Skip to main content
Top
Published in: Rare Metals 5/2022

26-01-2022 | Letter

Engineering unique vesicle structured tin phosphides@P/N co-doped carbon anode for high-performance sodium/lithium-ion batteries

Authors: Shui-Xin Xia, Yu-Hua Yan, Hao Sun, Jun-He Yang, Shi-You Zheng

Published in: Rare Metals | Issue 5/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
[1]
go back to reference Zhou J, Liu X, Zhu L, Niu S, Cai J, Zheng X, Ye J, Lin Y, Zheng L, Zhu Z. High-spin sulfur-mediated phosphorous activation enables safe and fast phosphorus anodes for sodium-ion batteries. Chem. 2020;6(1):221.CrossRef Zhou J, Liu X, Zhu L, Niu S, Cai J, Zheng X, Ye J, Lin Y, Zheng L, Zhu Z. High-spin sulfur-mediated phosphorous activation enables safe and fast phosphorus anodes for sodium-ion batteries. Chem. 2020;6(1):221.CrossRef
[2]
go back to reference Bruce PG, Scrosati B, Tarascon JM. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed. 2008;47(16):2930.CrossRef Bruce PG, Scrosati B, Tarascon JM. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed. 2008;47(16):2930.CrossRef
[3]
go back to reference Wang Z, Jiang Y, Wu J, Jiang Y, Ma W, Shi Y, Liu X, Zhao B, Xu Y, Zhang J. Doping effects of metal cation on sulfide solid electrolyte/lithium metal interface. Nano Energy. 2021;84:105906. Wang Z, Jiang Y, Wu J, Jiang Y, Ma W, Shi Y, Liu X, Zhao B, Xu Y, Zhang J. Doping effects of metal cation on sulfide solid electrolyte/lithium metal interface. Nano Energy. 2021;84:105906.
[4]
go back to reference Xia S, Yang B, Zhang H, Yang J, Liu W, Zheng S. Ultrathin layered double hydroxide nanosheets enabling composite polymer electrolyte for all-solid-state lithium batteries at room temperature. Adv Funct Mater. 2021:2101168. Xia S, Yang B, Zhang H, Yang J, Liu W, Zheng S. Ultrathin layered double hydroxide nanosheets enabling composite polymer electrolyte for all-solid-state lithium batteries at room temperature. Adv Funct Mater. 2021:2101168.
[5]
go back to reference Kundu D, Talaie E, Duffort V, Nazar LF. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew Chem Int Ed. 2015;54(11):3431.CrossRef Kundu D, Talaie E, Duffort V, Nazar LF. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew Chem Int Ed. 2015;54(11):3431.CrossRef
[6]
go back to reference Qin J, He C, Zhao N, Wang Z, Shi C, Liu EZ, Li J. Graphene networks anchored with Sn@graphene as lithium ion battery anode. ACS Nano. 2014;8(2):1728.CrossRef Qin J, He C, Zhao N, Wang Z, Shi C, Liu EZ, Li J. Graphene networks anchored with Sn@graphene as lithium ion battery anode. ACS Nano. 2014;8(2):1728.CrossRef
[7]
go back to reference Zhu Y, Han X, Xu Y, Liu Y, Zheng S, Xu K, Hu L, Wang C. Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode. ACS Nano. 2013;7(7):6378.CrossRef Zhu Y, Han X, Xu Y, Liu Y, Zheng S, Xu K, Hu L, Wang C. Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode. ACS Nano. 2013;7(7):6378.CrossRef
[8]
go back to reference Zhu L, Yang XX, Xiang YH, Kong P, Wu XW. Neurons-system-like structured SnS2/CNTs composite for high-performance sodium-ion battery anode. Rare Met. 2021;40(6):1383.CrossRef Zhu L, Yang XX, Xiang YH, Kong P, Wu XW. Neurons-system-like structured SnS2/CNTs composite for high-performance sodium-ion battery anode. Rare Met. 2021;40(6):1383.CrossRef
[9]
go back to reference Ruan J, Pang Y, Luo S, Yuan T, Peng C, Yang J, Zheng S. Ultrafine red P nanoconfined between expanded graphene sheets for high-performance lithium-ion batteries. J Mater Chem A. 2018;6(42):20804.CrossRef Ruan J, Pang Y, Luo S, Yuan T, Peng C, Yang J, Zheng S. Ultrafine red P nanoconfined between expanded graphene sheets for high-performance lithium-ion batteries. J Mater Chem A. 2018;6(42):20804.CrossRef
[10]
go back to reference Li W, Hu S, Luo X, Li Z, Sun X, Li M, Liu F, Yu Y. Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv Mater. 2017;29(16):1605820.CrossRef Li W, Hu S, Luo X, Li Z, Sun X, Li M, Liu F, Yu Y. Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv Mater. 2017;29(16):1605820.CrossRef
[11]
go back to reference Yan Y, Xia S, Sun H, Pang Y, Yang J, Zheng S. A promising 3D crystalline red P/reduced graphene oxide aerogel architecture anode for sodium-ion batteries. Chem Eng J. 2020;393:124788. Yan Y, Xia S, Sun H, Pang Y, Yang J, Zheng S. A promising 3D crystalline red P/reduced graphene oxide aerogel architecture anode for sodium-ion batteries. Chem Eng J. 2020;393:124788.
[12]
go back to reference Ran L, Luo B, Gentle IR, Lin T, Sun Q, Li M, Rana MM, Wang L, Knibbe R. Biomimetic Sn4P3 anchored on carbon nanotubes as an anode for high-performance sodium-ion batteries. ACS Nano. 2020;14(7):8826.CrossRef Ran L, Luo B, Gentle IR, Lin T, Sun Q, Li M, Rana MM, Wang L, Knibbe R. Biomimetic Sn4P3 anchored on carbon nanotubes as an anode for high-performance sodium-ion batteries. ACS Nano. 2020;14(7):8826.CrossRef
[13]
go back to reference Palaniselvam T, Mukundan C, Hasa I, Santhosha AL, Goktas M, Moon H, Ruttert M, Schmuch R, Pollok K, Langenhorst F. Assessment on the use of high capacity “Sn4P3”/NHC composite electrodes for sodium-ion batteries with ether and carbonate electrolytes. Adv Funct Mater. 2020;30(42):2004798.CrossRef Palaniselvam T, Mukundan C, Hasa I, Santhosha AL, Goktas M, Moon H, Ruttert M, Schmuch R, Pollok K, Langenhorst F. Assessment on the use of high capacity “Sn4P3”/NHC composite electrodes for sodium-ion batteries with ether and carbonate electrolytes. Adv Funct Mater. 2020;30(42):2004798.CrossRef
[14]
go back to reference Saddique J, Zhang X, Wu T, Su H, Liu S, Zhang D, Zhang Y, Yu H. Sn4P3-induced crystalline/amorphous composite structures for enhanced sodium-ion battery anodes. J Mater Sci Technol. 2020;55:73.CrossRef Saddique J, Zhang X, Wu T, Su H, Liu S, Zhang D, Zhang Y, Yu H. Sn4P3-induced crystalline/amorphous composite structures for enhanced sodium-ion battery anodes. J Mater Sci Technol. 2020;55:73.CrossRef
[15]
go back to reference Kim Y, Kim Y, Choi A, Woo S, Mok D, Choi NS, Jung YS, Ryu JH, Oh SM, Lee KT. Tin phosphide as a promising anode material for Na-ion batteries. Adv Mater. 2014;26(24):4139.CrossRef Kim Y, Kim Y, Choi A, Woo S, Mok D, Choi NS, Jung YS, Ryu JH, Oh SM, Lee KT. Tin phosphide as a promising anode material for Na-ion batteries. Adv Mater. 2014;26(24):4139.CrossRef
[16]
go back to reference Liu J, Kopold P, Wu C, van Aken PA, Maier J, Yu Y. Uniform yolk–shell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries. Energy Environ Sci. 2015;8(12):3531.CrossRef Liu J, Kopold P, Wu C, van Aken PA, Maier J, Yu Y. Uniform yolk–shell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries. Energy Environ Sci. 2015;8(12):3531.CrossRef
[17]
go back to reference Fullenwarth J, Darwiche A, Soares A, Donnadieu B, Monconduit L. NiP3: a promising negative electrode for Li-and Na-ion batteries. J Mater Chem A. 2014;2(7):2050.CrossRef Fullenwarth J, Darwiche A, Soares A, Donnadieu B, Monconduit L. NiP3: a promising negative electrode for Li-and Na-ion batteries. J Mater Chem A. 2014;2(7):2050.CrossRef
[18]
go back to reference Liu Z, Yu XY, Paik U. Etching-in-a-box: a novel strategy to synthesize unique yolk-shelled Fe3O4@carbon with an ultralong cycling life for lithium storage. Adv Energy Mater. 2016;6(6):1502318.CrossRef Liu Z, Yu XY, Paik U. Etching-in-a-box: a novel strategy to synthesize unique yolk-shelled Fe3O4@carbon with an ultralong cycling life for lithium storage. Adv Energy Mater. 2016;6(6):1502318.CrossRef
[19]
go back to reference Li D, Wang H, Liu HK, Guo Z. A new strategy for achieving a high performance anode for lithium ion batteries-encapsulating germanium nanoparticles in carbon nanoboxes. Adv Energy Mater. 2016;6(5):1501666.CrossRef Li D, Wang H, Liu HK, Guo Z. A new strategy for achieving a high performance anode for lithium ion batteries-encapsulating germanium nanoparticles in carbon nanoboxes. Adv Energy Mater. 2016;6(5):1501666.CrossRef
[20]
go back to reference Ran L, Gentle I, Lin T, Luo B, Mo N, Rana M, Li M, Wang L, Knibbe R. Sn4P3@porous carbon nanofiber as a self-supported anode for sodium-ion batteries. J Power Sources. 2020;461:228116. Ran L, Gentle I, Lin T, Luo B, Mo N, Rana M, Li M, Wang L, Knibbe R. Sn4P3@porous carbon nanofiber as a self-supported anode for sodium-ion batteries. J Power Sources. 2020;461:228116.
[21]
go back to reference Choi J, Kim WS, Kim KH, Hong SH. Sn4P3–C nanospheres as high capacitive and ultra-stable anodes for sodium ion and lithium ion batteries. J Mater Chem A. 2018;6(36):17437.CrossRef Choi J, Kim WS, Kim KH, Hong SH. Sn4P3–C nanospheres as high capacitive and ultra-stable anodes for sodium ion and lithium ion batteries. J Mater Chem A. 2018;6(36):17437.CrossRef
[22]
go back to reference Pan E, Jin Y, Zhao C, Jia M, Chang Q, Zhang R, Jia M. Mesoporous Sn4P3-graphene aerogel composite as a high-performance anode in sodium ion batteries. Appl Surf Sci. 2019;475:12.CrossRef Pan E, Jin Y, Zhao C, Jia M, Chang Q, Zhang R, Jia M. Mesoporous Sn4P3-graphene aerogel composite as a high-performance anode in sodium ion batteries. Appl Surf Sci. 2019;475:12.CrossRef
[23]
go back to reference Li Q, Li Z, Zhang Z, Li C, Ma J, Wang C, Ge X, Dong S, Yin L. Low-temperature solution-based phosphorization reaction route to Sn4P3/reduced graphene oxide nanohybrids as anodes for sodium ion batteries. Adv Energy Mater. 2016;6(15):1600376.CrossRef Li Q, Li Z, Zhang Z, Li C, Ma J, Wang C, Ge X, Dong S, Yin L. Low-temperature solution-based phosphorization reaction route to Sn4P3/reduced graphene oxide nanohybrids as anodes for sodium ion batteries. Adv Energy Mater. 2016;6(15):1600376.CrossRef
[24]
go back to reference Ma L, Yan P, Wu S, Zhu G, Shen Y. Engineering tin phosphides@carbon yolk–shell nanocube structures as a highly stable anode material for sodium-ion batteries. J Mater Chem A. 2017;5(32):16994.CrossRef Ma L, Yan P, Wu S, Zhu G, Shen Y. Engineering tin phosphides@carbon yolk–shell nanocube structures as a highly stable anode material for sodium-ion batteries. J Mater Chem A. 2017;5(32):16994.CrossRef
[25]
go back to reference Guo Q, Ru Q, Liu Y, Yan H, Wang B, Hou X. One-step fabrication of carbon nanotubes-decorated Sn4P3 as a 3D porous intertwined scaffold for lithium-ion batteries. ChemElectroChem. 2018;5(15):2150.CrossRef Guo Q, Ru Q, Liu Y, Yan H, Wang B, Hou X. One-step fabrication of carbon nanotubes-decorated Sn4P3 as a 3D porous intertwined scaffold for lithium-ion batteries. ChemElectroChem. 2018;5(15):2150.CrossRef
[26]
go back to reference Bai J, Xi B, Mao H, Lin Y, Ma X, Feng J, Xiong S. One-step construction of N, P-codoped porous carbon sheets/CoP hybrids with enhanced lithium and potassium storage. Adv Mater. 2018;30(35):1802310.CrossRef Bai J, Xi B, Mao H, Lin Y, Ma X, Feng J, Xiong S. One-step construction of N, P-codoped porous carbon sheets/CoP hybrids with enhanced lithium and potassium storage. Adv Mater. 2018;30(35):1802310.CrossRef
[27]
go back to reference Niu F, Yang J, Wang N, Zhang D, Fan W, Yang J, Qian Y. MoSe2-covered N, P-doped carbon nanosheets as a long-life and high-rate anode material for sodium-ion batteries. Adv Funct Mater. 2017;27(23):1700522.CrossRef Niu F, Yang J, Wang N, Zhang D, Fan W, Yang J, Qian Y. MoSe2-covered N, P-doped carbon nanosheets as a long-life and high-rate anode material for sodium-ion batteries. Adv Funct Mater. 2017;27(23):1700522.CrossRef
[28]
go back to reference Xia S, Lopez J, Liang C, Zhang Z, Bao Z, Cui Y, Liu W. High-rate and large-capacity lithium metal anode enabled by volume conformal and self-healable composite polymer electrolyte. Adv Sci. 2019;6(9):1802353.CrossRef Xia S, Lopez J, Liang C, Zhang Z, Bao Z, Cui Y, Liu W. High-rate and large-capacity lithium metal anode enabled by volume conformal and self-healable composite polymer electrolyte. Adv Sci. 2019;6(9):1802353.CrossRef
[29]
go back to reference Wang Z, Dong Y, Li H, Zhao Z, Wu HB, Hao C, Liu S, Qiu J, Lou XWD. Enhancing lithium–sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat Commun. 2014;5(1):1. Wang Z, Dong Y, Li H, Zhao Z, Wu HB, Hao C, Liu S, Qiu J, Lou XWD. Enhancing lithium–sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat Commun. 2014;5(1):1.
[30]
go back to reference Mao Y, Duan H, Xu B, Zhang L, Hu Y, Zhao C, Wang Z, Chen L, Yang Y. Lithium storage in nitrogen-rich mesoporous carbon materials. Energy Environ Sci. 2012;5(7):7950.CrossRef Mao Y, Duan H, Xu B, Zhang L, Hu Y, Zhao C, Wang Z, Chen L, Yang Y. Lithium storage in nitrogen-rich mesoporous carbon materials. Energy Environ Sci. 2012;5(7):7950.CrossRef
[32]
go back to reference Xia S, Zhang X, Yang G, Shi L, Cai L, Xia Y, Yang J, Zheng S. Bifunctional fluorinated separator enabling polysulfide trapping and Li deposition for lithium-sulfur batteries. ACS Appl Mater Interfaces. 2021;13(10):11920.CrossRef Xia S, Zhang X, Yang G, Shi L, Cai L, Xia Y, Yang J, Zheng S. Bifunctional fluorinated separator enabling polysulfide trapping and Li deposition for lithium-sulfur batteries. ACS Appl Mater Interfaces. 2021;13(10):11920.CrossRef
[33]
go back to reference Xia S, Zhang X, Luo L, Pang Y, Yang J, Huang Y, Zheng S. Highly stable and ultrahigh-rate Li metal anode enabled by fluorinated carbon fibers. Small. 2021;17(4):2006002.CrossRef Xia S, Zhang X, Luo L, Pang Y, Yang J, Huang Y, Zheng S. Highly stable and ultrahigh-rate Li metal anode enabled by fluorinated carbon fibers. Small. 2021;17(4):2006002.CrossRef
Metadata
Title
Engineering unique vesicle structured tin phosphides@P/N co-doped carbon anode for high-performance sodium/lithium-ion batteries
Authors
Shui-Xin Xia
Yu-Hua Yan
Hao Sun
Jun-He Yang
Shi-You Zheng
Publication date
26-01-2022
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 5/2022
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-021-01945-4

Other articles of this Issue 5/2022

Rare Metals 5/2022 Go to the issue

Premium Partners