Skip to main content
Erschienen in: Rare Metals 5/2022

19.01.2022 | Original Article

Delicate synthesis of quasi-inverse opal structural Na3V2(PO4)3/N-C and Na4MnV(PO4)3/N-C as cathode for high-rate sodium-ion batteries

verfasst von: Xin-Ran Qi, Yuan Liu, Lin-Lin Ma, Bao-Xiu Hou, Hong-Wei Zhang, Xiao-Hui Li, Ya-Shi Wang, Yi-Qing Hui, Ruo-Xun Wang, Chong-Yang Bai, Hao Liu, Jian-Jun Song, Xiao-Xian Zhao

Erschienen in: Rare Metals | Ausgabe 5/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Poor conductivity and sluggish Na+ diffusion kinetic are two major drawbacks for practical application of sodium super-ionic conductor (NASICON) in sodium-ion batteries. In this work, we report a simple approach to synthesize quasi-inverse opal structural NASICON/N-doped carbon for the first time by a delicate one-pot solution-freeze drying-calcination process, aiming at fostering the overall electrochemical performance. Especially, the quasi-inverse opal structural Na3V2(PO4)3/N-C (Q-NVP/N-C) displayed continuous pores, which provides interconnected channels for electrolyte permeation and abundant contacting interfaces between electrolyte and materials, resulting in faster kinetics of redox reaction and higher proportion of capacitive behavior. As a cathode material for sodium-ion batteries, the Q-NVP/N-C exhibits high specific capacity of 115 mAh·g−1 at 1C, still 61 mAh·g−1 at ultra-high current density of 100C, and a specific capacity of 89.7 mAh·g−1 after 2000 cycles at 20C. This work displays the general validity of preparation method for not only Q-NVP/N-C, but also Na4MnV(PO4)3, which provides a prospect for delicate synthesis of NASICON materials with excellent electrochemical performance.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
[1]
Zurück zum Zitat Yang J, Wan HL, Zhang ZH, Liu GZ, Xu XX, Hu YS, Yao XY. NASICON-structured Na3.1Zr1.95Mg0.05Si2PO12 solid electrolyte for solid-state sodium batteries. Rare Met. 2018;37(6):480. Yang J, Wan HL, Zhang ZH, Liu GZ, Xu XX, Hu YS, Yao XY. NASICON-structured Na3.1Zr1.95Mg0.05Si2PO12 solid electrolyte for solid-state sodium batteries. Rare Met. 2018;37(6):480.
[2]
Zurück zum Zitat Zeng X, Peng J, Guo Y, Zhu H, Huang X. Research progress on Na3V2(PO4)3 cathode material of sodium ion battery. Front Chem. 2020;8:635. Zeng X, Peng J, Guo Y, Zhu H, Huang X. Research progress on Na3V2(PO4)3 cathode material of sodium ion battery. Front Chem. 2020;8:635.
[3]
Zurück zum Zitat Bao S, Huang YY, Luo SH, Lu JL. Porous Na3V2(PO4)3/C as cathode material for high-rate sodium-ion batteries by sacrificed template method. Ionics. 2020;26(10):5011. Bao S, Huang YY, Luo SH, Lu JL. Porous Na3V2(PO4)3/C as cathode material for high-rate sodium-ion batteries by sacrificed template method. Ionics. 2020;26(10):5011.
[5]
Zurück zum Zitat Hu F, Jiang X. A stable and superior performance of Na3V2(PO4)3/C nanocomposites as cathode for sodium-ion batteries. Inorg Chem Commun. 2020;115:107860. Hu F, Jiang X. A stable and superior performance of Na3V2(PO4)3/C nanocomposites as cathode for sodium-ion batteries. Inorg Chem Commun. 2020;115:107860.
[6]
Zurück zum Zitat Hou B, Ma L, Zang X, Shang N, Song J, Zhao X, Wang C, Qi J, Wang J, Yu R. Design and construction of 3D porous Na3V2(PO4)3/C as high performance cathode for sodium ion batteries. Chem Res Chin Univ. 2021;37:265. Hou B, Ma L, Zang X, Shang N, Song J, Zhao X, Wang C, Qi J, Wang J, Yu R. Design and construction of 3D porous Na3V2(PO4)3/C as high performance cathode for sodium ion batteries. Chem Res Chin Univ. 2021;37:265.
[7]
Zurück zum Zitat Cheng J, Chen Y, Sun S, Tian Z, Linghu Y, Tian Z, Wang C, He Z, Guo L. Na3V2(PO4)3/C·Na3V2(PO4)2F3/C@rGO blended cathode material with elevated energy density for sodium ion batteries. Ceram Int. 2021;47(13):18065. Cheng J, Chen Y, Sun S, Tian Z, Linghu Y, Tian Z, Wang C, He Z, Guo L. Na3V2(PO4)3/C·Na3V2(PO4)2F3/C@rGO blended cathode material with elevated energy density for sodium ion batteries. Ceram Int. 2021;47(13):18065.
[9]
Zurück zum Zitat Li H, Bi X, Bai Y, Yuan Y, Shahbazian-Yassar R, Wu C, Wu F, Lu J, Amine K. High-rate, durable sodium-ion battery cathode enabled by carbon-coated micro-sized Na3V2(PO4)3 particles with interconnected vertical nanowalls. Adv Mater Interfaces. 2016;3(9):1500740. Li H, Bi X, Bai Y, Yuan Y, Shahbazian-Yassar R, Wu C, Wu F, Lu J, Amine K. High-rate, durable sodium-ion battery cathode enabled by carbon-coated micro-sized Na3V2(PO4)3 particles with interconnected vertical nanowalls. Adv Mater Interfaces. 2016;3(9):1500740.
[10]
Zurück zum Zitat Ren H, Yu R, Qi J, Zhang L, Jin Q, Wang D. Hollow multishelled heterostructured anatase/TiO2 (B) with superior rate capability and cycling performance. Adv Mater. 2019;31(10):1805754. Ren H, Yu R, Qi J, Zhang L, Jin Q, Wang D. Hollow multishelled heterostructured anatase/TiO2 (B) with superior rate capability and cycling performance. Adv Mater. 2019;31(10):1805754.
[11]
Zurück zum Zitat Bi R, Mao D, Wang J, Yu R, Wang D. Hollow nanostructures for surface/interface chemical energy storage application. Acta Chim Sin. 2020;78(11):1200. Bi R, Mao D, Wang J, Yu R, Wang D. Hollow nanostructures for surface/interface chemical energy storage application. Acta Chim Sin. 2020;78(11):1200.
[12]
Zurück zum Zitat Zhao X, Wang J, Yu R, Wang D. Construction of multishelled binary metal oxides via coabsorption of positive and negative ions as a superior cathode for sodium-ion batteries. J Am Chem Soc. 2018;140(49):17114. Zhao X, Wang J, Yu R, Wang D. Construction of multishelled binary metal oxides via coabsorption of positive and negative ions as a superior cathode for sodium-ion batteries. J Am Chem Soc. 2018;140(49):17114.
[13]
Zurück zum Zitat Li S, He W, Liu B, Cui J, Wang X, Peng DL, Liu B, Qu B. One-step construction of three-dimensional nickel sulfide-embedded carbon matrix for sodium-ion batteries and hybrid capacitors. Energy Storage Mater. 2020;25:636. Li S, He W, Liu B, Cui J, Wang X, Peng DL, Liu B, Qu B. One-step construction of three-dimensional nickel sulfide-embedded carbon matrix for sodium-ion batteries and hybrid capacitors. Energy Storage Mater. 2020;25:636.
[14]
Zurück zum Zitat Liu B, Lei D, Wang J, Zhang Q, Zhang Y, He W, Zheng H, Sa B, Xie Q, Peng DL. 3D uniform nitrogen-doped carbon skeleton for ultra-stable sodium metal anode. Nano Res. 2020;13:2136. Liu B, Lei D, Wang J, Zhang Q, Zhang Y, He W, Zheng H, Sa B, Xie Q, Peng DL. 3D uniform nitrogen-doped carbon skeleton for ultra-stable sodium metal anode. Nano Res. 2020;13:2136.
[15]
Zurück zum Zitat Guo YG, Hu JS, Wan LJ. Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater. 2008;20(15):2878. Guo YG, Hu JS, Wan LJ. Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater. 2008;20(15):2878.
[16]
Zurück zum Zitat Jiang Y, Yao Y, Shi J, Zeng L, Gu L, Yu Y. One-dimensional Na3V2(PO4)3/C nanowires as cathode materials for long-life and high rate Na-ion batteries. ChemNanoMat. 2016;2(7):726. Jiang Y, Yao Y, Shi J, Zeng L, Gu L, Yu Y. One-dimensional Na3V2(PO4)3/C nanowires as cathode materials for long-life and high rate Na-ion batteries. ChemNanoMat. 2016;2(7):726.
[17]
Zurück zum Zitat Gao S, Wang N, Li S, Li D, Cui Z, Yue G, Liu J, Zhao X, Jiang L, Zhao Y. A multi-wall Sn/SnO2@carbon hollow nanofiber anode material for high-rate and long-life lithium-ion batteries. Angew Chem Int Ed Engl. 2020;59(6):2465. Gao S, Wang N, Li S, Li D, Cui Z, Yue G, Liu J, Zhao X, Jiang L, Zhao Y. A multi-wall Sn/SnO2@carbon hollow nanofiber anode material for high-rate and long-life lithium-ion batteries. Angew Chem Int Ed Engl. 2020;59(6):2465.
[18]
Zurück zum Zitat Wu Y, Wen Z, Li J. Hierarchical carbon-coated LiFePO4 nanoplate microspheres with high electrochemical performance for Li-ion batteries. Adv Mater. 2011;23(9):1126. Wu Y, Wen Z, Li J. Hierarchical carbon-coated LiFePO4 nanoplate microspheres with high electrochemical performance for Li-ion batteries. Adv Mater. 2011;23(9):1126.
[19]
Zurück zum Zitat Qi J, Lai X, Wang J, Tang H, Ren H, Yang Y, Jin Q, Zhang L, Yu R, Ma G, Su Z, Zhao H, Wang D. Multi-shelled hollow micro-/nanostructures. Chem Soc Rev. 2015;44(19):6749. Qi J, Lai X, Wang J, Tang H, Ren H, Yang Y, Jin Q, Zhang L, Yu R, Ma G, Su Z, Zhao H, Wang D. Multi-shelled hollow micro-/nanostructures. Chem Soc Rev. 2015;44(19):6749.
[20]
Zurück zum Zitat Yang Y, Wei WF. Electrochemical mechanism of high Na-content P2-type layered oxides for sodium-ion batteries. Rare Met. 2020;39(4):332. Yang Y, Wei WF. Electrochemical mechanism of high Na-content P2-type layered oxides for sodium-ion batteries. Rare Met. 2020;39(4):332.
[21]
Zurück zum Zitat Yu P, Tang W, Wu FF, Zhang C, Luo HY, Liu H, Wang ZG. Recent progress in plant-derived hard carbon anode materials for sodium-ion batteries: a review. Rare Met. 2020;39(9):1019. Yu P, Tang W, Wu FF, Zhang C, Luo HY, Liu H, Wang ZG. Recent progress in plant-derived hard carbon anode materials for sodium-ion batteries: a review. Rare Met. 2020;39(9):1019.
[22]
Zurück zum Zitat Yang J, Li D, Wang X, Zhang X, Xu J, Chen J. Constructing micro-nano Na3V2(PO4)3/C architecture for practical high-loading electrode fabrication as superior-rate and ultralong-life sodium ion battery cathode. Energy Storage Mater. 2020;24:694. Yang J, Li D, Wang X, Zhang X, Xu J, Chen J. Constructing micro-nano Na3V2(PO4)3/C architecture for practical high-loading electrode fabrication as superior-rate and ultralong-life sodium ion battery cathode. Energy Storage Mater. 2020;24:694.
[23]
Zurück zum Zitat Xu Y, Wei Q, Xu C, Li Q, An Q, Zhang P, Sheng J, Zhou L, Mai L. Layer-by-layer Na3V2(PO4)3 embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode. Adv Energy Mater. 2016;6:1600389. Xu Y, Wei Q, Xu C, Li Q, An Q, Zhang P, Sheng J, Zhou L, Mai L. Layer-by-layer Na3V2(PO4)3 embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode. Adv Energy Mater. 2016;6:1600389.
[24]
Zurück zum Zitat Gu E, Xu J, Du Y, Ge X, Zhu X, Bao J, Zhou X. Understanding the influence of different carbon matrix on the electrochemical performance of Na3V2(PO4)3 cathode for sodium-ion batteries. J Alloys Compd. 2019;788:240. Gu E, Xu J, Du Y, Ge X, Zhu X, Bao J, Zhou X. Understanding the influence of different carbon matrix on the electrochemical performance of Na3V2(PO4)3 cathode for sodium-ion batteries. J Alloys Compd. 2019;788:240.
[25]
Zurück zum Zitat Chang X, Zhu Q, Sun N, Guan Y, Wang R, Zhao J, Feng M, Xu B. Graphene-bound Na3V2(PO4)3 film electrode with excellent cycle and rate performance for Na-ion batteries. Electrochim Acta. 2018;269:282. Chang X, Zhu Q, Sun N, Guan Y, Wang R, Zhao J, Feng M, Xu B. Graphene-bound Na3V2(PO4)3 film electrode with excellent cycle and rate performance for Na-ion batteries. Electrochim Acta. 2018;269:282.
[26]
Zurück zum Zitat Zhang X, Rui X, Chen D, Tan H, Yang D, Huang S, Yu Y. Na3V2(PO4)3: an advanced cathode for sodium-ion batteries. Nanoscale. 2019;11(6):2556. Zhang X, Rui X, Chen D, Tan H, Yang D, Huang S, Yu Y. Na3V2(PO4)3: an advanced cathode for sodium-ion batteries. Nanoscale. 2019;11(6):2556.
[27]
Zurück zum Zitat Fang Y, Xiao L, Ai X, Cao Y, Yang H. Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries. Adv Mater. 2015;27(39):5895. Fang Y, Xiao L, Ai X, Cao Y, Yang H. Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries. Adv Mater. 2015;27(39):5895.
[28]
Zurück zum Zitat Chen H, Huang Y, Mao G, Tong H, Yu W, Zheng J, Ding Z. Reduced graphene oxide decorated Na3V2(PO4)3 microspheres as cathode material with advanced sodium storage performance. Front Chem. 2018;6:174. Chen H, Huang Y, Mao G, Tong H, Yu W, Zheng J, Ding Z. Reduced graphene oxide decorated Na3V2(PO4)3 microspheres as cathode material with advanced sodium storage performance. Front Chem. 2018;6:174.
[29]
Zurück zum Zitat Song J, Guo X, Zhang J, Chen Y, Zhang C, Luo L, Wang F, Wang G. Rational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium-sulfur batteries. J Mater Chem A. 2019;7(11):6507. Song J, Guo X, Zhang J, Chen Y, Zhang C, Luo L, Wang F, Wang G. Rational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium-sulfur batteries. J Mater Chem A. 2019;7(11):6507.
[30]
Zurück zum Zitat Li J, Zhang H, Luo L, Li H, He J, Zu H, Liu L, Liu H, Wang F, Song J. Blocking polysulfides with a Janus Fe3C/N-CNF@RGO electrode via physiochemical confinement and catalytic conversion for high-performance lithium–sulfur batteries. J Mater Chem A. 2021;9(4):2205. Li J, Zhang H, Luo L, Li H, He J, Zu H, Liu L, Liu H, Wang F, Song J. Blocking polysulfides with a Janus Fe3C/N-CNF@RGO electrode via physiochemical confinement and catalytic conversion for high-performance lithium–sulfur batteries. J Mater Chem A. 2021;9(4):2205.
[31]
Zurück zum Zitat Rui X, Sun W, Wu C, Yu Y, Yan Q. An advanced sodium-ion battery composed of carbon coated Na3V2(PO4)3 in a porous graphene network. Adv Mater. 2015;27(42):6670. Rui X, Sun W, Wu C, Yu Y, Yan Q. An advanced sodium-ion battery composed of carbon coated Na3V2(PO4)3 in a porous graphene network. Adv Mater. 2015;27(42):6670.
[32]
Zurück zum Zitat Li S, Dong Y, Xu L, Xu X, He L, Mai L. Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for high-performance symmetric sodium-ion batteries. Adv Mater. 2014;26:3545. Li S, Dong Y, Xu L, Xu X, He L, Mai L. Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for high-performance symmetric sodium-ion batteries. Adv Mater. 2014;26:3545.
[33]
Zurück zum Zitat Toby BH, Von Dreele RB. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J Appl Cryst. 2013;46(2):544. Toby BH, Von Dreele RB. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J Appl Cryst. 2013;46(2):544.
[34]
Zurück zum Zitat Lim SY, Kim H, Shakoor RA, Jung Y, Choi JW. Electrochemical and thermal properties of NASICON structured Na3V2(PO4)3 as a sodium rechargeable battery cathode: a combined experimental and theoretical study. J Electrochem Soc. 2012;159(9):A1393. Lim SY, Kim H, Shakoor RA, Jung Y, Choi JW. Electrochemical and thermal properties of NASICON structured Na3V2(PO4)3 as a sodium rechargeable battery cathode: a combined experimental and theoretical study. J Electrochem Soc. 2012;159(9):A1393.
[35]
Zurück zum Zitat Jian Z, Han W, Lu X, Yang H, Hu YS, Zhou J, Zhou Z, Li J, Chen W, Chen D. Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv Energy Mater. 2013;3(2):156. Jian Z, Han W, Lu X, Yang H, Hu YS, Zhou J, Zhou Z, Li J, Chen W, Chen D. Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv Energy Mater. 2013;3(2):156.
[36]
Zurück zum Zitat Xu G, Sun G. Mg2+-doped Na3V2(PO4)3/C decorated with graphene sheets: an ultrafast Na-storage cathode for advanced energy storage. Ceram Int. 2016;42(13):14774. Xu G, Sun G. Mg2+-doped Na3V2(PO4)3/C decorated with graphene sheets: an ultrafast Na-storage cathode for advanced energy storage. Ceram Int. 2016;42(13):14774.
[37]
Zurück zum Zitat Li S, Ge P, Zhang C, Sun W, Hou H, Ji X. The electrochemical exploration of double carbon-wrapped Na3V2(PO4)3: towards long-time cycling and superior rate sodium-ion battery cathode. J Power Sources. 2017;366:249. Li S, Ge P, Zhang C, Sun W, Hou H, Ji X. The electrochemical exploration of double carbon-wrapped Na3V2(PO4)3: towards long-time cycling and superior rate sodium-ion battery cathode. J Power Sources. 2017;366:249.
[38]
Zurück zum Zitat Yang F, Zhang Z, Du K, Zhao X, Chen W, Lai Y, Li J. Dopamine derived nitrogen-doped carbon sheets as anode materials for high-performance sodium ion batteries. Carbon. 2015;91:88. Yang F, Zhang Z, Du K, Zhao X, Chen W, Lai Y, Li J. Dopamine derived nitrogen-doped carbon sheets as anode materials for high-performance sodium ion batteries. Carbon. 2015;91:88.
[39]
Zurück zum Zitat Ren W, Zheng Z, Xu C, Niu C, Wei Q, An Q, Zhao K, Yan M, Qin M, Mai L. Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodium-ion full batteries. Nano Energy. 2016;25:145. Ren W, Zheng Z, Xu C, Niu C, Wei Q, An Q, Zhao K, Yan M, Qin M, Mai L. Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodium-ion full batteries. Nano Energy. 2016;25:145.
[40]
Zurück zum Zitat Wang H, Jiang D, Zhang Y, Li G, Lan X, Zhong H, Zhang Z, Jiang Y. Self-combustion synthesis of Na3V2(PO4)3 nanoparticles coated with carbon shell as cathode materials for sodium-ion batteries. Electrochim Acta. 2015;155:23. Wang H, Jiang D, Zhang Y, Li G, Lan X, Zhong H, Zhang Z, Jiang Y. Self-combustion synthesis of Na3V2(PO4)3 nanoparticles coated with carbon shell as cathode materials for sodium-ion batteries. Electrochim Acta. 2015;155:23.
[41]
Zurück zum Zitat Aragón MJ, Lavela P, Ortiz GF, Alcántara R, Tirado JL. On the effect of silicon substitution in Na3V2(PO4)3 on the electrochemical behavior as cathode for sodium-ion batteries. ChemElectroChem. 2018;5(2):367. Aragón MJ, Lavela P, Ortiz GF, Alcántara R, Tirado JL. On the effect of silicon substitution in Na3V2(PO4)3 on the electrochemical behavior as cathode for sodium-ion batteries. ChemElectroChem. 2018;5(2):367.
[42]
Zurück zum Zitat Huang HB, Luo SH, Liu CL, Yang Y, Zhai YC, Chang LJ, Li MQ. Double-carbon coated Na3V2(PO4)3 as a superior cathode material for Na-ion batteries. Appl Surf Sci. 2019;487:1159. Huang HB, Luo SH, Liu CL, Yang Y, Zhai YC, Chang LJ, Li MQ. Double-carbon coated Na3V2(PO4)3 as a superior cathode material for Na-ion batteries. Appl Surf Sci. 2019;487:1159.
[43]
Zurück zum Zitat Liu J, Tang K, Song K, van Aken PA, Yu Y, Maier J. Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries. Nanoscale. 2014;6(10):5081. Liu J, Tang K, Song K, van Aken PA, Yu Y, Maier J. Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries. Nanoscale. 2014;6(10):5081.
[44]
Zurück zum Zitat Li X, Huang Y, Wang J, Miao L, Li Y, Liu Y, Qiu Y, Fang C, Han J, Huang Y. High valence Mo-doped Na3V2(PO4)3/C as a high rate and stable cycle-life cathode for sodium battery. J Mater Chem A. 2018;6(4):1390. Li X, Huang Y, Wang J, Miao L, Li Y, Liu Y, Qiu Y, Fang C, Han J, Huang Y. High valence Mo-doped Na3V2(PO4)3/C as a high rate and stable cycle-life cathode for sodium battery. J Mater Chem A. 2018;6(4):1390.
[45]
Zurück zum Zitat Ko JS, Doan-Nguyen Vicky VT, Kim HS, Petrissans X, DeBlock RH, Choi CS, Long JW, Dunn BS. High-rate capability of Na2FePO4F nanoparticles by enhancing surface carbon functionality for Na-ion batteries. J Mater Chem A. 2017;5(35):18707. Ko JS, Doan-Nguyen Vicky VT, Kim HS, Petrissans X, DeBlock RH, Choi CS, Long JW, Dunn BS. High-rate capability of Na2FePO4F nanoparticles by enhancing surface carbon functionality for Na-ion batteries. J Mater Chem A. 2017;5(35):18707.
[46]
Zurück zum Zitat Jiang Y, Yang Z, Li W, Zeng L, Pan F, Wang M, Wei X, Hu G, Gu L, Yu Y. Nanoconfined carbon-coated Na3V2(PO4)3 particles in mesoporous carbon enabling ultralong cycle life for sodium-ion batteries. Adv Energy Mater. 2015;5(10):1402104. Jiang Y, Yang Z, Li W, Zeng L, Pan F, Wang M, Wei X, Hu G, Gu L, Yu Y. Nanoconfined carbon-coated Na3V2(PO4)3 particles in mesoporous carbon enabling ultralong cycle life for sodium-ion batteries. Adv Energy Mater. 2015;5(10):1402104.
[47]
Zurück zum Zitat Wang E, Chen M, Liu X, Liu Y, Guo H, Wu Z, Xiang W, Zhong B, Guo X, Chou S, Dou SX. Organic cross-linker enabling a 3D porous skeleton-supported Na3V2(PO4)3/carbon composite for high power sodium-ion battery cathode. Small Methods. 2018;3(4):1800169. Wang E, Chen M, Liu X, Liu Y, Guo H, Wu Z, Xiang W, Zhong B, Guo X, Chou S, Dou SX. Organic cross-linker enabling a 3D porous skeleton-supported Na3V2(PO4)3/carbon composite for high power sodium-ion battery cathode. Small Methods. 2018;3(4):1800169.
[48]
Zurück zum Zitat Xiao J, Li X, Tang K, Wang D, Long M, Gao H, Chen W, Liu C, Liu H, Wang G. Recent progress of emerging cathode materials for sodium ion batteries. Mater Chem Front. 2021;5:3735. Xiao J, Li X, Tang K, Wang D, Long M, Gao H, Chen W, Liu C, Liu H, Wang G. Recent progress of emerging cathode materials for sodium ion batteries. Mater Chem Front. 2021;5:3735.
[49]
Zurück zum Zitat Zhang H, Qin B, Buchholz D, Passerini S. High-efficiency sodium-ion battery based on NASICON electrodes with high power and long lifespan. ACS Appl Energy Mater. 2018;1(11):6425. Zhang H, Qin B, Buchholz D, Passerini S. High-efficiency sodium-ion battery based on NASICON electrodes with high power and long lifespan. ACS Appl Energy Mater. 2018;1(11):6425.
[50]
Zurück zum Zitat Liang X, Ou X, Zheng F, Pan Q, Liu M. Surface modification of Na3V2(PO4)3 by nitrogen and sulfur dual-doped carbon layer with advanced sodium storage property. ACS Appl Mater Interfaces. 2017;9(15):13151. Liang X, Ou X, Zheng F, Pan Q, Liu M. Surface modification of Na3V2(PO4)3 by nitrogen and sulfur dual-doped carbon layer with advanced sodium storage property. ACS Appl Mater Interfaces. 2017;9(15):13151.
[51]
Zurück zum Zitat Ma L, Hou B, Shang N, Zhang S, Wang C, Zong L, Song J, Wang J, Zhao X. The precise synthesis of twin-born Fe3O4/FeS/carbon nanosheets for high-rate lithium-ion batteries. Mater Chem Front. 2021;5:4579. Ma L, Hou B, Shang N, Zhang S, Wang C, Zong L, Song J, Wang J, Zhao X. The precise synthesis of twin-born Fe3O4/FeS/carbon nanosheets for high-rate lithium-ion batteries. Mater Chem Front. 2021;5:4579.
[52]
Zurück zum Zitat Yang X, Zu H, Luo L, Zhang H, Li J, Yi X, Liu H, Wang F, Song J. Synergistic tungsten oxide/N, S co-doped carbon nanofibers interlayer as anchor of polysulfides for high-performance lithium-sulfur batteries. J Alloys Compd. 2020;833:154969. Yang X, Zu H, Luo L, Zhang H, Li J, Yi X, Liu H, Wang F, Song J. Synergistic tungsten oxide/N, S co-doped carbon nanofibers interlayer as anchor of polysulfides for high-performance lithium-sulfur batteries. J Alloys Compd. 2020;833:154969.
[53]
Zurück zum Zitat Liu H, Liu X, Li W, Guo X, Wang Y, Wang G, Zhao D. Porous carbon composites for next generation rechargeable lithium batteries. Adv Energy Mater. 2017;7:1700283. Liu H, Liu X, Li W, Guo X, Wang Y, Wang G, Zhao D. Porous carbon composites for next generation rechargeable lithium batteries. Adv Energy Mater. 2017;7:1700283.
Metadaten
Titel
Delicate synthesis of quasi-inverse opal structural Na3V2(PO4)3/N-C and Na4MnV(PO4)3/N-C as cathode for high-rate sodium-ion batteries
verfasst von
Xin-Ran Qi
Yuan Liu
Lin-Lin Ma
Bao-Xiu Hou
Hong-Wei Zhang
Xiao-Hui Li
Ya-Shi Wang
Yi-Qing Hui
Ruo-Xun Wang
Chong-Yang Bai
Hao Liu
Jian-Jun Song
Xiao-Xian Zhao
Publikationsdatum
19.01.2022
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 5/2022
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-021-01900-3

Weitere Artikel der Ausgabe 5/2022

Rare Metals 5/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.