Skip to main content
Erschienen in: Rare Metals 5/2022

17.01.2022 | Original Article

Rational construction of densely packed Si/MXene composite microspheres enables favorable sodium storage

verfasst von: Hui-Qi Wang, Ya-Xin Zhao, Li Gou, Li-Yong Wang, Mei Wang, Ying Li, Sheng-Liang Hu

Erschienen in: Rare Metals | Ausgabe 5/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The fast and reversible sodiation/desodiation of anode materials remains an indelible yet fascinating target. Herein, a class of the densely packed Si/MXene composite microspheres is constructed and prepared, taking advantages of the synergistic effects of the activated Si nanoparticles and conductive flower-like MXene microspheres with ample ion-diffusion pathways. Consequently, the intrinsic MXene nanosheets with intelligently regulated interlayer spacing can accommodate the volume change induced strain during cycling, and the strong interaction between the Si and MXene matrix greatly contributes to the robust structural stability. As expected, the Si/MXene composite architecture exhibits boosted sodium storage performance, in terms of an inspiring reversible capacity of 751 mAh·g−1 at 0.1 A·g−1, remarkable long-term cycling stability of 376 mAh·g−1 at 0.1 A·g−1 over 500 cycles, and outstanding rate capability (after one consecutive current density changing from 0.1 to 2.0 A·g−1, a large capacity of 275 mAh·g−1 is regained after suddenly returning the initial current density back to 0.1 A·g−1 and in the subsequent 200 cycles this composite architecture anode still delivers a capacity of 332 mAh·g−1). The kinetics analysis indicates superior pseudocapacitive property, high electronic conductivity, and favorable sodium-ion adsorption and diffusion capability, confirming fast sodium storage performance. Impressively, ex-situ X-ray diffraction and selected area electron diffraction characterizations corroborate the formation of NaSi6 as the main sodiation products during the reversible evolutions of cycled proceeding with sodium-ion insertion. This work sheds light on the elaborate design of silicon-based nanostructured anodes towards advanced high-performance sodium-ion batteries.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
[1]
Zurück zum Zitat Zhang N, Jiang HY, Li YW, Yong P, Li MX, Zhu H, Ci S, Kang CQ. Aggregating distributed energy storage: cloud-based flexibility services from China. IEEE Power Energy Mag. 2021;19(4):63.CrossRef Zhang N, Jiang HY, Li YW, Yong P, Li MX, Zhu H, Ci S, Kang CQ. Aggregating distributed energy storage: cloud-based flexibility services from China. IEEE Power Energy Mag. 2021;19(4):63.CrossRef
[2]
Zurück zum Zitat Ren M, Lu PT, Liu XR, Hossain MS, Fang YR, Hanaoka T, O’Gallachoir B, Glynn J, Dai HC. Decarbonizing China’s iron and steel industry from the supply and demand sides for carbon neutrality. Appl Energy. 2021;298:117209.CrossRef Ren M, Lu PT, Liu XR, Hossain MS, Fang YR, Hanaoka T, O’Gallachoir B, Glynn J, Dai HC. Decarbonizing China’s iron and steel industry from the supply and demand sides for carbon neutrality. Appl Energy. 2021;298:117209.CrossRef
[3]
Zurück zum Zitat Chu CX, Li R, Cai FP, Bai ZC, Wang YX, Xu X, Wang NN, Yang J, Dou SX. Recent advanced skeletons in sodium metal anodes. Energy Environ Sci. 2021;14(8):4318.CrossRef Chu CX, Li R, Cai FP, Bai ZC, Wang YX, Xu X, Wang NN, Yang J, Dou SX. Recent advanced skeletons in sodium metal anodes. Energy Environ Sci. 2021;14(8):4318.CrossRef
[4]
Zurück zum Zitat Han X, Wang SY, Xu YB, Zhong GM, Zhou Y, Liu B, Jiang XY, Wang X, Li Y, Zhang ZQ, Chen SY, Wang CM, Yang Y, Zhang WQ, Wang JL, Liu J, Yang JH. All solid thick oxide cathodes based on low temperature sintering for high energy solid batteries. Energy Environ Sci. 2021;14(9):5044.CrossRef Han X, Wang SY, Xu YB, Zhong GM, Zhou Y, Liu B, Jiang XY, Wang X, Li Y, Zhang ZQ, Chen SY, Wang CM, Yang Y, Zhang WQ, Wang JL, Liu J, Yang JH. All solid thick oxide cathodes based on low temperature sintering for high energy solid batteries. Energy Environ Sci. 2021;14(9):5044.CrossRef
[5]
Zurück zum Zitat Yin B, Liang SQ, Yu DD, Cheng BS, Egun IL, Lin JD, Xie XD, Shao HZ, He HY, Pan AQ. Increasing accessible subsurface to improving rate capability and cycling stability of sodium-ion batteries. Adv Mater. 2021;33(37):2100808.CrossRef Yin B, Liang SQ, Yu DD, Cheng BS, Egun IL, Lin JD, Xie XD, Shao HZ, He HY, Pan AQ. Increasing accessible subsurface to improving rate capability and cycling stability of sodium-ion batteries. Adv Mater. 2021;33(37):2100808.CrossRef
[6]
Zurück zum Zitat Yang XM, Rogach AL. Anodes and sodium-free cathodes in sodium ion batteries. Adv Energy Mater. 2020;10(22):2000288.CrossRef Yang XM, Rogach AL. Anodes and sodium-free cathodes in sodium ion batteries. Adv Energy Mater. 2020;10(22):2000288.CrossRef
[7]
Zurück zum Zitat Yu P, Tang W, Wu FF, Zhang C, Luo HY, Liu H, Wang ZG. Recent progress in plant-derived hard carbon anode materials for sodium-ion batteries: a review. Rare Met. 2020;39(9):1019.CrossRef Yu P, Tang W, Wu FF, Zhang C, Luo HY, Liu H, Wang ZG. Recent progress in plant-derived hard carbon anode materials for sodium-ion batteries: a review. Rare Met. 2020;39(9):1019.CrossRef
[8]
Zurück zum Zitat Deng JQ, Luo WB, Chou SL, Liu HK, Dou SX. Sodium-ion batteries: from academic research to practical commercialization. Adv Energy Mater. 2018;8(4):1701428.CrossRef Deng JQ, Luo WB, Chou SL, Liu HK, Dou SX. Sodium-ion batteries: from academic research to practical commercialization. Adv Energy Mater. 2018;8(4):1701428.CrossRef
[9]
Zurück zum Zitat Zhang W, Peng J, Hua WB, Liu Y, Wang JS, Liang YR, Lai WH, Jiang Y, Huang Y, Zhang W, Yang HL, Yang YG, Li LN, Liu ZJ, Wang L, Chou SL. Architecting amorphous vanadium oxide/MXene nanohybrid via tunable anodic oxidation for high-performance sodium-ion batteries. Adv Energy Mater. 2021;11(22):2100757.CrossRef Zhang W, Peng J, Hua WB, Liu Y, Wang JS, Liang YR, Lai WH, Jiang Y, Huang Y, Zhang W, Yang HL, Yang YG, Li LN, Liu ZJ, Wang L, Chou SL. Architecting amorphous vanadium oxide/MXene nanohybrid via tunable anodic oxidation for high-performance sodium-ion batteries. Adv Energy Mater. 2021;11(22):2100757.CrossRef
[10]
Zurück zum Zitat Ma JM, Li YT. Editorial for advanced energy storage and conversion materials and technologies. Rare Met. 2020;39(9):967.CrossRef Ma JM, Li YT. Editorial for advanced energy storage and conversion materials and technologies. Rare Met. 2020;39(9):967.CrossRef
[11]
Zurück zum Zitat Zhou YY, Yang YL, Jiao MG, Zhou Z. What is the promising anode material for Na ion batteries? Sci Bull. 2018;63(3):146.CrossRef Zhou YY, Yang YL, Jiao MG, Zhou Z. What is the promising anode material for Na ion batteries? Sci Bull. 2018;63(3):146.CrossRef
[12]
Zurück zum Zitat Li J, Yang JY, Wang JT, Lu SG. A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries. Rare Met. 2019;38(3):199.CrossRef Li J, Yang JY, Wang JT, Lu SG. A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries. Rare Met. 2019;38(3):199.CrossRef
[13]
Zurück zum Zitat Ma CL, Hu ZH, Song NJ, Zhao Y, Liu YZ, Wang HQ. Constructing mild expanded graphite microspheres by pressurized oxidation combined microwave treatment for enhanced lithium storage. Rare Met. 2021;40(4):837.CrossRef Ma CL, Hu ZH, Song NJ, Zhao Y, Liu YZ, Wang HQ. Constructing mild expanded graphite microspheres by pressurized oxidation combined microwave treatment for enhanced lithium storage. Rare Met. 2021;40(4):837.CrossRef
[14]
Zurück zum Zitat Han X, Zhang ZQ, Chen HX, Zhang QB, Chen SY, Yang Y. On the interface design of Si and multilayer graphene for a high-performance Li-ion battery anode. ACS Appl Mater Interfaces. 2020;12(40):44840.CrossRef Han X, Zhang ZQ, Chen HX, Zhang QB, Chen SY, Yang Y. On the interface design of Si and multilayer graphene for a high-performance Li-ion battery anode. ACS Appl Mater Interfaces. 2020;12(40):44840.CrossRef
[15]
Zurück zum Zitat Xu YL, Swaans E, Basak S, Zandbergen HW, Borsa DM, Mulder FM. Reversible Na-ion uptake in Si nanoparticles. Adv Energy Mater. 2016;6(2):1501436.CrossRef Xu YL, Swaans E, Basak S, Zandbergen HW, Borsa DM, Mulder FM. Reversible Na-ion uptake in Si nanoparticles. Adv Energy Mater. 2016;6(2):1501436.CrossRef
[16]
Zurück zum Zitat Chou CY, Lee M, Hwang G. Sodiation mechanisms in Si, Ge, and Sn for Na-ion battery anodes: a first-principles study. Abstr Pap Am Chem S. 2016;251(1):454. Chou CY, Lee M, Hwang G. Sodiation mechanisms in Si, Ge, and Sn for Na-ion battery anodes: a first-principles study. Abstr Pap Am Chem S. 2016;251(1):454.
[17]
Zurück zum Zitat Zheng SM, Tian YR, Liu YX, Wang S, Hu CQ, Wang B, Wang KM. Alloy anodes for sodium-ion batteries. Rare Met. 2021;40(2):272.CrossRef Zheng SM, Tian YR, Liu YX, Wang S, Hu CQ, Wang B, Wang KM. Alloy anodes for sodium-ion batteries. Rare Met. 2021;40(2):272.CrossRef
[18]
Zurück zum Zitat Ding JF, Tang C, Zhu GJ, He FY, Du AJ, Wu MH, Zhang HJ. Ultrasmall SnO2 nanocrystals sandwiched into polypyrrole and Ti3C2Tx MXene for highly effective sodium storage. Mater Chem Front. 2021;5(2):825.CrossRef Ding JF, Tang C, Zhu GJ, He FY, Du AJ, Wu MH, Zhang HJ. Ultrasmall SnO2 nanocrystals sandwiched into polypyrrole and Ti3C2Tx MXene for highly effective sodium storage. Mater Chem Front. 2021;5(2):825.CrossRef
[19]
Zurück zum Zitat Liu ZM, Yu XY, Lou XW, Paik U. Sb@C coaxial nanotubes as a superior long-life and high-rate anode for sodium ion batteries. Energy Environ Sci. 2016;9(7):2314.CrossRef Liu ZM, Yu XY, Lou XW, Paik U. Sb@C coaxial nanotubes as a superior long-life and high-rate anode for sodium ion batteries. Energy Environ Sci. 2016;9(7):2314.CrossRef
[20]
Zurück zum Zitat Liu ZM, Song T, Paik U. Sb-based electrode materials for rechargeable batteries. J Mater Chem A. 2018;6(18):8159.CrossRef Liu ZM, Song T, Paik U. Sb-based electrode materials for rechargeable batteries. J Mater Chem A. 2018;6(18):8159.CrossRef
[21]
Zurück zum Zitat Yue C, Yu YJ, Sun SB, He X, Chen BB, Lin W, Xu BB, Zheng MS, Wu ST, Li J, Kang JY, Lin LW. High performance 3D Si/Ge nanorods array anode buffered by TiN/Ti interlayer for sodium-ion batteries. Adv Funct Mater. 2015;25(9):1386.CrossRef Yue C, Yu YJ, Sun SB, He X, Chen BB, Lin W, Xu BB, Zheng MS, Wu ST, Li J, Kang JY, Lin LW. High performance 3D Si/Ge nanorods array anode buffered by TiN/Ti interlayer for sodium-ion batteries. Adv Funct Mater. 2015;25(9):1386.CrossRef
[22]
Zurück zum Zitat Kulish VV, Malyi OI, Ng MF, Chen Z, Manzhos S, Wu P. Controlling Na diffusion by rational design of Si-based layered architectures. Phys Chem Chem Phys. 2014;16(9):4260.CrossRef Kulish VV, Malyi OI, Ng MF, Chen Z, Manzhos S, Wu P. Controlling Na diffusion by rational design of Si-based layered architectures. Phys Chem Chem Phys. 2014;16(9):4260.CrossRef
[23]
Zurück zum Zitat Qiu DF, Ma X, Zhang JD, Lin ZX, Zhao B. Mesoporous silicon microspheres produced from in situ magnesiothermic reduction of silicon oxide for high-performance anode material in sodium-ion batteries. Nanoscale Res Lett. 2018;13(1):275.CrossRef Qiu DF, Ma X, Zhang JD, Lin ZX, Zhao B. Mesoporous silicon microspheres produced from in situ magnesiothermic reduction of silicon oxide for high-performance anode material in sodium-ion batteries. Nanoscale Res Lett. 2018;13(1):275.CrossRef
[24]
Zurück zum Zitat Jangid MK, Lakhnot AS, Vemulapally A, Sonia FJ, Sinha S, Dusane RO, Mukhopadhyay A. Crystalline core/amorphous shell structured silicon nanowires offer size and structure dependent reversible Na-storage. J Mater Chem A. 2018;6(8):3422.CrossRef Jangid MK, Lakhnot AS, Vemulapally A, Sonia FJ, Sinha S, Dusane RO, Mukhopadhyay A. Crystalline core/amorphous shell structured silicon nanowires offer size and structure dependent reversible Na-storage. J Mater Chem A. 2018;6(8):3422.CrossRef
[25]
Zurück zum Zitat Han Y, Lin N, Xu TJ, Li TQ, Tian J, Zhu YC, Qian YT. An amorphous Si material with a sponge-like structure as an anode for Li-ion and Na-ion batteries. Nanoscale. 2018;10(7):3153.CrossRef Han Y, Lin N, Xu TJ, Li TQ, Tian J, Zhu YC, Qian YT. An amorphous Si material with a sponge-like structure as an anode for Li-ion and Na-ion batteries. Nanoscale. 2018;10(7):3153.CrossRef
[26]
Zurück zum Zitat Lim CH, Huang TY, Shao PS, Chien JH, Weng YT, Huang HF, Hwang BJ, Wu NL. Experimental study on sodiation of amorphous silicon for use as sodium-ion battery anode. Electrochim Acta. 2016;211:265.CrossRef Lim CH, Huang TY, Shao PS, Chien JH, Weng YT, Huang HF, Hwang BJ, Wu NL. Experimental study on sodiation of amorphous silicon for use as sodium-ion battery anode. Electrochim Acta. 2016;211:265.CrossRef
[27]
Zurück zum Zitat Zhang L, Hu XL, Chen CJ, Guo HP, Liu XX, Xu GZ, Zhong HJ, Cheng S, Wu P, Meng JS, Huang YH, Dou SX, Liu HK. In operando mechanism analysis on nanocrystalline silicon anode material for reversible and ultrafast sodium storage. Adv Mater. 2017;29(5):1604708.CrossRef Zhang L, Hu XL, Chen CJ, Guo HP, Liu XX, Xu GZ, Zhong HJ, Cheng S, Wu P, Meng JS, Huang YH, Dou SX, Liu HK. In operando mechanism analysis on nanocrystalline silicon anode material for reversible and ultrafast sodium storage. Adv Mater. 2017;29(5):1604708.CrossRef
[28]
Zurück zum Zitat Hong ZS, Maleki H, Ludwig T, Zhen YC, Wilhelm M, Lee D, Kim KH, Mathur S. New insights into carbon-based and MXene anodes for Na and K-ion storage: a review. J Energy Chem. 2021;62:660.CrossRef Hong ZS, Maleki H, Ludwig T, Zhen YC, Wilhelm M, Lee D, Kim KH, Mathur S. New insights into carbon-based and MXene anodes for Na and K-ion storage: a review. J Energy Chem. 2021;62:660.CrossRef
[29]
Zurück zum Zitat Zhang X, Zhang ZH, Zhou Z. MXene-based materials for electrochemical energy storage. J Energy Chem. 2018;27(1):73.CrossRef Zhang X, Zhang ZH, Zhou Z. MXene-based materials for electrochemical energy storage. J Energy Chem. 2018;27(1):73.CrossRef
[30]
Zurück zum Zitat Xiong DB, Li XF, Bai ZM, Lu SG. Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small. 2018;14(17):1703419.CrossRef Xiong DB, Li XF, Bai ZM, Lu SG. Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small. 2018;14(17):1703419.CrossRef
[31]
Zurück zum Zitat Wang XK, Shi J, Mi LW, Zhai YP, Zhang JY, Feng XM, Wu ZJ, Chen WH. Hierarchical porous hard carbon enables integral solid electrolyte interphase as robust anode for sodium-ion batteries. Rare Met. 2020;39(9):1053.CrossRef Wang XK, Shi J, Mi LW, Zhai YP, Zhang JY, Feng XM, Wu ZJ, Chen WH. Hierarchical porous hard carbon enables integral solid electrolyte interphase as robust anode for sodium-ion batteries. Rare Met. 2020;39(9):1053.CrossRef
[32]
Zurück zum Zitat Kalisvaart WP, Olsen BC, Luber EJ, Buriak JM. Sb-Si alloys and multilayers for sodium-ion battery anodes. ACS Appl Energy Mater. 2019;2(3):2205.CrossRef Kalisvaart WP, Olsen BC, Luber EJ, Buriak JM. Sb-Si alloys and multilayers for sodium-ion battery anodes. ACS Appl Energy Mater. 2019;2(3):2205.CrossRef
[33]
Zurück zum Zitat Ma P, Fang DL, Liu YL, Shang Y, Shi YM, Yang HY. MXene-based materials for electrochemical sodium-ion storage. Adv Sci. 2021;8(11):2003185.CrossRef Ma P, Fang DL, Liu YL, Shang Y, Shi YM, Yang HY. MXene-based materials for electrochemical sodium-ion storage. Adv Sci. 2021;8(11):2003185.CrossRef
[34]
Zurück zum Zitat Yang J, Bao WZ, Jaumaux P, Zhang ST, Wang CY, Wang GX. MXene-based composites: synthesis and applications in rechargeable batteries and supercapacitors. Adv Mater Interfaces. 2019;6(8):1802004.CrossRef Yang J, Bao WZ, Jaumaux P, Zhang ST, Wang CY, Wang GX. MXene-based composites: synthesis and applications in rechargeable batteries and supercapacitors. Adv Mater Interfaces. 2019;6(8):1802004.CrossRef
[35]
Zurück zum Zitat Zhu XQ, Shen JL, Chen XF, Li Y, Peng WC, Zhang GL, Zhang FB, Fan XB. Enhanced cycling performance of Si-MXene nanohybrids as anode for high performance lithium ion batteries. Chem Eng J. 2019;378:122212.CrossRef Zhu XQ, Shen JL, Chen XF, Li Y, Peng WC, Zhang GL, Zhang FB, Fan XB. Enhanced cycling performance of Si-MXene nanohybrids as anode for high performance lithium ion batteries. Chem Eng J. 2019;378:122212.CrossRef
[36]
Zurück zum Zitat Zhang YL, Mu ZJ, Lai JP, Chao YG, Yang Y, Zhou P, Li YJ, Yang WX, Xia ZH, Guo SJ. MXene/Si@SiOx@C layer-by-layer superstructure with autoadjustable function for superior stable lithium storage. ACS Nano. 2019;13(2):2167. Zhang YL, Mu ZJ, Lai JP, Chao YG, Yang Y, Zhou P, Li YJ, Yang WX, Xia ZH, Guo SJ. MXene/Si@SiOx@C layer-by-layer superstructure with autoadjustable function for superior stable lithium storage. ACS Nano. 2019;13(2):2167.
[37]
Zurück zum Zitat Xia MT, Chen BJ, Gu F, Zu LH, Xu MZ, Feng YT, Wang ZJ, Zhang HJ, Zhang C, Yang JH. Ti3C2Tx MXene nanosheets as a robust and conductive tight on Si anodes significantly enhance electrochemical lithium storage performance. ACS Nano. 2020;14(4):5111.CrossRef Xia MT, Chen BJ, Gu F, Zu LH, Xu MZ, Feng YT, Wang ZJ, Zhang HJ, Zhang C, Yang JH. Ti3C2Tx MXene nanosheets as a robust and conductive tight on Si anodes significantly enhance electrochemical lithium storage performance. ACS Nano. 2020;14(4):5111.CrossRef
[38]
Zurück zum Zitat Hui XB, Zhao RZ, Zhang P, Li CX, Wang CX, Yin LW. Low-temperature reduction strategy synthesized Si/Ti3C2 MXene composite anodes for high-performance Li-ion batteries. Adv Energy Mater. 2019;9(33):1901065.CrossRef Hui XB, Zhao RZ, Zhang P, Li CX, Wang CX, Yin LW. Low-temperature reduction strategy synthesized Si/Ti3C2 MXene composite anodes for high-performance Li-ion batteries. Adv Energy Mater. 2019;9(33):1901065.CrossRef
[39]
Zurück zum Zitat Zhao MQ, Xie XQ, Ren CE, Makaryan T, Anasori B, Wang GX, Gogotsi Y. Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv Mater. 2017;29(37):1702410.CrossRef Zhao MQ, Xie XQ, Ren CE, Makaryan T, Anasori B, Wang GX, Gogotsi Y. Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv Mater. 2017;29(37):1702410.CrossRef
[40]
Zurück zum Zitat Huang PF, Zhang SL, Ying HJ, Zhang Z, Han WQ. Few-layered Ti3C2 MXene anchoring bimetallic selenide NiCo2Se4 nanoparticles for superior sodium-ion batteries. Chem Eng J. 2021;417:129161.CrossRef Huang PF, Zhang SL, Ying HJ, Zhang Z, Han WQ. Few-layered Ti3C2 MXene anchoring bimetallic selenide NiCo2Se4 nanoparticles for superior sodium-ion batteries. Chem Eng J. 2021;417:129161.CrossRef
[41]
Zurück zum Zitat Ma K, Dong YR, Jiang H, Hu YJ, Saha P, Li CZ. Densified MoS2/Ti3C2 films with balanced porosity for ultrahigh volumetric capacity sodium-ion battery. Chem Eng J. 2021;413:127479.CrossRef Ma K, Dong YR, Jiang H, Hu YJ, Saha P, Li CZ. Densified MoS2/Ti3C2 films with balanced porosity for ultrahigh volumetric capacity sodium-ion battery. Chem Eng J. 2021;413:127479.CrossRef
[42]
Zurück zum Zitat Wu F, Jiang Y, Ye ZQ, Huang YX, Wang ZH, Li SJ, Mei Y, Xie M, Li L, Chen RJ. A 3D flower-like VO2/MXene hybrid architecture with superior anode performance for sodium ion batteries. J Mater Chem A. 2019;7(3):1315.CrossRef Wu F, Jiang Y, Ye ZQ, Huang YX, Wang ZH, Li SJ, Mei Y, Xie M, Li L, Chen RJ. A 3D flower-like VO2/MXene hybrid architecture with superior anode performance for sodium ion batteries. J Mater Chem A. 2019;7(3):1315.CrossRef
[43]
Zurück zum Zitat Xu XD, Zhang YL, Sun HY, Zhou JW, Liu Z, Qiu ZP, Wang D, Yang C, Zeng QG, Peng ZQ, Guo SJ. Orthorhombic cobalt ditelluride with Te vacancy defects anchoring on elastic MXene enables efficient potassium-ion storage. Adv Mater. 2021;33(31):2100272.CrossRef Xu XD, Zhang YL, Sun HY, Zhou JW, Liu Z, Qiu ZP, Wang D, Yang C, Zeng QG, Peng ZQ, Guo SJ. Orthorhombic cobalt ditelluride with Te vacancy defects anchoring on elastic MXene enables efficient potassium-ion storage. Adv Mater. 2021;33(31):2100272.CrossRef
[44]
Zurück zum Zitat Fang YZ, Hu R, Zhu K, Ye K, Yan J, Wang GL, Cao DX. Aggregation-resistant 3D Ti3C2Tx MXene with enhanced kinetics for potassium ion hybrid capacitors. Adv Funct Mater. 2020;30(50):2005663.CrossRef Fang YZ, Hu R, Zhu K, Ye K, Yan J, Wang GL, Cao DX. Aggregation-resistant 3D Ti3C2Tx MXene with enhanced kinetics for potassium ion hybrid capacitors. Adv Funct Mater. 2020;30(50):2005663.CrossRef
[45]
Zurück zum Zitat Gou L, Jing WF, Li Y, Wang M, Hu SL, Wang HQ, He YB. Lattice-coupled Si/MXene confined by hard carbon for fast sodium-ion conduction. ACS Appl Energy Mater. 2021;4(7):7268.CrossRef Gou L, Jing WF, Li Y, Wang M, Hu SL, Wang HQ, He YB. Lattice-coupled Si/MXene confined by hard carbon for fast sodium-ion conduction. ACS Appl Energy Mater. 2021;4(7):7268.CrossRef
[46]
Zurück zum Zitat Tian Y, An YL, Feng JK. Flexible and freestanding silicon/MXene composite papers for high-performance lithium-ion batteries. ACS Appl Mater Interfaces. 2019;11(10):10004.CrossRef Tian Y, An YL, Feng JK. Flexible and freestanding silicon/MXene composite papers for high-performance lithium-ion batteries. ACS Appl Mater Interfaces. 2019;11(10):10004.CrossRef
[47]
Zurück zum Zitat Sun N, Zhu QZ, Anasori B, Zhang P, Liu H, Gogotsi Y, Xu B. MXene-bonded flexible hard carbon film as anode for stable Na/K-ion storage. Adv Funct Mater. 2019;29(51):1906282.CrossRef Sun N, Zhu QZ, Anasori B, Zhang P, Liu H, Gogotsi Y, Xu B. MXene-bonded flexible hard carbon film as anode for stable Na/K-ion storage. Adv Funct Mater. 2019;29(51):1906282.CrossRef
[48]
Zurück zum Zitat Zhang CF, Park SN, Seral-Ascaso A, Barwich S, McEyoy N, Boland CS, Coleman JN, Gogotsi Y, Nicolosi V. High capacity silicon anodes enabled by MXene viscous aqueous ink. Nat Commun. 2019;10(1):849.CrossRef Zhang CF, Park SN, Seral-Ascaso A, Barwich S, McEyoy N, Boland CS, Coleman JN, Gogotsi Y, Nicolosi V. High capacity silicon anodes enabled by MXene viscous aqueous ink. Nat Commun. 2019;10(1):849.CrossRef
[49]
Zurück zum Zitat Lee Y, Lee KY, Choi WC. One-pot synthesis of antimony-embedded silicon oxycarbide materials for high-performance sodium-ion batteries. Adv Funct Mater. 2017;27(43):1702607.CrossRef Lee Y, Lee KY, Choi WC. One-pot synthesis of antimony-embedded silicon oxycarbide materials for high-performance sodium-ion batteries. Adv Funct Mater. 2017;27(43):1702607.CrossRef
[50]
Zurück zum Zitat Han X, Zhang ZQ, Chen HX, Luo LS, Zhang QB, Chen JZ, Chen SY, Yang Y. Bulk boron doping and surface carbon coating enabling fast-charging and stable Si anodes: from thin film to thick Si electrodes. J Mater Chem A. 2021;9(6):3628.CrossRef Han X, Zhang ZQ, Chen HX, Luo LS, Zhang QB, Chen JZ, Chen SY, Yang Y. Bulk boron doping and surface carbon coating enabling fast-charging and stable Si anodes: from thin film to thick Si electrodes. J Mater Chem A. 2021;9(6):3628.CrossRef
[51]
Zurück zum Zitat Aslam MK, Xu MW. A mini-review: MXene composites for sodium/potassium-ion batteries. Nanoscale. 2020;12(30):15993.CrossRef Aslam MK, Xu MW. A mini-review: MXene composites for sodium/potassium-ion batteries. Nanoscale. 2020;12(30):15993.CrossRef
[52]
Zurück zum Zitat Shaju KM, Subba Rao GV, Chowdari BVR. EIS and GITT studies on oxide cathodes, O2 − Li(2/3) + x(Co0.15Mn0.85)O2 (x = 0 and 1/3). Electrochim Acta. 2003;48(18):2691.CrossRef Shaju KM, Subba Rao GV, Chowdari BVR. EIS and GITT studies on oxide cathodes, O2 − Li(2/3) + x(Co0.15Mn0.85)O2 (x = 0 and 1/3). Electrochim Acta. 2003;48(18):2691.CrossRef
[53]
Zurück zum Zitat Huang SZ, Liu LX, Zheng Y, Wang Y, Kong DZ, Zhang YM, Shi YM, Zhang L, Schmidt Oliver G, Yang HY. Efficient sodiums in rolled-up amorphous Si nanomembranes. Adv Mater. 2018;30(20):1706637.CrossRef Huang SZ, Liu LX, Zheng Y, Wang Y, Kong DZ, Zhang YM, Shi YM, Zhang L, Schmidt Oliver G, Yang HY. Efficient sodiums in rolled-up amorphous Si nanomembranes. Adv Mater. 2018;30(20):1706637.CrossRef
[54]
Zurück zum Zitat Wang HQ, An D, Li N, Li Y, Wang M, Zhang JF, Hu SL, He YB. PbTe nanodots confined on ternary B2O3/BC2O/C nanosheets as electrode for efficient sodium storage. J Power Sources. 2020;461:228110.CrossRef Wang HQ, An D, Li N, Li Y, Wang M, Zhang JF, Hu SL, He YB. PbTe nanodots confined on ternary B2O3/BC2O/C nanosheets as electrode for efficient sodium storage. J Power Sources. 2020;461:228110.CrossRef
[55]
Zurück zum Zitat Qian J, Wu F, Ye YS, Zhang ML, Huang YX, Xing Y, Qu W, Li L, Chen RJ. Boosting fast sodium storage of a large-scalable carbon anode with an ultralong cycle life. Adv Energy Mater. 2018;8(16):1703159.CrossRef Qian J, Wu F, Ye YS, Zhang ML, Huang YX, Xing Y, Qu W, Li L, Chen RJ. Boosting fast sodium storage of a large-scalable carbon anode with an ultralong cycle life. Adv Energy Mater. 2018;8(16):1703159.CrossRef
[56]
Zurück zum Zitat Ni D, Sun W, Wang ZH, Bai Y, Lei HS, Lai XH, Sun KN. Heteroatom-doped mesoporous hollow carbon spheres for fast sodium storage with an ultralong cycle life. Adv Energy Mater. 2019;9(19):1900036.CrossRef Ni D, Sun W, Wang ZH, Bai Y, Lei HS, Lai XH, Sun KN. Heteroatom-doped mesoporous hollow carbon spheres for fast sodium storage with an ultralong cycle life. Adv Energy Mater. 2019;9(19):1900036.CrossRef
[57]
Zurück zum Zitat Saddique J, Zhang X, Wu TH, Wang X, Cheng XP, Su H, Liu SQ, Zhang LQ, Li GY, Zhang YF, Yu HJ. Enhanced silicon diphosphide–carbon composite anode for long-cycle, high-efficient sodium ion batteries. ACS Appl Energy Mater. 2019;2(3):2223.CrossRef Saddique J, Zhang X, Wu TH, Wang X, Cheng XP, Su H, Liu SQ, Zhang LQ, Li GY, Zhang YF, Yu HJ. Enhanced silicon diphosphide–carbon composite anode for long-cycle, high-efficient sodium ion batteries. ACS Appl Energy Mater. 2019;2(3):2223.CrossRef
[58]
Zurück zum Zitat Ji YR, Weng ST, Li XY, Zhang QH, Gu L. Atomic-scale structural evolution of electrode materials in Li-ion batteries: a review. Rare Met. 2020;39(3):205.CrossRef Ji YR, Weng ST, Li XY, Zhang QH, Gu L. Atomic-scale structural evolution of electrode materials in Li-ion batteries: a review. Rare Met. 2020;39(3):205.CrossRef
Metadaten
Titel
Rational construction of densely packed Si/MXene composite microspheres enables favorable sodium storage
verfasst von
Hui-Qi Wang
Ya-Xin Zhao
Li Gou
Li-Yong Wang
Mei Wang
Ying Li
Sheng-Liang Hu
Publikationsdatum
17.01.2022
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 5/2022
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-021-01895-x

Weitere Artikel der Ausgabe 5/2022

Rare Metals 5/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.