makhanets, O.M., Gutsul, V.I., Tsiupak, N.R., Voitsekhivska, O.M.: Exciton spectrum in multi-shell hexagonal semiconductor nanotube. Condens. Matter Phys. 15, 33704–33712 (2012)CrossRef
16.
Zurück zum Zitat Khordad, R., Bahramiyan, H.: Strain effect on the absorption threshold energy of silicon circular nanowires. Commun. Theor. Phys. 65, 87–91 (2016)CrossRef Khordad, R., Bahramiyan, H.: Strain effect on the absorption threshold energy of silicon circular nanowires. Commun. Theor. Phys. 65, 87–91 (2016)CrossRef
17.
Zurück zum Zitat Sakaki, H.: Quantum wires, quantum boxes and related structures: physics, device potentials and structural requirements. Surf. Sci. 267, 623–629 (1992)CrossRef Sakaki, H.: Quantum wires, quantum boxes and related structures: physics, device potentials and structural requirements. Surf. Sci. 267, 623–629 (1992)CrossRef
18.
Zurück zum Zitat Rurali, R.: Colloquium: Structural, electronic, and transport properties of silicon nanowires. Rev. Mod. Phys. 82, 427–450 (2010)CrossRef Rurali, R.: Colloquium: Structural, electronic, and transport properties of silicon nanowires. Rev. Mod. Phys. 82, 427–450 (2010)CrossRef
19.
Zurück zum Zitat Reimann, S.M., Manninen, M.: Electronic structure of quantum dots. Rev. Mod. Phys. 74, 1328–1342 (2002)CrossRef Reimann, S.M., Manninen, M.: Electronic structure of quantum dots. Rev. Mod. Phys. 74, 1328–1342 (2002)CrossRef
20.
Zurück zum Zitat Ermolaev, A.M., Rashba, G.I.: Impurity states of electrons in quantum dots in external magnetic fields. Eur. Phys. J. 66, 223–226 (2008)CrossRefMATH Ermolaev, A.M., Rashba, G.I.: Impurity states of electrons in quantum dots in external magnetic fields. Eur. Phys. J. 66, 223–226 (2008)CrossRefMATH
21.
Zurück zum Zitat Hayrapetyan, D.B., Kazaryan, E.M., Tevosyan, HKh: Impurity states in a cylindrical quantum dot with the modified Pöschl-Teller potential. J. Contemp. Phys. 49, 119–122 (2014)CrossRef Hayrapetyan, D.B., Kazaryan, E.M., Tevosyan, HKh: Impurity states in a cylindrical quantum dot with the modified Pöschl-Teller potential. J. Contemp. Phys. 49, 119–122 (2014)CrossRef
22.
Zurück zum Zitat Bastard, G.: Hydrogenic impurity states in a quantum well: a simple model. Phys. Rev. B 24, 4714–4718 (1981)CrossRef Bastard, G.: Hydrogenic impurity states in a quantum well: a simple model. Phys. Rev. B 24, 4714–4718 (1981)CrossRef
23.
Zurück zum Zitat Khordad, R., Bahramiyan, H.: Study of impurity position effect in pyramid and cone like quantum dots. Eur. Phys. J. Appl. Phys. 67, 20402–20408 (2014)CrossRef Khordad, R., Bahramiyan, H.: Study of impurity position effect in pyramid and cone like quantum dots. Eur. Phys. J. Appl. Phys. 67, 20402–20408 (2014)CrossRef
24.
Zurück zum Zitat Coden, D.S.A., Romero, R.H., Ferrón, A., Gomez, S.S.: Impurity effects in two-electron coupled quantum dots: entanglement modulation. J. Phys. B 46, 065501–065502 (2013)CrossRef Coden, D.S.A., Romero, R.H., Ferrón, A., Gomez, S.S.: Impurity effects in two-electron coupled quantum dots: entanglement modulation. J. Phys. B 46, 065501–065502 (2013)CrossRef
25.
Zurück zum Zitat Yu, E.: Perlin, Nonlinear susceptibilities of quantum dots. Opt. Spectrosc. 88, 439–445 (2008) Yu, E.: Perlin, Nonlinear susceptibilities of quantum dots. Opt. Spectrosc. 88, 439–445 (2008)
26.
Zurück zum Zitat Rezaei, G., Azami, S.M., Vaseghi, B.: Electronic states and nonlinear optical properties of a two-dimensional hexagonal quantum dot: effects of impurity, geometrical size and confinement potential. Phys. Stat. Sol. B 249, 1459–1464 (2012)CrossRef Rezaei, G., Azami, S.M., Vaseghi, B.: Electronic states and nonlinear optical properties of a two-dimensional hexagonal quantum dot: effects of impurity, geometrical size and confinement potential. Phys. Stat. Sol. B 249, 1459–1464 (2012)CrossRef
27.
Zurück zum Zitat Al-Hayek, I., Sandouqa, A.S.: Energy and binding energy of donor impurity in quantum dot with Gaussian confinement. Superlatt. Microstruc. 85, 216–225 (2015) Al-Hayek, I., Sandouqa, A.S.: Energy and binding energy of donor impurity in quantum dot with Gaussian confinement. Superlatt. Microstruc. 85, 216–225 (2015)
28.
Zurück zum Zitat Baghramyan, H.M., Barseghyan, M.G., Duque, C.A., Kirakosyan, A.A.: Binding energy of hydrogenic donor impurity in \(\text{GaAs}/\text{ Ga }_{1-x} \text{ Al }_{x} \text{ AsGaAs }/\text{ Ga1-xAlxAs }\) concentric double quantum rings: effects of geometry, hydrostatic pressure, temperature, and aluminum concentration. Phys. E 48, 164–170(2013) Baghramyan, H.M., Barseghyan, M.G., Duque, C.A., Kirakosyan, A.A.: Binding energy of hydrogenic donor impurity in \(\text{GaAs}/\text{ Ga }_{1-x} \text{ Al }_{x} \text{ AsGaAs }/\text{ Ga1-xAlxAs }\) concentric double quantum rings: effects of geometry, hydrostatic pressure, temperature, and aluminum concentration. Phys. E 48, 164–170(2013)
29.
Zurück zum Zitat Zhao, Z.R., Liang, X.X.: Phonon effect on binding energies of impurity states in cylindrical quantum wires of polar semiconductors under an electric field. Phys. E 40, 3086–3091 (2008)CrossRef Zhao, Z.R., Liang, X.X.: Phonon effect on binding energies of impurity states in cylindrical quantum wires of polar semiconductors under an electric field. Phys. E 40, 3086–3091 (2008)CrossRef
30.
Zurück zum Zitat Safarpour, Gh, Barati, M., Zamani, A., Niknam, E.: Binding energy and optical properties of an off-center hydrogenic donor impurity in a spherical quantum dot placed at the center of a cylindrical nano-wire. J. Lumin. 145, 990–996 (2014)CrossRef Safarpour, Gh, Barati, M., Zamani, A., Niknam, E.: Binding energy and optical properties of an off-center hydrogenic donor impurity in a spherical quantum dot placed at the center of a cylindrical nano-wire. J. Lumin. 145, 990–996 (2014)CrossRef
31.
Zurück zum Zitat Bryant, G.W.: Hydrogenic impurity states in quantum-well wires. Phys. Rev. B 29, 6632–6639 (1984)CrossRef Bryant, G.W.: Hydrogenic impurity states in quantum-well wires. Phys. Rev. B 29, 6632–6639 (1984)CrossRef
32.
Zurück zum Zitat Brown, J.W., Spector, H.N.: Hydrogen impurities in quantum well wires. J. Appl. Phys. 59, 1179–1185 (1986)CrossRef Brown, J.W., Spector, H.N.: Hydrogen impurities in quantum well wires. J. Appl. Phys. 59, 1179–1185 (1986)CrossRef
33.
Zurück zum Zitat Hsieh, C.Y.: Off-center donor impurity in multilayered quantum wires. J. Appl. Phys. 91, 2326–2331 (2002)CrossRef Hsieh, C.Y.: Off-center donor impurity in multilayered quantum wires. J. Appl. Phys. 91, 2326–2331 (2002)CrossRef
34.
Zurück zum Zitat Nithiananthi, P., Jayakumar, K.: Effect of \(\Gamma \)-X band crossover and impurity location on the diamagnetic susceptibility of a donor in a quantum well. Solid State Commun. 138, 305–308 (2006)CrossRef Nithiananthi, P., Jayakumar, K.: Effect of \(\Gamma \)-X band crossover and impurity location on the diamagnetic susceptibility of a donor in a quantum well. Solid State Commun. 138, 305–308 (2006)CrossRef
35.
Zurück zum Zitat Kilicarslan, E., Sakiroglu, S., Koksal, M., Sari, H., Sokmen, I.: The effects of the magnetic field and dielectric screening on the diamagnetic susceptibility of a donor in a quantum well with anisotropic effective mass. Phys. E 42, 1531–1535 (2010)CrossRef Kilicarslan, E., Sakiroglu, S., Koksal, M., Sari, H., Sokmen, I.: The effects of the magnetic field and dielectric screening on the diamagnetic susceptibility of a donor in a quantum well with anisotropic effective mass. Phys. E 42, 1531–1535 (2010)CrossRef
36.
Zurück zum Zitat Akbas, H., Bulut, P., Dane, C., Skarlatos, Y.: The diamagnetic susceptibility of hydrogenic donor in two-dimensional semiconductors with anisotropic effective mass of carriers. Superlatt. Microstruc. 51, 455–461 (2012)CrossRef Akbas, H., Bulut, P., Dane, C., Skarlatos, Y.: The diamagnetic susceptibility of hydrogenic donor in two-dimensional semiconductors with anisotropic effective mass of carriers. Superlatt. Microstruc. 51, 455–461 (2012)CrossRef
37.
Zurück zum Zitat Mmadi, A., Rahmani, K., Zorkani, I., Jorio, A.: Diamagnetic susceptibility of a magneto-donor in Inhomogeneous Quantum Dots. Superlatt. Microstruc. 57, 27–36 (2013)CrossRef Mmadi, A., Rahmani, K., Zorkani, I., Jorio, A.: Diamagnetic susceptibility of a magneto-donor in Inhomogeneous Quantum Dots. Superlatt. Microstruc. 57, 27–36 (2013)CrossRef
38.
Zurück zum Zitat Khordad, R.: Diamagnetic susceptibility of hydrogenic donor impurity in a V-groove \(\text{ GaAs }/\text{ Ga }_{1-x} \text{ Al }_{x}\text{ As }\) quantum wire. Eur. Phys. J. 78, 399–403 (2010)CrossRef Khordad, R.: Diamagnetic susceptibility of hydrogenic donor impurity in a V-groove \(\text{ GaAs }/\text{ Ga }_{1-x} \text{ Al }_{x}\text{ As }\) quantum wire. Eur. Phys. J. 78, 399–403 (2010)CrossRef
39.
Zurück zum Zitat Khordad, R., Bahramiyan, H.: Absorption threshold frequency of silicon nanowires: Effect of cross section shape. Opt. Commun. 334, 84–89 (2015)CrossRef Khordad, R., Bahramiyan, H.: Absorption threshold frequency of silicon nanowires: Effect of cross section shape. Opt. Commun. 334, 84–89 (2015)CrossRef
40.
Zurück zum Zitat Brenner, S.C., Scott, L.R.: The mathematical theory of the finite element methods, 3rd edn. Springer, New York (2008)CrossRefMATH Brenner, S.C., Scott, L.R.: The mathematical theory of the finite element methods, 3rd edn. Springer, New York (2008)CrossRefMATH
41.
Zurück zum Zitat Reddy, J.N.: An introduction to the finite element method, 2nd edn. McGraw-Hill Inc, New York (1993) Reddy, J.N.: An introduction to the finite element method, 2nd edn. McGraw-Hill Inc, New York (1993)
42.
Zurück zum Zitat Saad, Y.: Numerical Methods for Large Eigenvalue Problems, 2nd edn. SIAM, Philadelphia (2011)CrossRefMATH Saad, Y.: Numerical Methods for Large Eigenvalue Problems, 2nd edn. SIAM, Philadelphia (2011)CrossRefMATH
43.
Zurück zum Zitat Arnoldi, W.E.: The principle of minimized iterations in the solution of the matrix eigenvalue problem. Quart. Appl. Math. 9, 17 (1951)MathSciNetMATH Arnoldi, W.E.: The principle of minimized iterations in the solution of the matrix eigenvalue problem. Quart. Appl. Math. 9, 17 (1951)MathSciNetMATH
44.
Zurück zum Zitat Kittel, C.: Introduction to Solid State Physics. Wiley, New York (1998)MATH Kittel, C.: Introduction to Solid State Physics. Wiley, New York (1998)MATH
Metadaten
Titel
Energy gap renormalization and diamagnetic susceptibility in quantum wires with different cross-sectional shape
verfasst von
Z. Avazzadeh
R. Khordad
H. Bahramiyan
S. A. Mohammadi
Publikationsdatum
17.05.2016
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 3/2016
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-016-0824-3

Weitere Artikel der Ausgabe 3/2016

Journal of Computational Electronics 3/2016 Zur Ausgabe

Neuer Inhalt