Skip to main content
Erschienen in: Rare Metals 5/2022

26.01.2022 | Letter

Engineering unique vesicle structured tin phosphides@P/N co-doped carbon anode for high-performance sodium/lithium-ion batteries

verfasst von: Shui-Xin Xia, Yu-Hua Yan, Hao Sun, Jun-He Yang, Shi-You Zheng

Erschienen in: Rare Metals | Ausgabe 5/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
[1]
Zurück zum Zitat Zhou J, Liu X, Zhu L, Niu S, Cai J, Zheng X, Ye J, Lin Y, Zheng L, Zhu Z. High-spin sulfur-mediated phosphorous activation enables safe and fast phosphorus anodes for sodium-ion batteries. Chem. 2020;6(1):221.CrossRef Zhou J, Liu X, Zhu L, Niu S, Cai J, Zheng X, Ye J, Lin Y, Zheng L, Zhu Z. High-spin sulfur-mediated phosphorous activation enables safe and fast phosphorus anodes for sodium-ion batteries. Chem. 2020;6(1):221.CrossRef
[2]
Zurück zum Zitat Bruce PG, Scrosati B, Tarascon JM. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed. 2008;47(16):2930.CrossRef Bruce PG, Scrosati B, Tarascon JM. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed. 2008;47(16):2930.CrossRef
[3]
Zurück zum Zitat Wang Z, Jiang Y, Wu J, Jiang Y, Ma W, Shi Y, Liu X, Zhao B, Xu Y, Zhang J. Doping effects of metal cation on sulfide solid electrolyte/lithium metal interface. Nano Energy. 2021;84:105906. Wang Z, Jiang Y, Wu J, Jiang Y, Ma W, Shi Y, Liu X, Zhao B, Xu Y, Zhang J. Doping effects of metal cation on sulfide solid electrolyte/lithium metal interface. Nano Energy. 2021;84:105906.
[4]
Zurück zum Zitat Xia S, Yang B, Zhang H, Yang J, Liu W, Zheng S. Ultrathin layered double hydroxide nanosheets enabling composite polymer electrolyte for all-solid-state lithium batteries at room temperature. Adv Funct Mater. 2021:2101168. Xia S, Yang B, Zhang H, Yang J, Liu W, Zheng S. Ultrathin layered double hydroxide nanosheets enabling composite polymer electrolyte for all-solid-state lithium batteries at room temperature. Adv Funct Mater. 2021:2101168.
[5]
Zurück zum Zitat Kundu D, Talaie E, Duffort V, Nazar LF. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew Chem Int Ed. 2015;54(11):3431.CrossRef Kundu D, Talaie E, Duffort V, Nazar LF. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew Chem Int Ed. 2015;54(11):3431.CrossRef
[6]
Zurück zum Zitat Qin J, He C, Zhao N, Wang Z, Shi C, Liu EZ, Li J. Graphene networks anchored with Sn@graphene as lithium ion battery anode. ACS Nano. 2014;8(2):1728.CrossRef Qin J, He C, Zhao N, Wang Z, Shi C, Liu EZ, Li J. Graphene networks anchored with Sn@graphene as lithium ion battery anode. ACS Nano. 2014;8(2):1728.CrossRef
[7]
Zurück zum Zitat Zhu Y, Han X, Xu Y, Liu Y, Zheng S, Xu K, Hu L, Wang C. Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode. ACS Nano. 2013;7(7):6378.CrossRef Zhu Y, Han X, Xu Y, Liu Y, Zheng S, Xu K, Hu L, Wang C. Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode. ACS Nano. 2013;7(7):6378.CrossRef
[8]
Zurück zum Zitat Zhu L, Yang XX, Xiang YH, Kong P, Wu XW. Neurons-system-like structured SnS2/CNTs composite for high-performance sodium-ion battery anode. Rare Met. 2021;40(6):1383.CrossRef Zhu L, Yang XX, Xiang YH, Kong P, Wu XW. Neurons-system-like structured SnS2/CNTs composite for high-performance sodium-ion battery anode. Rare Met. 2021;40(6):1383.CrossRef
[9]
Zurück zum Zitat Ruan J, Pang Y, Luo S, Yuan T, Peng C, Yang J, Zheng S. Ultrafine red P nanoconfined between expanded graphene sheets for high-performance lithium-ion batteries. J Mater Chem A. 2018;6(42):20804.CrossRef Ruan J, Pang Y, Luo S, Yuan T, Peng C, Yang J, Zheng S. Ultrafine red P nanoconfined between expanded graphene sheets for high-performance lithium-ion batteries. J Mater Chem A. 2018;6(42):20804.CrossRef
[10]
Zurück zum Zitat Li W, Hu S, Luo X, Li Z, Sun X, Li M, Liu F, Yu Y. Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv Mater. 2017;29(16):1605820.CrossRef Li W, Hu S, Luo X, Li Z, Sun X, Li M, Liu F, Yu Y. Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv Mater. 2017;29(16):1605820.CrossRef
[11]
Zurück zum Zitat Yan Y, Xia S, Sun H, Pang Y, Yang J, Zheng S. A promising 3D crystalline red P/reduced graphene oxide aerogel architecture anode for sodium-ion batteries. Chem Eng J. 2020;393:124788. Yan Y, Xia S, Sun H, Pang Y, Yang J, Zheng S. A promising 3D crystalline red P/reduced graphene oxide aerogel architecture anode for sodium-ion batteries. Chem Eng J. 2020;393:124788.
[12]
Zurück zum Zitat Ran L, Luo B, Gentle IR, Lin T, Sun Q, Li M, Rana MM, Wang L, Knibbe R. Biomimetic Sn4P3 anchored on carbon nanotubes as an anode for high-performance sodium-ion batteries. ACS Nano. 2020;14(7):8826.CrossRef Ran L, Luo B, Gentle IR, Lin T, Sun Q, Li M, Rana MM, Wang L, Knibbe R. Biomimetic Sn4P3 anchored on carbon nanotubes as an anode for high-performance sodium-ion batteries. ACS Nano. 2020;14(7):8826.CrossRef
[13]
Zurück zum Zitat Palaniselvam T, Mukundan C, Hasa I, Santhosha AL, Goktas M, Moon H, Ruttert M, Schmuch R, Pollok K, Langenhorst F. Assessment on the use of high capacity “Sn4P3”/NHC composite electrodes for sodium-ion batteries with ether and carbonate electrolytes. Adv Funct Mater. 2020;30(42):2004798.CrossRef Palaniselvam T, Mukundan C, Hasa I, Santhosha AL, Goktas M, Moon H, Ruttert M, Schmuch R, Pollok K, Langenhorst F. Assessment on the use of high capacity “Sn4P3”/NHC composite electrodes for sodium-ion batteries with ether and carbonate electrolytes. Adv Funct Mater. 2020;30(42):2004798.CrossRef
[14]
Zurück zum Zitat Saddique J, Zhang X, Wu T, Su H, Liu S, Zhang D, Zhang Y, Yu H. Sn4P3-induced crystalline/amorphous composite structures for enhanced sodium-ion battery anodes. J Mater Sci Technol. 2020;55:73.CrossRef Saddique J, Zhang X, Wu T, Su H, Liu S, Zhang D, Zhang Y, Yu H. Sn4P3-induced crystalline/amorphous composite structures for enhanced sodium-ion battery anodes. J Mater Sci Technol. 2020;55:73.CrossRef
[15]
Zurück zum Zitat Kim Y, Kim Y, Choi A, Woo S, Mok D, Choi NS, Jung YS, Ryu JH, Oh SM, Lee KT. Tin phosphide as a promising anode material for Na-ion batteries. Adv Mater. 2014;26(24):4139.CrossRef Kim Y, Kim Y, Choi A, Woo S, Mok D, Choi NS, Jung YS, Ryu JH, Oh SM, Lee KT. Tin phosphide as a promising anode material for Na-ion batteries. Adv Mater. 2014;26(24):4139.CrossRef
[16]
Zurück zum Zitat Liu J, Kopold P, Wu C, van Aken PA, Maier J, Yu Y. Uniform yolk–shell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries. Energy Environ Sci. 2015;8(12):3531.CrossRef Liu J, Kopold P, Wu C, van Aken PA, Maier J, Yu Y. Uniform yolk–shell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries. Energy Environ Sci. 2015;8(12):3531.CrossRef
[17]
Zurück zum Zitat Fullenwarth J, Darwiche A, Soares A, Donnadieu B, Monconduit L. NiP3: a promising negative electrode for Li-and Na-ion batteries. J Mater Chem A. 2014;2(7):2050.CrossRef Fullenwarth J, Darwiche A, Soares A, Donnadieu B, Monconduit L. NiP3: a promising negative electrode for Li-and Na-ion batteries. J Mater Chem A. 2014;2(7):2050.CrossRef
[18]
Zurück zum Zitat Liu Z, Yu XY, Paik U. Etching-in-a-box: a novel strategy to synthesize unique yolk-shelled Fe3O4@carbon with an ultralong cycling life for lithium storage. Adv Energy Mater. 2016;6(6):1502318.CrossRef Liu Z, Yu XY, Paik U. Etching-in-a-box: a novel strategy to synthesize unique yolk-shelled Fe3O4@carbon with an ultralong cycling life for lithium storage. Adv Energy Mater. 2016;6(6):1502318.CrossRef
[19]
Zurück zum Zitat Li D, Wang H, Liu HK, Guo Z. A new strategy for achieving a high performance anode for lithium ion batteries-encapsulating germanium nanoparticles in carbon nanoboxes. Adv Energy Mater. 2016;6(5):1501666.CrossRef Li D, Wang H, Liu HK, Guo Z. A new strategy for achieving a high performance anode for lithium ion batteries-encapsulating germanium nanoparticles in carbon nanoboxes. Adv Energy Mater. 2016;6(5):1501666.CrossRef
[20]
Zurück zum Zitat Ran L, Gentle I, Lin T, Luo B, Mo N, Rana M, Li M, Wang L, Knibbe R. Sn4P3@porous carbon nanofiber as a self-supported anode for sodium-ion batteries. J Power Sources. 2020;461:228116. Ran L, Gentle I, Lin T, Luo B, Mo N, Rana M, Li M, Wang L, Knibbe R. Sn4P3@porous carbon nanofiber as a self-supported anode for sodium-ion batteries. J Power Sources. 2020;461:228116.
[21]
Zurück zum Zitat Choi J, Kim WS, Kim KH, Hong SH. Sn4P3–C nanospheres as high capacitive and ultra-stable anodes for sodium ion and lithium ion batteries. J Mater Chem A. 2018;6(36):17437.CrossRef Choi J, Kim WS, Kim KH, Hong SH. Sn4P3–C nanospheres as high capacitive and ultra-stable anodes for sodium ion and lithium ion batteries. J Mater Chem A. 2018;6(36):17437.CrossRef
[22]
Zurück zum Zitat Pan E, Jin Y, Zhao C, Jia M, Chang Q, Zhang R, Jia M. Mesoporous Sn4P3-graphene aerogel composite as a high-performance anode in sodium ion batteries. Appl Surf Sci. 2019;475:12.CrossRef Pan E, Jin Y, Zhao C, Jia M, Chang Q, Zhang R, Jia M. Mesoporous Sn4P3-graphene aerogel composite as a high-performance anode in sodium ion batteries. Appl Surf Sci. 2019;475:12.CrossRef
[23]
Zurück zum Zitat Li Q, Li Z, Zhang Z, Li C, Ma J, Wang C, Ge X, Dong S, Yin L. Low-temperature solution-based phosphorization reaction route to Sn4P3/reduced graphene oxide nanohybrids as anodes for sodium ion batteries. Adv Energy Mater. 2016;6(15):1600376.CrossRef Li Q, Li Z, Zhang Z, Li C, Ma J, Wang C, Ge X, Dong S, Yin L. Low-temperature solution-based phosphorization reaction route to Sn4P3/reduced graphene oxide nanohybrids as anodes for sodium ion batteries. Adv Energy Mater. 2016;6(15):1600376.CrossRef
[24]
Zurück zum Zitat Ma L, Yan P, Wu S, Zhu G, Shen Y. Engineering tin phosphides@carbon yolk–shell nanocube structures as a highly stable anode material for sodium-ion batteries. J Mater Chem A. 2017;5(32):16994.CrossRef Ma L, Yan P, Wu S, Zhu G, Shen Y. Engineering tin phosphides@carbon yolk–shell nanocube structures as a highly stable anode material for sodium-ion batteries. J Mater Chem A. 2017;5(32):16994.CrossRef
[25]
Zurück zum Zitat Guo Q, Ru Q, Liu Y, Yan H, Wang B, Hou X. One-step fabrication of carbon nanotubes-decorated Sn4P3 as a 3D porous intertwined scaffold for lithium-ion batteries. ChemElectroChem. 2018;5(15):2150.CrossRef Guo Q, Ru Q, Liu Y, Yan H, Wang B, Hou X. One-step fabrication of carbon nanotubes-decorated Sn4P3 as a 3D porous intertwined scaffold for lithium-ion batteries. ChemElectroChem. 2018;5(15):2150.CrossRef
[26]
Zurück zum Zitat Bai J, Xi B, Mao H, Lin Y, Ma X, Feng J, Xiong S. One-step construction of N, P-codoped porous carbon sheets/CoP hybrids with enhanced lithium and potassium storage. Adv Mater. 2018;30(35):1802310.CrossRef Bai J, Xi B, Mao H, Lin Y, Ma X, Feng J, Xiong S. One-step construction of N, P-codoped porous carbon sheets/CoP hybrids with enhanced lithium and potassium storage. Adv Mater. 2018;30(35):1802310.CrossRef
[27]
Zurück zum Zitat Niu F, Yang J, Wang N, Zhang D, Fan W, Yang J, Qian Y. MoSe2-covered N, P-doped carbon nanosheets as a long-life and high-rate anode material for sodium-ion batteries. Adv Funct Mater. 2017;27(23):1700522.CrossRef Niu F, Yang J, Wang N, Zhang D, Fan W, Yang J, Qian Y. MoSe2-covered N, P-doped carbon nanosheets as a long-life and high-rate anode material for sodium-ion batteries. Adv Funct Mater. 2017;27(23):1700522.CrossRef
[28]
Zurück zum Zitat Xia S, Lopez J, Liang C, Zhang Z, Bao Z, Cui Y, Liu W. High-rate and large-capacity lithium metal anode enabled by volume conformal and self-healable composite polymer electrolyte. Adv Sci. 2019;6(9):1802353.CrossRef Xia S, Lopez J, Liang C, Zhang Z, Bao Z, Cui Y, Liu W. High-rate and large-capacity lithium metal anode enabled by volume conformal and self-healable composite polymer electrolyte. Adv Sci. 2019;6(9):1802353.CrossRef
[29]
Zurück zum Zitat Wang Z, Dong Y, Li H, Zhao Z, Wu HB, Hao C, Liu S, Qiu J, Lou XWD. Enhancing lithium–sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat Commun. 2014;5(1):1. Wang Z, Dong Y, Li H, Zhao Z, Wu HB, Hao C, Liu S, Qiu J, Lou XWD. Enhancing lithium–sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat Commun. 2014;5(1):1.
[30]
Zurück zum Zitat Mao Y, Duan H, Xu B, Zhang L, Hu Y, Zhao C, Wang Z, Chen L, Yang Y. Lithium storage in nitrogen-rich mesoporous carbon materials. Energy Environ Sci. 2012;5(7):7950.CrossRef Mao Y, Duan H, Xu B, Zhang L, Hu Y, Zhao C, Wang Z, Chen L, Yang Y. Lithium storage in nitrogen-rich mesoporous carbon materials. Energy Environ Sci. 2012;5(7):7950.CrossRef
[32]
Zurück zum Zitat Xia S, Zhang X, Yang G, Shi L, Cai L, Xia Y, Yang J, Zheng S. Bifunctional fluorinated separator enabling polysulfide trapping and Li deposition for lithium-sulfur batteries. ACS Appl Mater Interfaces. 2021;13(10):11920.CrossRef Xia S, Zhang X, Yang G, Shi L, Cai L, Xia Y, Yang J, Zheng S. Bifunctional fluorinated separator enabling polysulfide trapping and Li deposition for lithium-sulfur batteries. ACS Appl Mater Interfaces. 2021;13(10):11920.CrossRef
[33]
Zurück zum Zitat Xia S, Zhang X, Luo L, Pang Y, Yang J, Huang Y, Zheng S. Highly stable and ultrahigh-rate Li metal anode enabled by fluorinated carbon fibers. Small. 2021;17(4):2006002.CrossRef Xia S, Zhang X, Luo L, Pang Y, Yang J, Huang Y, Zheng S. Highly stable and ultrahigh-rate Li metal anode enabled by fluorinated carbon fibers. Small. 2021;17(4):2006002.CrossRef
Metadaten
Titel
Engineering unique vesicle structured tin phosphides@P/N co-doped carbon anode for high-performance sodium/lithium-ion batteries
verfasst von
Shui-Xin Xia
Yu-Hua Yan
Hao Sun
Jun-He Yang
Shi-You Zheng
Publikationsdatum
26.01.2022
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 5/2022
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-021-01945-4

Weitere Artikel der Ausgabe 5/2022

Rare Metals 5/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.