Skip to main content
Erschienen in: Rare Metals 5/2022

22.02.2022 | Original Article

Machine learning assisted discovering of new M2X3-type thermoelectric materials

verfasst von: Du Chen, Feng Jiang, Liang Fang, Yong-Bin Zhu, Cai-Chao Ye, Wei-Shu Liu

Erschienen in: Rare Metals | Ausgabe 5/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recent years have witnessed a continuous discovering of new thermoelectric materials which has experienced a paradigm shift from try-and-error efforts to experience-based discovering and first-principles calculation. However, both the experiment and first-principles calculation deriving routes to determine a new compound are time and resources consuming. Here, we demonstrated a machine learning approach to discover new M2X3-type thermoelectric materials with only the composition information. According to the classic Bi2Te3 material, we constructed an M2X3-type thermoelectric material library with 720 compounds by using isoelectronic substitution, in which only 101 compounds have crystalline structure information in the Inorganic Crystal Structure Database (ICSD) and Materials Project (MP) database. A model based on the random forest (RF) algorithm plus Bayesian optimization was used to explore the underlying principles to determine the crystal structures from the known compounds. The physical properties of constituent elements (such as atomic mass, electronegativity, ionic radius) were used to define the feature of the compounds with a general formula 1M2M1X2X3X (1M + 2M: 1X + 2X + 3X = 2:3). The primary goal is to find new thermoelectric materials with the same rhombohedral structure as Bi2Te3 by machine learning. The final trained RF model showed a high accuracy of 91% on the prediction of rhombohedral compounds. Finally, we selected four important features to proceed with the polynomial fitting with the prediction results from the RF model and used the acquired polynomial function to make further discoveries outside the pre-defined material library.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
[1]
Zurück zum Zitat Li JF, Tanaka S, Umeki T, Sugimoto S, Watanabe R. Microfabrication of thermoelectric materials by silicon molding process. Sens Actuator A-Phys. 2003;108(1–3):97. Li JF, Tanaka S, Umeki T, Sugimoto S, Watanabe R. Microfabrication of thermoelectric materials by silicon molding process. Sens Actuator A-Phys. 2003;108(1–3):97.
[2]
Zurück zum Zitat Witze A. Nuclear power: desperately seeking plutonium. Nature. 2014;515(7528):484. Witze A. Nuclear power: desperately seeking plutonium. Nature. 2014;515(7528):484.
[3]
Zurück zum Zitat Wang YP, Qin BC, Wang DY, Hong T, Gao X, Zhao LD. Realizing high thermoelectric properties in p-type polycrystalline SnSe by inducing DOS distortion. Rare Met. 2021;40(10):2819. Wang YP, Qin BC, Wang DY, Hong T, Gao X, Zhao LD. Realizing high thermoelectric properties in p-type polycrystalline SnSe by inducing DOS distortion. Rare Met. 2021;40(10):2819.
[4]
Zurück zum Zitat Liu WS, Hu JZ, Zhang SM, Deng MJ, Han CG, Liu Y. New trends, strategies and opportunities in thermoelectric materials: a perspective. Mater Today Phys. 2017;1:50. Liu WS, Hu JZ, Zhang SM, Deng MJ, Han CG, Liu Y. New trends, strategies and opportunities in thermoelectric materials: a perspective. Mater Today Phys. 2017;1:50.
[5]
Zurück zum Zitat Liu R, Tan X, Liu YC, Ren GK, Lan JL, Zhou ZF, Nan CW, Lin YH. BiCuSeO as state-of-the-art thermoelectric materials for energy conversion: from thin films to bulks. Rare Met. 2018;37(4):259. Liu R, Tan X, Liu YC, Ren GK, Lan JL, Zhou ZF, Nan CW, Lin YH. BiCuSeO as state-of-the-art thermoelectric materials for energy conversion: from thin films to bulks. Rare Met. 2018;37(4):259.
[6]
Zurück zum Zitat Zhao CC, Xiao C. When thermoelectric materials come across with magnetism. Rare Met. 2021;40(4):752. Zhao CC, Xiao C. When thermoelectric materials come across with magnetism. Rare Met. 2021;40(4):752.
[7]
Zurück zum Zitat Ioffe AF, Gelbtuch A. Semiconductor thermoelements and thermoelectric cooling. Phys Today. 1959;12:42. Ioffe AF, Gelbtuch A. Semiconductor thermoelements and thermoelectric cooling. Phys Today. 1959;12:42.
[8]
Zurück zum Zitat Greig D. Thermoelectricity and thermal conductivity in the lead sulfide group of semiconductors. Phys Rev. 1960;120(2):358. Greig D. Thermoelectricity and thermal conductivity in the lead sulfide group of semiconductors. Phys Rev. 1960;120(2):358.
[9]
Zurück zum Zitat Goldsmid HJ, Douglas RW. The use of semiconductors in thermoelectric refrigeration. J Phys D-Appl Phys. 2002;5:386. Goldsmid HJ, Douglas RW. The use of semiconductors in thermoelectric refrigeration. J Phys D-Appl Phys. 2002;5:386.
[10]
Zurück zum Zitat Putley EH. Thermoelectric and galvanomagnetic effects in lead selenide and telluride. Proc Phys Soc B. 1955;68(1):35. Putley EH. Thermoelectric and galvanomagnetic effects in lead selenide and telluride. Proc Phys Soc B. 1955;68(1):35.
[11]
Zurück zum Zitat Perdew JP. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B. 1986;33(12):8822. Perdew JP. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B. 1986;33(12):8822.
[12]
Zurück zum Zitat Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865.
[13]
Zurück zum Zitat Rhyee JS, Lee KH, Lee SM, Cho E, Kim SI, Lee E, Kwon YS, Shim JH, Kotliar G. Peierls distortion as a route to high thermoelectric performance in In4Se3−δ crystals. Nature. 2019;459(18):965. Rhyee JS, Lee KH, Lee SM, Cho E, Kim SI, Lee E, Kwon YS, Shim JH, Kotliar G. Peierls distortion as a route to high thermoelectric performance in In4Se3δ crystals. Nature. 2019;459(18):965.
[14]
Zurück zum Zitat Ziletti A, Kumar D, Scheffler M, Ghiringhelli LM. Insightful classification of crystal structures using deep learning. Nat Commun. 2018;9:2775. Ziletti A, Kumar D, Scheffler M, Ghiringhelli LM. Insightful classification of crystal structures using deep learning. Nat Commun. 2018;9:2775.
[15]
Zurück zum Zitat Ye WK, Chen C, Wang ZB, Chu IH, Ong SP. Deep neural networks for accurate predictions of crystal stability. Nat Commun. 2018;9:3800. Ye WK, Chen C, Wang ZB, Chu IH, Ong SP. Deep neural networks for accurate predictions of crystal stability. Nat Commun. 2018;9:3800.
[16]
Zurück zum Zitat Oliynyk AO, Antono E, Sparks TD, Ghadbeigi L, Gaultois MW, Meredig B, Mar A. High-throughput machine-learning-driven synthesis of full-Heusler compounds. Chem Mat. 2016;28(20):7324. Oliynyk AO, Antono E, Sparks TD, Ghadbeigi L, Gaultois MW, Meredig B, Mar A. High-throughput machine-learning-driven synthesis of full-Heusler compounds. Chem Mat. 2016;28(20):7324.
[17]
Zurück zum Zitat Legrain F, Carrete J, Roekeghem AV, Madsen GKH, Mingo N. Materials screening for the discovery of new half-Heuslers: machine learning versus ab initio methods. J Phys Chem B. 2018;122(2):625. Legrain F, Carrete J, Roekeghem AV, Madsen GKH, Mingo N. Materials screening for the discovery of new half-Heuslers: machine learning versus ab initio methods. J Phys Chem B. 2018;122(2):625.
[18]
Zurück zum Zitat Pilania G, Mannodi-Kanakkithodi A, Uberuaga BP, Ramprasad R, Gubernatis JE, Lookman T. Machine learning bandgaps of double perovskites. Sci Rep. 2016;6:19375. Pilania G, Mannodi-Kanakkithodi A, Uberuaga BP, Ramprasad R, Gubernatis JE, Lookman T. Machine learning bandgaps of double perovskites. Sci Rep. 2016;6:19375.
[19]
Zurück zum Zitat Lee J, Seko A, Shitara K, Nakayama K, Tanaka I. Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques. Phys Rev B. 2016;93(11):115104. Lee J, Seko A, Shitara K, Nakayama K, Tanaka I. Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques. Phys Rev B. 2016;93(11):115104.
[20]
Zurück zum Zitat Weston L, Stampfl C. Machine learning the band gap properties of kesterite I2−II−IV−V4 quaternary compounds for photovoltaics applications. Phys Rev Mater. 2018;2(8):085407. Weston L, Stampfl C. Machine learning the band gap properties of kesterite I2−II−IV−V4 quaternary compounds for photovoltaics applications. Phys Rev Mater. 2018;2(8):085407.
[21]
Zurück zum Zitat Pilania G, Liu XY. Machine learning properties of binary wurtzite superlattices. J Mater Sci. 2018;53(9):6652. Pilania G, Liu XY. Machine learning properties of binary wurtzite superlattices. J Mater Sci. 2018;53(9):6652.
[22]
Zurück zum Zitat Gaultois MW, Sparks TD, Borg CKH, Seshadri R, Bonificio WD, Clarke DR. Data-driven review of thermoelectric materials: performance and resource considerations. Chem Mat. 2013;25(15):2911. Gaultois MW, Sparks TD, Borg CKH, Seshadri R, Bonificio WD, Clarke DR. Data-driven review of thermoelectric materials: performance and resource considerations. Chem Mat. 2013;25(15):2911.
[23]
Zurück zum Zitat Sparks TD, Gaultois MW, Oliynyk A, Brgoch J, Meredig B. Data mining our way to the next generation of thermoelectrics. Scr Mater. 2016;111:10. Sparks TD, Gaultois MW, Oliynyk A, Brgoch J, Meredig B. Data mining our way to the next generation of thermoelectrics. Scr Mater. 2016;111:10.
[24]
Zurück zum Zitat Furmanchuk AO, Saal JE, Doak JW, Olson GB, Choudhary A, Agrawal A. Prediction of seebeck coefficient for compounds without restriction to fixed stoichiometry: a machine learning approach. J Comput Chem. 2018;39(4):191. Furmanchuk AO, Saal JE, Doak JW, Olson GB, Choudhary A, Agrawal A. Prediction of seebeck coefficient for compounds without restriction to fixed stoichiometry: a machine learning approach. J Comput Chem. 2018;39(4):191.
[25]
Zurück zum Zitat Laugier L, Bash D, Recatala J, Ng HK, Ramasamy S, Foo CS, Chandrasekhar VR, Hippalgaonkar K. Predicting thermoelectric properties from crystal graphs and material descriptors - first application for functional material (2018). arXiv, https://arxiv.org/abs/1811.06219. Laugier L, Bash D, Recatala J, Ng HK, Ramasamy S, Foo CS, Chandrasekhar VR, Hippalgaonkar K. Predicting thermoelectric properties from crystal graphs and material descriptors - first application for functional material (2018). arXiv, https://​arxiv.​org/​abs/​1811.​06219.
[26]
Zurück zum Zitat Belsky A, Hellenbrandt M, Karen VL, Luksch P. New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. Acta Cryst B. 2002;58:364. Belsky A, Hellenbrandt M, Karen VL, Luksch P. New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. Acta Cryst B. 2002;58:364.
[27]
Zurück zum Zitat Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson KA. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 2013;1(1):11002. Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson KA. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 2013;1(1):11002.
[28]
Zurück zum Zitat Menze BH, Kelm BM, Masuch R, Himmelreich U, Bachert P, Petrich W, Hamprecht FA. A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC Bioinform. 2009;10(1):213. Menze BH, Kelm BM, Masuch R, Himmelreich U, Bachert P, Petrich W, Hamprecht FA. A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC Bioinform. 2009;10(1):213.
[29]
Zurück zum Zitat Granitto PM, Furlanello C, Biasioli F, Gasperi F. Recursive feature elimination with random forest for PTR-MS analysis of agroindustrial products. Chemom Intell Lab Syst. 2006;83(2):83. Granitto PM, Furlanello C, Biasioli F, Gasperi F. Recursive feature elimination with random forest for PTR-MS analysis of agroindustrial products. Chemom Intell Lab Syst. 2006;83(2):83.
[30]
Zurück zum Zitat Forsyth D. Clustering: models of high dimensional data. In: Forsyth D, editor. Probability and statistics for computer science. Cham: Springer International Publishing; 2018. 281. Forsyth D. Clustering: models of high dimensional data. In: Forsyth D, editor. Probability and statistics for computer science. Cham: Springer International Publishing; 2018. 281.
[31]
Zurück zum Zitat Gambella C, Ghaddar B, Naoum-Sawaya J. Optimization problems for machine learning: a survey. Eur J Oper Res. 2021;290(3):807. Gambella C, Ghaddar B, Naoum-Sawaya J. Optimization problems for machine learning: a survey. Eur J Oper Res. 2021;290(3):807.
[32]
Zurück zum Zitat Grauer DC, Hor YS, Williams AJ, Cava RJ. Thermoelectric properties of the tetradymite-type Bi2Te2S–Sb2Te2S solid solution. Mater Res Bull. 2009;44(9):1926. Grauer DC, Hor YS, Williams AJ, Cava RJ. Thermoelectric properties of the tetradymite-type Bi2Te2S–Sb2Te2S solid solution. Mater Res Bull. 2009;44(9):1926.
[33]
[34]
Zurück zum Zitat Tran QV, Kim M. Effect on the electronic, magnetic and thermoelectric properties of Bi2Te3 by the cerium substitution. IEEE Trans Magn. 2014;50(1):1. Tran QV, Kim M. Effect on the electronic, magnetic and thermoelectric properties of Bi2Te3 by the cerium substitution. IEEE Trans Magn. 2014;50(1):1.
[36]
Zurück zum Zitat Wensierski HV, Bolwin H, Zeppenfeld A, Leute V. Ordering phenomena and demixing in the quasiternary system Ga2Te3/Hg3Te3/In2Te3. J Alloy Compd. 1997;255(1–2):169. Wensierski HV, Bolwin H, Zeppenfeld A, Leute V. Ordering phenomena and demixing in the quasiternary system Ga2Te3/Hg3Te3/In2Te3. J Alloy Compd. 1997;255(1–2):169.
[37]
Zurück zum Zitat Xue D, Balachandran PV, Hogden J, Theiler J, Xue D, Lookman T. Accelerated search for materials with targeted properties by adaptive design. Nat Commun. 2016;7:11241. Xue D, Balachandran PV, Hogden J, Theiler J, Xue D, Lookman T. Accelerated search for materials with targeted properties by adaptive design. Nat Commun. 2016;7:11241.
[38]
Zurück zum Zitat Yuan R, Liu Z, Balachandran PV, Xue D, Zhou Y, Ding X, Sun J, Xue D, Lookman T. Accelerated discovery of large electrostrains in BaTiO3-based piezoelectrics using active learning. Adv Mater. 2018;30(7):1702884. Yuan R, Liu Z, Balachandran PV, Xue D, Zhou Y, Ding X, Sun J, Xue D, Lookman T. Accelerated discovery of large electrostrains in BaTiO3-based piezoelectrics using active learning. Adv Mater. 2018;30(7):1702884.
[39]
Zurück zum Zitat Ward L, Agrawal A, Choudhary A, Wolverton C. A general-purpose machine learning framework for predicting properties of inorganic materials. NPJ Comput Mater. 2016;2:16028. Ward L, Agrawal A, Choudhary A, Wolverton C. A general-purpose machine learning framework for predicting properties of inorganic materials. NPJ Comput Mater. 2016;2:16028.
[40]
Zurück zum Zitat Ghiringhelli LM, Vybiral J, Levchenko SV, Draxl C, Scheffler M. Big data of materials science: critical role of the descriptor. Phys Rev Lett. 2015;114(10):105503. Ghiringhelli LM, Vybiral J, Levchenko SV, Draxl C, Scheffler M. Big data of materials science: critical role of the descriptor. Phys Rev Lett. 2015;114(10):105503.
[41]
Zurück zum Zitat Shahriari B, Swersky K, Wang Z, Adams RP, Freitas ND. Taking the human out of the loop: a review of Bayesian optimization. Proc IEEE. 2016;104(1):148. Shahriari B, Swersky K, Wang Z, Adams RP, Freitas ND. Taking the human out of the loop: a review of Bayesian optimization. Proc IEEE. 2016;104(1):148.
[42]
Zurück zum Zitat Vapnik V, Levin E, Cun YL. Measuring the VC-dimension of a learning machine. Neural Comput. 1994;6(5):851. Vapnik V, Levin E, Cun YL. Measuring the VC-dimension of a learning machine. Neural Comput. 1994;6(5):851.
[43]
Zurück zum Zitat Pomrehn GS, Zevalkink A, Zeier WG, Walle AVD, Snyder GS. Defect-controlled electronic properties in AZn2Sb2 Zintl phases. Angew Chem-Int Edit. 2014;53(13):3422. Pomrehn GS, Zevalkink A, Zeier WG, Walle AVD, Snyder GS. Defect-controlled electronic properties in AZn2Sb2 Zintl phases. Angew Chem-Int Edit. 2014;53(13):3422.
[44]
Zurück zum Zitat Mao YQ, Yang HL, Sheng Y, Wang JP, Ouyang RH, Ye CC, Yang J, Zhang WQ. Prediction and classification of formation energies of binary compounds by machine learning: an approach without crystal structure information. ACS Omega. 2021;6(22):14533. Mao YQ, Yang HL, Sheng Y, Wang JP, Ouyang RH, Ye CC, Yang J, Zhang WQ. Prediction and classification of formation energies of binary compounds by machine learning: an approach without crystal structure information. ACS Omega. 2021;6(22):14533.
[45]
Zurück zum Zitat Slack GA. New materials and performance limits for thermoelectric cooling. In: Rowe DM, editor. CRC handbook of thermoelectrics. Baca Raton: CRC Press; 2018. 1. Slack GA. New materials and performance limits for thermoelectric cooling. In: Rowe DM, editor. CRC handbook of thermoelectrics. Baca Raton: CRC Press; 2018. 1.
[46]
Zurück zum Zitat Wu QR, Xu YB, Xi TG. Prediction and relation of thermal conductivity with average relative atomic mass and density for semiconducting compound functional crystal materials. Jpn J Appl Phys. 2007;46(4):1441. Wu QR, Xu YB, Xi TG. Prediction and relation of thermal conductivity with average relative atomic mass and density for semiconducting compound functional crystal materials. Jpn J Appl Phys. 2007;46(4):1441.
[47]
Zurück zum Zitat Verstraete MJ, Torrent M, Jollet F, Zerah G, Gonze X. Density functional perturbation theory with spin-orbit coupling: phonon band structure of lead. Phys Rev B. 2008;78(4):045119. Verstraete MJ, Torrent M, Jollet F, Zerah G, Gonze X. Density functional perturbation theory with spin-orbit coupling: phonon band structure of lead. Phys Rev B. 2008;78(4):045119.
Metadaten
Titel
Machine learning assisted discovering of new M2X3-type thermoelectric materials
verfasst von
Du Chen
Feng Jiang
Liang Fang
Yong-Bin Zhu
Cai-Chao Ye
Wei-Shu Liu
Publikationsdatum
22.02.2022
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 5/2022
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-021-01911-0

Weitere Artikel der Ausgabe 5/2022

Rare Metals 5/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.