Skip to main content
Erschienen in: Rare Metals 5/2022

20.02.2022 | Original Article

In-situ constructed three-dimensional MoS2–MoN heterostructure as the cathode of lithium–sulfur battery

verfasst von: Jing-Han Zuo, Peng-Bo Zhai, Qian-Qian He, Lei Wang, Qian Chen, Xiao-Kang Gu, Zhi-Lin Yang, Yong-Ji Gong

Erschienen in: Rare Metals | Ausgabe 5/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Lithium–sulfur batteries are recognized as one of the most promising next-generation high-performance energy storage systems. However, obstacles like the irreversible capacity loss hinder its broad application. Herein, we fabricated an interconnected three-dimensional MoS2–MoN heterostructure (3D-MoS2–MoN) via a facile salt-template method, overcoming the intrinsic shortcomings such as poor conductivity and compact morphology of traditionally-synthesized transition metal sulfides (TMSs). Furthermore, excellent electrocatalysis ability and hierarchical pore structure effectively accelerate the sluggish lithium polysulfides conversions during cycling. As a result, 3D-MoS2–MoN showed a high initial specific capacity of 1466 mAh·g−1 and excellent high-rate capability up to 4 °C. A stable cycling performance with a sulfur loading of 2 mg·cm−2 was realized with a low decay rate of 0.069% per cycle. This work introduced a rational design route for the appliance of TMSs in the lithium-sulfur batteries.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
[1]
Zurück zum Zitat Zhai PB, Wang TS, Jiang HN, Wan JY, Wei Y, Wang L, Liu W, Chen Q, Yang WW, Cui Y, Gong YJ. 3D artificial solid-electrolyte interphase for lithium metal anodes enabled by insulator–metal–insulator layered heterostructures. Adv Mater. 2021;33(13):2006247.CrossRef Zhai PB, Wang TS, Jiang HN, Wan JY, Wei Y, Wang L, Liu W, Chen Q, Yang WW, Cui Y, Gong YJ. 3D artificial solid-electrolyte interphase for lithium metal anodes enabled by insulator–metal–insulator layered heterostructures. Adv Mater. 2021;33(13):2006247.CrossRef
[2]
Zurück zum Zitat Zhai PB, Liu LX, Gu XK, Wang TS, Gong YJ. Interface engineering for lithium metal anodes in liquid electrolyte. Adv Energy Mater. 2020;10(34):2001257.CrossRef Zhai PB, Liu LX, Gu XK, Wang TS, Gong YJ. Interface engineering for lithium metal anodes in liquid electrolyte. Adv Energy Mater. 2020;10(34):2001257.CrossRef
[3]
Zurück zum Zitat Huang ZX, Xu Z, Ji ZG, Sun Q. Leaching and kinetics study of valuable metals from LiNi0.5Co0.2Mn0.3O2 cathode in spent LIBs. Chin J Rare Metals 2020,44(8):860. Huang ZX, Xu Z, Ji ZG, Sun Q. Leaching and kinetics study of valuable metals from LiNi0.5Co0.2Mn0.3O2 cathode in spent LIBs. Chin J Rare Metals 2020,44(8):860.
[4]
Zurück zum Zitat Xie D, Li HH, Diao WY, Jiang R, Tao FY, Sun HZ, Wu XL, Zhang JP. Spatial confinement of vertical arrays of lithiophilic SnS2 nanosheets enables conformal Li nucleation/growth towards dendrite-free Li metal anode. Energy Storage Mater. 2021;36:504.CrossRef Xie D, Li HH, Diao WY, Jiang R, Tao FY, Sun HZ, Wu XL, Zhang JP. Spatial confinement of vertical arrays of lithiophilic SnS2 nanosheets enables conformal Li nucleation/growth towards dendrite-free Li metal anode. Energy Storage Mater. 2021;36:504.CrossRef
[5]
Zurück zum Zitat Yang M, Ning QL, Fan CY, Wu XL. Large-scale Ni-MOF derived Ni3S2 nanocrystals embedded in N-doped porous carbon nanoparticles for high-rate Na+ storage. Chin Chem Lett. 2021;32(2):895.CrossRef Yang M, Ning QL, Fan CY, Wu XL. Large-scale Ni-MOF derived Ni3S2 nanocrystals embedded in N-doped porous carbon nanoparticles for high-rate Na+ storage. Chin Chem Lett. 2021;32(2):895.CrossRef
[6]
Zurück zum Zitat Kong L, Tang C, Peng HJ, Huang JQ and Zhang Q. Advanced energy materials for flexible batteries in energy storage: a review. SmartMat. 2020;1(1):e1007. Kong L, Tang C, Peng HJ, Huang JQ and Zhang Q. Advanced energy materials for flexible batteries in energy storage: a review. SmartMat. 2020;1(1):e1007.
[7]
Zurück zum Zitat Zhao M, Chen X, Li XY, Li BQ, Huang JQ. An organodiselenide comediator to facilitate sulfur redox kinetics in lithium–sulfur batteries. Adv Mater. 2021;33(13):e2007298. Zhao M, Chen X, Li XY, Li BQ, Huang JQ. An organodiselenide comediator to facilitate sulfur redox kinetics in lithium–sulfur batteries. Adv Mater. 2021;33(13):e2007298.
[9]
Zurück zum Zitat Fang R, Zhao S, Sun Z, Wang DW, Cheng HM, Li F. More reliable lithium–sulfur batteries: status, solutions and prospects. Adv Mater. 2017;29(48):1606823.CrossRef Fang R, Zhao S, Sun Z, Wang DW, Cheng HM, Li F. More reliable lithium–sulfur batteries: status, solutions and prospects. Adv Mater. 2017;29(48):1606823.CrossRef
[10]
Zurück zum Zitat Han XR, Guo XT, Xu MJ, Pang H, Ma YW. Clean utilization of palm kernel shell: sustainable and naturally heteroatom-doped porous activated carbon for lithium–sulfur batteries. Rare Met. 2020;39(9):1099.CrossRef Han XR, Guo XT, Xu MJ, Pang H, Ma YW. Clean utilization of palm kernel shell: sustainable and naturally heteroatom-doped porous activated carbon for lithium–sulfur batteries. Rare Met. 2020;39(9):1099.CrossRef
[11]
Zurück zum Zitat Hu Y, Chen W, Lei TY, Jiao Y, Huang JW, Hu AJ, Gong CH, Yan CY, Wang XF, Xiong J. Strategies toward high‐loading lithium–sulfur battery. Adv Energy Mater. 2020;10(17):200082. Hu Y, Chen W, Lei TY, Jiao Y, Huang JW, Hu AJ, Gong CH, Yan CY, Wang XF, Xiong J. Strategies toward high‐loading lithium–sulfur battery. Adv Energy Mater. 2020;10(17):200082.
[12]
Zurück zum Zitat Gu XX, Yang ZG, Qiao S, Shao CB, Ren XL, Yang JJ. Exploiting methylated amino resin as a multifunctional binder for high-performance lithium–sulfur batteries. Rare Met. 2021;40(3):529.CrossRef Gu XX, Yang ZG, Qiao S, Shao CB, Ren XL, Yang JJ. Exploiting methylated amino resin as a multifunctional binder for high-performance lithium–sulfur batteries. Rare Met. 2021;40(3):529.CrossRef
[13]
Zurück zum Zitat Wei ZH, Ren YQ, Sokolowski J, Zhu XD, Wu G. Mechanistic understanding of the role separators playing in advanced lithium–sulfur batteries. InfoMat. 2020;2(3):483.CrossRef Wei ZH, Ren YQ, Sokolowski J, Zhu XD, Wu G. Mechanistic understanding of the role separators playing in advanced lithium–sulfur batteries. InfoMat. 2020;2(3):483.CrossRef
[14]
Zurück zum Zitat Ji XL, Lee KT, Nazar LF. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat Mater. 2009;8(6):500.CrossRef Ji XL, Lee KT, Nazar LF. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat Mater. 2009;8(6):500.CrossRef
[15]
Zurück zum Zitat Tran DT, Dong H, Walck SD, Zhang SS. Pyrite FeS2–C composite as a high capacity cathode material of rechargeable lithium batteries. RSC Adv. 2015;5(107):87847.CrossRef Tran DT, Dong H, Walck SD, Zhang SS. Pyrite FeS2–C composite as a high capacity cathode material of rechargeable lithium batteries. RSC Adv. 2015;5(107):87847.CrossRef
[16]
Zurück zum Zitat Zhou G, Tian H, Jin Y, Tao X, Liu B, Zhang R, Seh ZW, Zhuo D, Liu Y, Sun J, Zhao J, Zu C, Wu DS, Zhang Q, Cui Y. Catalytic oxidation of Li2S on the surface of metal sulfides for Li–S batteries. Proc Natl Acad Sci USA. 2017;114(5):840.CrossRef Zhou G, Tian H, Jin Y, Tao X, Liu B, Zhang R, Seh ZW, Zhuo D, Liu Y, Sun J, Zhao J, Zu C, Wu DS, Zhang Q, Cui Y. Catalytic oxidation of Li2S on the surface of metal sulfides for Li–S batteries. Proc Natl Acad Sci USA. 2017;114(5):840.CrossRef
[17]
Zurück zum Zitat Dirlam PT, Park J, Simmonds AG, Domanik K, Arrington CB, Schaefer JL, Oleshko VP, Kleine TS, Char K, Glass RS, Soles CL, Kim C, Pinna N, Sung YE, Pyun J. Elemental sulfur and molybdenum disulfide composites for Li–S batteries with long cycle life and high-rate capability. ACS Appl Mater Interfaces. 2016;8(21):13437.CrossRef Dirlam PT, Park J, Simmonds AG, Domanik K, Arrington CB, Schaefer JL, Oleshko VP, Kleine TS, Char K, Glass RS, Soles CL, Kim C, Pinna N, Sung YE, Pyun J. Elemental sulfur and molybdenum disulfide composites for Li–S batteries with long cycle life and high-rate capability. ACS Appl Mater Interfaces. 2016;8(21):13437.CrossRef
[18]
Zurück zum Zitat Peng HJ, Zhang G, Chen X, Zhang ZW, Xu WT, Huang JQ, Zhang Q. Enhanced electrochemical kinetics on conductive polar mediators for lithium–sulfur batteries. Angew Chem Int Ed Engl. 2016;55(42):12990.CrossRef Peng HJ, Zhang G, Chen X, Zhang ZW, Xu WT, Huang JQ, Zhang Q. Enhanced electrochemical kinetics on conductive polar mediators for lithium–sulfur batteries. Angew Chem Int Ed Engl. 2016;55(42):12990.CrossRef
[19]
Zurück zum Zitat Pang Q, Kundu D, Nazar LF. A graphene-like metallic cathode host for long-life and high-loading lithium–sulfur batteries. Mater Horizons. 2016;3(2):130.CrossRef Pang Q, Kundu D, Nazar LF. A graphene-like metallic cathode host for long-life and high-loading lithium–sulfur batteries. Mater Horizons. 2016;3(2):130.CrossRef
[20]
Zurück zum Zitat Park J, Yu BC, Park JS, Choi JW, Kim C, Sung YE, Goodenough JB. Tungsten disulfide catalysts supported on a carbon cloth interlayer for high performance Li–S battery. Adv Energy Mater. 2017;7(11):1602567.CrossRef Park J, Yu BC, Park JS, Choi JW, Kim C, Sung YE, Goodenough JB. Tungsten disulfide catalysts supported on a carbon cloth interlayer for high performance Li–S battery. Adv Energy Mater. 2017;7(11):1602567.CrossRef
[21]
Zurück zum Zitat Jin CQ, Zhai PB, Wei Y, Chen Q, Wang XG, Yang WW, Xiao J, He QQ, Liu QY, Gong YJ. Ni(OH)2 templated synthesis of ultrathin Ni3S2 nanosheets as bifunctional electrocatalyst for overall water splitting. Small. 2021;17(33):2102097.CrossRef Jin CQ, Zhai PB, Wei Y, Chen Q, Wang XG, Yang WW, Xiao J, He QQ, Liu QY, Gong YJ. Ni(OH)2 templated synthesis of ultrathin Ni3S2 nanosheets as bifunctional electrocatalyst for overall water splitting. Small. 2021;17(33):2102097.CrossRef
[22]
Zurück zum Zitat Que HF, Jiang HN, Wang XG, Zhai PB, Meng LJ, Zhang P, Gong YJ. Utilization of the van der Waals gap of 2D materials. Acta Physico-Chimica Sinica. 2021;37(11):2010051. Que HF, Jiang HN, Wang XG, Zhai PB, Meng LJ, Zhang P, Gong YJ. Utilization of the van der Waals gap of 2D materials. Acta Physico-Chimica Sinica. 2021;37(11):2010051.
[23]
Zurück zum Zitat Zhang QF, Wang YP, Seh ZW, Fu ZH, Zhang RF, Cui Y. Understanding the anchoring effect of two-dimensional layered materials for lithium–sulfur batteries. Nano Lett. 2015;15(6):3780.CrossRef Zhang QF, Wang YP, Seh ZW, Fu ZH, Zhang RF, Cui Y. Understanding the anchoring effect of two-dimensional layered materials for lithium–sulfur batteries. Nano Lett. 2015;15(6):3780.CrossRef
[24]
Zurück zum Zitat Zuo JH, Gong YJ. Applications of transition-metal sulfides in the cathodes of lithium–sulfur batteries. Tungsten. 2020;2(2):134.CrossRef Zuo JH, Gong YJ. Applications of transition-metal sulfides in the cathodes of lithium–sulfur batteries. Tungsten. 2020;2(2):134.CrossRef
[25]
Zurück zum Zitat Lei TY, Chen W, Huang JW, Yan CY, Sun HX, Wang C, Zhang WL, Li YR, Xiong J. Multi-functional layered WS2 nanosheets for enhancing the performance of lithium–sulfur batteries. Adv Energy Mater. 2017;7(4):1601843.CrossRef Lei TY, Chen W, Huang JW, Yan CY, Sun HX, Wang C, Zhang WL, Li YR, Xiong J. Multi-functional layered WS2 nanosheets for enhancing the performance of lithium–sulfur batteries. Adv Energy Mater. 2017;7(4):1601843.CrossRef
[26]
Zurück zum Zitat Li ZT, Xu RF, Deng SZ, Su X, Wu WT, Liu SP, Wu MB. MnS decorated N/S codoped 3D graphene which used as cathode of the lithium-sulfur battery. Appl Surf Sci. 2018;433:10.CrossRef Li ZT, Xu RF, Deng SZ, Su X, Wu WT, Liu SP, Wu MB. MnS decorated N/S codoped 3D graphene which used as cathode of the lithium-sulfur battery. Appl Surf Sci. 2018;433:10.CrossRef
[27]
Zurück zum Zitat Yuan Z, Peng H, Hou T, Huang J, Chen C, Wang D, Cheng X, Wei F, Zhang Q. Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 2016;16(1):519.CrossRef Yuan Z, Peng H, Hou T, Huang J, Chen C, Wang D, Cheng X, Wei F, Zhang Q. Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 2016;16(1):519.CrossRef
[28]
Zurück zum Zitat Zhai PB, Gu XK, Wei Y, Zuo JH, Chen Q, Liu W, Jiang HN, Wang XG, Gong YJ. Enhanced mass transfer in three-dimensional single-atom nickel catalyst with open-pore structure for highly efficient CO2 electrolysis. J Energy Chem. 2021;62:43.CrossRef Zhai PB, Gu XK, Wei Y, Zuo JH, Chen Q, Liu W, Jiang HN, Wang XG, Gong YJ. Enhanced mass transfer in three-dimensional single-atom nickel catalyst with open-pore structure for highly efficient CO2 electrolysis. J Energy Chem. 2021;62:43.CrossRef
[29]
Zurück zum Zitat Yu DB, Feng Y, Zhu YF, Zhang XB, Li B, Liu HQ. Template synthesis and characterization of molybdenum disulfide nanotubules. Mater Res Bull. 2011;46(9):1504.CrossRef Yu DB, Feng Y, Zhu YF, Zhang XB, Li B, Liu HQ. Template synthesis and characterization of molybdenum disulfide nanotubules. Mater Res Bull. 2011;46(9):1504.CrossRef
[30]
Zurück zum Zitat Shi Y, Zhou Y, Yang DR, Xu WX, Wang C, Wang FB, Xu JJ, Xia XH, Chen HY. Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction. J Am Chem Soc. 2017;139(43):15479.CrossRef Shi Y, Zhou Y, Yang DR, Xu WX, Wang C, Wang FB, Xu JJ, Xia XH, Chen HY. Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction. J Am Chem Soc. 2017;139(43):15479.CrossRef
[31]
Zurück zum Zitat Li H, Zhang Q, Yap CCR, Tay BK, Edwin THT, Olivier A, Baillargeat D. From bulk to monolayer MoS2: evolution of Raman scattering. Adv Funct Mater. 2012;22(7):1385.CrossRef Li H, Zhang Q, Yap CCR, Tay BK, Edwin THT, Olivier A, Baillargeat D. From bulk to monolayer MoS2: evolution of Raman scattering. Adv Funct Mater. 2012;22(7):1385.CrossRef
[32]
Zurück zum Zitat Tian D, Song XQ, Wang MX, Wu X, Qiu Y, Guan B, Xu XZ, Fan LS, Zhang NQ, Sun KN. MoN supported on graphene as a bifunctional interlayer for advanced li–s batteries. Adv Energy Mater. 2019;9(46):1901940.CrossRef Tian D, Song XQ, Wang MX, Wu X, Qiu Y, Guan B, Xu XZ, Fan LS, Zhang NQ, Sun KN. MoN supported on graphene as a bifunctional interlayer for advanced li–s batteries. Adv Energy Mater. 2019;9(46):1901940.CrossRef
[33]
Zurück zum Zitat Liu HD, Chen ZL, Man H, Yang SP, Song Y, Fang F, Che RC, Sun DL. Template-guided synthesis of porous MoN microrod as an effective sulfur host for high-performance lithium–sulfur batteries. J Alloys Compd. 2020; 842:155764. Liu HD, Chen ZL, Man H, Yang SP, Song Y, Fang F, Che RC, Sun DL. Template-guided synthesis of porous MoN microrod as an effective sulfur host for high-performance lithium–sulfur batteries. J Alloys Compd. 2020; 842:155764.
[34]
Zurück zum Zitat Ye C, Jiao Y, Jin HY, Slattery AD, Davey K, Wang HH, Qiao SZ. 2D MoN-VN heterostructure to regulate polysulfides for highly efficient lithium–sulfur batteries. Angew Chem Int Ed Engl. 2018;130:16703.CrossRef Ye C, Jiao Y, Jin HY, Slattery AD, Davey K, Wang HH, Qiao SZ. 2D MoN-VN heterostructure to regulate polysulfides for highly efficient lithium–sulfur batteries. Angew Chem Int Ed Engl. 2018;130:16703.CrossRef
[35]
Zurück zum Zitat Chu K, Liu YP, Li YB, Guo YL, Tian Y. Two-dimensional (2D)/2D interface engineering of a MoS2/C3N4 heterostructure for promoted electrocatalytic nitrogen fixation. ACS Appl Mater Interfaces. 2020;12(6):7081.CrossRef Chu K, Liu YP, Li YB, Guo YL, Tian Y. Two-dimensional (2D)/2D interface engineering of a MoS2/C3N4 heterostructure for promoted electrocatalytic nitrogen fixation. ACS Appl Mater Interfaces. 2020;12(6):7081.CrossRef
[36]
Zurück zum Zitat Zhang YL, Mu ZJ, Yang C, Xu ZK, Zhang S, Zhang XY, Li YJ, Lai JP, Sun ZH, Yang Y, Chao YG, Li CJ, Ge XX, Yang WX, Guo SJ. Rational design of MXene/1T-2H MoS2-C nanohybrids for high-performance lithium–sulfur batteries. Adv Funct Mater. 2018;28(38):1707578.CrossRef Zhang YL, Mu ZJ, Yang C, Xu ZK, Zhang S, Zhang XY, Li YJ, Lai JP, Sun ZH, Yang Y, Chao YG, Li CJ, Ge XX, Yang WX, Guo SJ. Rational design of MXene/1T-2H MoS2-C nanohybrids for high-performance lithium–sulfur batteries. Adv Funct Mater. 2018;28(38):1707578.CrossRef
[37]
Zurück zum Zitat Yang WW, Wei Y, Chen Q, Qin SJ, Zuo JH, Tan SD, Zhai PB, Cui SQ, Wang HW, Jin CQ, Xiao J, Liu W, Shang JX, Gong YJ. A MoO3/MoO2-CP self-supporting heterostructure for modification of lithium–sulfur batteries. J Mater Chem A. 2020;8(31):15816.CrossRef Yang WW, Wei Y, Chen Q, Qin SJ, Zuo JH, Tan SD, Zhai PB, Cui SQ, Wang HW, Jin CQ, Xiao J, Liu W, Shang JX, Gong YJ. A MoO3/MoO2-CP self-supporting heterostructure for modification of lithium–sulfur batteries. J Mater Chem A. 2020;8(31):15816.CrossRef
[38]
Zurück zum Zitat Yang WW, Xiao JW, Ma Y, Cui SQ, Zhang P, Zhai PB, Meng LJ, Wang XG, Wei Y, Du ZG, Li BX, Sun ZB, Yang SB, Zhang QF, Gong YJ. Tin intercalated ultrathin MoO3 nanoribbons for advanced lithium–sulfur batteries. Adv Energy Mater. 2019;9(7):1803137.CrossRef Yang WW, Xiao JW, Ma Y, Cui SQ, Zhang P, Zhai PB, Meng LJ, Wang XG, Wei Y, Du ZG, Li BX, Sun ZB, Yang SB, Zhang QF, Gong YJ. Tin intercalated ultrathin MoO3 nanoribbons for advanced lithium–sulfur batteries. Adv Energy Mater. 2019;9(7):1803137.CrossRef
[39]
Zurück zum Zitat Holzapfel M, Martinent A, Alloin F, Le Gorrec B, Yazami R, Montella C. First lithiation and charge/discharge cycles of graphite materials, investigated by electrochemical impedance spectroscopy. J Electroanal Chem. 2003;546:41.CrossRef Holzapfel M, Martinent A, Alloin F, Le Gorrec B, Yazami R, Montella C. First lithiation and charge/discharge cycles of graphite materials, investigated by electrochemical impedance spectroscopy. J Electroanal Chem. 2003;546:41.CrossRef
[40]
Zurück zum Zitat Qiu XY, Hua QS, Zheng LL, Dai ZQ. Study of the discharge/charge process of lithium–sulfur batteries by electrochemical impedance spectroscopy. RSC Adv. 2020;10(9):5283.CrossRef Qiu XY, Hua QS, Zheng LL, Dai ZQ. Study of the discharge/charge process of lithium–sulfur batteries by electrochemical impedance spectroscopy. RSC Adv. 2020;10(9):5283.CrossRef
[41]
Zurück zum Zitat Ahn W, Kim KB, Jung KN, Shin KH, Jin CS. Synthesis and electrochemical properties of a sulfur-multi walled carbon nanotubes composite as a cathode material for lithium sulfur batteries. J Power Sources. 2012;202:394.CrossRef Ahn W, Kim KB, Jung KN, Shin KH, Jin CS. Synthesis and electrochemical properties of a sulfur-multi walled carbon nanotubes composite as a cathode material for lithium sulfur batteries. J Power Sources. 2012;202:394.CrossRef
[42]
Zurück zum Zitat Barchasz C, Leprêtre JC, Alloin F, Patoux S. New insights into the limiting parameters of the Li/S rechargeable cell. J Power Sources. 2012;199:322.CrossRef Barchasz C, Leprêtre JC, Alloin F, Patoux S. New insights into the limiting parameters of the Li/S rechargeable cell. J Power Sources. 2012;199:322.CrossRef
[43]
Zurück zum Zitat Cañas NA, Hirose K, Pascucci B, Wagner N, Friedrich KA, Hiesgen R. Investigations of lithium–sulfur batteries using electrochemical impedance spectroscopy. Electrochim Acta. 2013;97:42.CrossRef Cañas NA, Hirose K, Pascucci B, Wagner N, Friedrich KA, Hiesgen R. Investigations of lithium–sulfur batteries using electrochemical impedance spectroscopy. Electrochim Acta. 2013;97:42.CrossRef
[44]
Zurück zum Zitat Peng LL, Wei ZY, Wan CZ, Li J, Chen Z, Zhu D, Baumann D, Liu HT, Allen CS, Xu X, Kirkland AI, Shakir I, Almutairi Z, Tolbert S, Dunn B, Huang Y, Sautet P, Duan XF. A fundamental look at electrocatalytic sulfur reduction reaction. Nat Catal. 2020;3(9):762.CrossRef Peng LL, Wei ZY, Wan CZ, Li J, Chen Z, Zhu D, Baumann D, Liu HT, Allen CS, Xu X, Kirkland AI, Shakir I, Almutairi Z, Tolbert S, Dunn B, Huang Y, Sautet P, Duan XF. A fundamental look at electrocatalytic sulfur reduction reaction. Nat Catal. 2020;3(9):762.CrossRef
Metadaten
Titel
In-situ constructed three-dimensional MoS2–MoN heterostructure as the cathode of lithium–sulfur battery
verfasst von
Jing-Han Zuo
Peng-Bo Zhai
Qian-Qian He
Lei Wang
Qian Chen
Xiao-Kang Gu
Zhi-Lin Yang
Yong-Ji Gong
Publikationsdatum
20.02.2022
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 5/2022
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-021-01910-1

Weitere Artikel der Ausgabe 5/2022

Rare Metals 5/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.