Skip to main content
Top
Published in: Microsystem Technologies 4-5/2014

01-04-2014 | Technical Paper

Energy storage options for wireless sensors powered by aircraft specific thermoelectric energy harvester

Authors: K. Thangaraj, A. Elefsiniots, Th. Becker, U. Schmid, J. Lees, C. A. Featherston, R. Pullin

Published in: Microsystem Technologies | Issue 4-5/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper describes an approach for efficiently storing the harvested energy from a thermoelectric module for powering autonomous wireless sensor nodes in aircraft health monitoring applications. Thermoelectric devices are the preferred option due to the widespread availability of significant levels of energy from the temperature gradients or variations at the aircraft, such as the cabin, the engine compartment, the fuel tanks or the inner and outer frame of the fuselage. Batteries and supercapacitors are popular choices of storage device, but neither represents the ideal solution, with, supercapacitors possessing low energy densities while batteries have low power density. When using a battery-only solution for storage, the runtime of a typical sensor node is typically reduced by the battery’s relatively high internal impedance and thermal loss. Supercapacitors can overcome some of these problems, but generally do not provide sufficient long-term energy to allow aircraft health monitoring applications to be operated over an extended period. A hybrid energy storage solution can provide both energy and power density to a wireless sensor node simultaneously. Techniques such as acoustic–ultrasonic, acoustic-emission, strain and crack wire sensors require storage approaches that can provide immediate energy on demand, usually in short, high intensity bursts, and that can be sustained over long periods of time, storing up to 40–50 J of energy. This application requirement is considered as a significant constraint when working with battery-only and supercapacitor-only solutions. The hybrid system described here provides an alternate viable solution.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Becker T, Kluge M, Schalk J, Tiplady K, Paget C, Hilleringmann U, Otterpohl T (2009) Autonomous sensor nodes for aircraft structural health monitoring. IEEE Sens J 9(11):1589–1595CrossRef Becker T, Kluge M, Schalk J, Tiplady K, Paget C, Hilleringmann U, Otterpohl T (2009) Autonomous sensor nodes for aircraft structural health monitoring. IEEE Sens J 9(11):1589–1595CrossRef
go back to reference Elefsiniotis A, Weiss M, Becker Th, Schmid U (2013) Efficient power management for energy autonomous wireless sensor nodes for aeronautical applications. J Electron Mater 42(7):1907–1910CrossRef Elefsiniotis A, Weiss M, Becker Th, Schmid U (2013) Efficient power management for energy autonomous wireless sensor nodes for aeronautical applications. J Electron Mater 42(7):1907–1910CrossRef
go back to reference Kiefer K (2007) Real-world experience in wireless instrumentation and control systems[C].In: Proceedings of CANEUS “Fly-by-wireless” workshop Kiefer K (2007) Real-world experience in wireless instrumentation and control systems[C].In: Proceedings of CANEUS “Fly-by-wireless” workshop
go back to reference Pakyad SN et al (2008) Design and implementation of scalable wireless sensor network for structural health monitoring. J Infrastruct Syst 14(1):89–101CrossRef Pakyad SN et al (2008) Design and implementation of scalable wireless sensor network for structural health monitoring. J Infrastruct Syst 14(1):89–101CrossRef
go back to reference Maria T. Penella, Manel Gasulla (2010) Runtime extension of low-power wireless sensor node using hybrid-storage units. IEEE Trans Instrum Meas 59(4):857–865CrossRef Maria T. Penella, Manel Gasulla (2010) Runtime extension of low-power wireless sensor node using hybrid-storage units. IEEE Trans Instrum Meas 59(4):857–865CrossRef
go back to reference Samson D, Kluge M, Becker T, Schmid U (2011) Wireless sensor node powered by aircraft specific thermoelectric energy harvesting. Sens Actuators A 172:240–244CrossRef Samson D, Kluge M, Becker T, Schmid U (2011) Wireless sensor node powered by aircraft specific thermoelectric energy harvesting. Sens Actuators A 172:240–244CrossRef
Metadata
Title
Energy storage options for wireless sensors powered by aircraft specific thermoelectric energy harvester
Authors
K. Thangaraj
A. Elefsiniots
Th. Becker
U. Schmid
J. Lees
C. A. Featherston
R. Pullin
Publication date
01-04-2014
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 4-5/2014
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-013-2009-3

Other articles of this Issue 4-5/2014

Microsystem Technologies 4-5/2014 Go to the issue