Skip to main content
Erschienen in: Rare Metals 5/2022

21.01.2022 | Mini Review

Mechanisms and applications of layer/spinel phase transition in Li- and Mn-rich cathodes for lithium-ion batteries

verfasst von: Wei He, Qing-Shui Xie, Jie Lin, Bai-Hua Qu, Lai-Sen Wang, Dong-Liang Peng

Erschienen in: Rare Metals | Ausgabe 5/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Li- and Mn-rich (LMR) cathode materials have received tremendous attention due to the highly reversible specific capacity (> 250 mAh·g−1). In the analysis of its crystal structure, the two-phase composite model gains increasing acceptance, and the phase transition behaviors in LMR cathode materials have been extensively studied. Herein, the structure controversy of LMR cathode materials, and the mechanisms of phase transition are summarized. Particularly, the causes of initiating or accelerating the phase transition of LMR cathode materials have been summarized into three main driving forces, i.e., the electrochemical driving force, the component driving force and the thermodynamic driving force. Additionally, the applications of phase transition behavior in improving the electrochemical performance of LMR cathode materials, including the construction of spinel surface coating and spinel/layered hetero-structure are discussed.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Lu Y, Rong X, Hu YS, Li H, Chen L. Research and development of advanced battery materials in China. Energy Storage Mater. 2019;23:144.CrossRef Lu Y, Rong X, Hu YS, Li H, Chen L. Research and development of advanced battery materials in China. Energy Storage Mater. 2019;23:144.CrossRef
[2]
Zurück zum Zitat Ma J, Li Y, Grundish NS, Goodenough JB, Chen Y, Guo L, Peng Z, Qi X, Yang F, Qie L, Wang CA, Huang B, Huang Z, Chen L, Su D, Wang G, Peng X, Chen Z, Yang J, He S, Zhang X, Yu H, Fu C, Jiang M, Deng W, Sun CF, Pan Q, Tang Y, Li X, Ji X, Wan F, Niu Z, Lian F, Wang C, Wallace GG, Fan M, Meng Q, Xin S, Guo YG, Wan LJ. The 2021 battery technology roadmap. J Phys D. 2021;54(18):183001.CrossRef Ma J, Li Y, Grundish NS, Goodenough JB, Chen Y, Guo L, Peng Z, Qi X, Yang F, Qie L, Wang CA, Huang B, Huang Z, Chen L, Su D, Wang G, Peng X, Chen Z, Yang J, He S, Zhang X, Yu H, Fu C, Jiang M, Deng W, Sun CF, Pan Q, Tang Y, Li X, Ji X, Wan F, Niu Z, Lian F, Wang C, Wallace GG, Fan M, Meng Q, Xin S, Guo YG, Wan LJ. The 2021 battery technology roadmap. J Phys D. 2021;54(18):183001.CrossRef
[3]
Zurück zum Zitat Xie J, Lu YC. A retrospective on lithium-ion batteries. Nat Commun. 2020;11(1):2499.CrossRef Xie J, Lu YC. A retrospective on lithium-ion batteries. Nat Commun. 2020;11(1):2499.CrossRef
[4]
Zurück zum Zitat Goodenough JB. Evolution of strategies for modern rechargeable batteries. Acc Chem Res. 2013;46(5):1053.CrossRef Goodenough JB. Evolution of strategies for modern rechargeable batteries. Acc Chem Res. 2013;46(5):1053.CrossRef
[5]
Zurück zum Zitat Li M, Lu J, Chen Z, Amine K. 30 years of lithium-ion batteries. Adv Mater. 2018;30(33):1800561.CrossRef Li M, Lu J, Chen Z, Amine K. 30 years of lithium-ion batteries. Adv Mater. 2018;30(33):1800561.CrossRef
[6]
Zurück zum Zitat Goodenough JB. How we made the Li-ion rechargeable battery. Nat Electron. 2018;1(3):204.CrossRef Goodenough JB. How we made the Li-ion rechargeable battery. Nat Electron. 2018;1(3):204.CrossRef
[7]
Zurück zum Zitat Yoshino A. The birth of the lithium-ion battery. Angew Chem Int Ed Engl. 2012;51(24):5798.CrossRef Yoshino A. The birth of the lithium-ion battery. Angew Chem Int Ed Engl. 2012;51(24):5798.CrossRef
[8]
Zurück zum Zitat Whittingham MS. Lithium batteries and cathode materials. Chem Rev. 2004;104:4271.CrossRef Whittingham MS. Lithium batteries and cathode materials. Chem Rev. 2004;104:4271.CrossRef
[9]
Zurück zum Zitat Voronina N, Sun YK, Myung ST. Co-free layered cathode materials for high energy density lithium-ion batteries. ACS Energy Lett. 2020;5(6):1814.CrossRef Voronina N, Sun YK, Myung ST. Co-free layered cathode materials for high energy density lithium-ion batteries. ACS Energy Lett. 2020;5(6):1814.CrossRef
[10]
Zurück zum Zitat Jia Y, Li J, Yuan C, Gao X, Yao W, Lee M, Xu J. Data-driven safety risk prediction of lithium-ion battery. Adv Energy Mater. 2021;11(18):2003868.CrossRef Jia Y, Li J, Yuan C, Gao X, Yao W, Lee M, Xu J. Data-driven safety risk prediction of lithium-ion battery. Adv Energy Mater. 2021;11(18):2003868.CrossRef
[11]
Zurück zum Zitat Liu K, Liu YY, Lin DC, Pei A, Cui Y. Materials for lithium-ion battery safety. Sci Adv. 2018;4(6):eaas9820.CrossRef Liu K, Liu YY, Lin DC, Pei A, Cui Y. Materials for lithium-ion battery safety. Sci Adv. 2018;4(6):eaas9820.CrossRef
[12]
Zurück zum Zitat Lim BB, Yoon SJ, Park KJ, Yoon CS, Kim SJ, Lee JJ, Sun YK. Advanced concentration gradient cathode material with two-slope for high-energy and safe lithium batteries. Adv Funct Mater. 2015;25(29):4673.CrossRef Lim BB, Yoon SJ, Park KJ, Yoon CS, Kim SJ, Lee JJ, Sun YK. Advanced concentration gradient cathode material with two-slope for high-energy and safe lithium batteries. Adv Funct Mater. 2015;25(29):4673.CrossRef
[13]
Zurück zum Zitat Su F, Qin J, Das P, Zhou F, Wu ZS. A high-performance rocking-chair lithium-ion battery-supercapacitor hybrid device boosted by doubly matched capacity and kinetics of the faradaic electrodes. Energy Environ Sci. 2021;14(4):2269.CrossRef Su F, Qin J, Das P, Zhou F, Wu ZS. A high-performance rocking-chair lithium-ion battery-supercapacitor hybrid device boosted by doubly matched capacity and kinetics of the faradaic electrodes. Energy Environ Sci. 2021;14(4):2269.CrossRef
[14]
Zurück zum Zitat Schulze MC, Neale NR. Half-cell cumulative efficiency forecasts full-cell capacity retention in lithium-ion batteries. ACS Energy Lett. 2021;6(3):1082.CrossRef Schulze MC, Neale NR. Half-cell cumulative efficiency forecasts full-cell capacity retention in lithium-ion batteries. ACS Energy Lett. 2021;6(3):1082.CrossRef
[15]
Zurück zum Zitat Xia H, Tang Y, Malyi OI, Zhu Z, Zhang Y, Zhang W, Ge X, Zeng Y, Chen X. Deep cycling for high-capacity Li-ion batteries. Adv Mater. 2021;33(10):2004998.CrossRef Xia H, Tang Y, Malyi OI, Zhu Z, Zhang Y, Zhang W, Ge X, Zeng Y, Chen X. Deep cycling for high-capacity Li-ion batteries. Adv Mater. 2021;33(10):2004998.CrossRef
[16]
Zurück zum Zitat Duan Y, Zhang B, Zheng J, Hu J, Wen J, Miller DJ, Yan P, Liu T, Guo H, Li W, Song X, Zhuo Z, Liu C, Tang H, Tan R, Chen Z, Ren Y, Lin Y, Yang W, Wang CM, Wang LW, Lu J, Amine K, Pan F. Excess Li-ion storage on reconstructed surfaces of nanocrystals to boost battery performance. Nano Lett. 2017;17(10):6018.CrossRef Duan Y, Zhang B, Zheng J, Hu J, Wen J, Miller DJ, Yan P, Liu T, Guo H, Li W, Song X, Zhuo Z, Liu C, Tang H, Tan R, Chen Z, Ren Y, Lin Y, Yang W, Wang CM, Wang LW, Lu J, Amine K, Pan F. Excess Li-ion storage on reconstructed surfaces of nanocrystals to boost battery performance. Nano Lett. 2017;17(10):6018.CrossRef
[17]
Zurück zum Zitat Zhu Z, Wang H, Li Y, Gao R, Xiao X, Yu Q, Wang C, Waluyo I, Ding J, Hunt A, Li J. A surface Se-substituted LiCo[O2-δ] cathode with ultrastable high-voltage cycling in pouch full-cells. Adv Mater. 2020;32(50):2005182.CrossRef Zhu Z, Wang H, Li Y, Gao R, Xiao X, Yu Q, Wang C, Waluyo I, Ding J, Hunt A, Li J. A surface Se-substituted LiCo[O2-δ] cathode with ultrastable high-voltage cycling in pouch full-cells. Adv Mater. 2020;32(50):2005182.CrossRef
[18]
Zurück zum Zitat Thackeray MM. Exploiting the spinel structure for Li-ion battery applications: a tribute to John B. Goodenough. Adv Energy Mater. 2020;11(2):2001117.CrossRef Thackeray MM. Exploiting the spinel structure for Li-ion battery applications: a tribute to John B. Goodenough. Adv Energy Mater. 2020;11(2):2001117.CrossRef
[19]
Zurück zum Zitat Yu X, Lyu Y, Gu L, Wu H, Bak SM, Zhou Y, Amine K, Ehrlich SN, Li H, Nam KW, Yang XQ. Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode materials. Adv Energy Mater. 2014;4(5):1300950.CrossRef Yu X, Lyu Y, Gu L, Wu H, Bak SM, Zhou Y, Amine K, Ehrlich SN, Li H, Nam KW, Yang XQ. Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode materials. Adv Energy Mater. 2014;4(5):1300950.CrossRef
[20]
Zurück zum Zitat Rozier P, Tarascon JM. Review-Li-rich layered oxide cathodes for next-generation Li-ion batteries: chances and challenges. J Electrochem Soc. 2015;162(14):A2490.CrossRef Rozier P, Tarascon JM. Review-Li-rich layered oxide cathodes for next-generation Li-ion batteries: chances and challenges. J Electrochem Soc. 2015;162(14):A2490.CrossRef
[21]
Zurück zum Zitat Wang J, He X, Paillard E, Laszczynski N, Li J, Passerini S. Lithium- and manganese-rich oxide cathode materials for high-energy lithium ion batteries. Adv Energy Mater. 2016;6(21):1600906.CrossRef Wang J, He X, Paillard E, Laszczynski N, Li J, Passerini S. Lithium- and manganese-rich oxide cathode materials for high-energy lithium ion batteries. Adv Energy Mater. 2016;6(21):1600906.CrossRef
[22]
Zurück zum Zitat Nayak PK, Erickson EM, Schipper F, Penki TR, Munichandraiah N, Adelhelm P, Sclar H, Amalraj F, Markovsky B, Aurbach D. Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for Li-ion batteries. Adv Energy Mater. 2018;8(8):1702397.CrossRef Nayak PK, Erickson EM, Schipper F, Penki TR, Munichandraiah N, Adelhelm P, Sclar H, Amalraj F, Markovsky B, Aurbach D. Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for Li-ion batteries. Adv Energy Mater. 2018;8(8):1702397.CrossRef
[23]
Zurück zum Zitat Lei Y, Ni J, Hu Z, Wang Z, Gui F, Li B, Ming P, Zhang C, Elias Y, Aurbach D, Xiao Q. Surface modification of Li-rich Mn-based layered oxide cathodes: challenges, materials, methods, and characterization. Adv Energy Mater. 2020;10(41):2002506.CrossRef Lei Y, Ni J, Hu Z, Wang Z, Gui F, Li B, Ming P, Zhang C, Elias Y, Aurbach D, Xiao Q. Surface modification of Li-rich Mn-based layered oxide cathodes: challenges, materials, methods, and characterization. Adv Energy Mater. 2020;10(41):2002506.CrossRef
[24]
Zurück zum Zitat Zhao S, Guo Z, Yan K, Wan S, He F, Sun B, Wang G. Towards high-energy-density lithium-ion batteries: strategies for developing high-capacity lithium-rich cathode materials. Energy Storage Mater. 2021;34:716.CrossRef Zhao S, Guo Z, Yan K, Wan S, He F, Sun B, Wang G. Towards high-energy-density lithium-ion batteries: strategies for developing high-capacity lithium-rich cathode materials. Energy Storage Mater. 2021;34:716.CrossRef
[25]
Zurück zum Zitat He W, Guo W, Wu H, Lin L, Liu Q, Han X, Xie Q, Liu P, Zheng H, Wang L, Yu X, Peng D.L. Challenges and recent advances in high capacity Li-rich cathode materials for high energy density lithium-ion batteries. Adv Mater 2021;2005937. He W, Guo W, Wu H, Lin L, Liu Q, Han X, Xie Q, Liu P, Zheng H, Wang L, Yu X, Peng D.L. Challenges and recent advances in high capacity Li-rich cathode materials for high energy density lithium-ion batteries. Adv Mater 2021;2005937.
[26]
Zurück zum Zitat Zheng H, Han X, Guo W, Lin L, Xie Q, Liu P, He W, Wang L, Peng DL. Recent developments and challenges of Li-rich Mn-based cathode materials for high-energy lithium-ion batteries. Mater Today Energy. 2020;18:100518.CrossRef Zheng H, Han X, Guo W, Lin L, Xie Q, Liu P, He W, Wang L, Peng DL. Recent developments and challenges of Li-rich Mn-based cathode materials for high-energy lithium-ion batteries. Mater Today Energy. 2020;18:100518.CrossRef
[27]
Zurück zum Zitat Sharifi-Asl S, Yurkiv V, Gutierrez A, Cheng M, Balasubramanian M, Mashayek F, Croy J, Shahbazian-Yassar R. Revealing grain-boundary-induced degradation mechanisms in Li-rich cathode materials. Nano Lett. 2020;20(2):1208.CrossRef Sharifi-Asl S, Yurkiv V, Gutierrez A, Cheng M, Balasubramanian M, Mashayek F, Croy J, Shahbazian-Yassar R. Revealing grain-boundary-induced degradation mechanisms in Li-rich cathode materials. Nano Lett. 2020;20(2):1208.CrossRef
[28]
Zurück zum Zitat Mu L, Lin R, Xu R, Han L, Xia S, Sokaras D, Steiner JD, Weng TC, Nordlund D, Doeff MM, Liu Y, Zhao K, Xin HL, Lin F. Oxygen release induced chemomechanical breakdown of layered cathode materials. Nano Lett. 2018;18(5):3241.CrossRef Mu L, Lin R, Xu R, Han L, Xia S, Sokaras D, Steiner JD, Weng TC, Nordlund D, Doeff MM, Liu Y, Zhao K, Xin HL, Lin F. Oxygen release induced chemomechanical breakdown of layered cathode materials. Nano Lett. 2018;18(5):3241.CrossRef
[29]
Zurück zum Zitat Wu F, Liu N, Chen L, Su Y, Tan G, Bao L, Zhang Q, Lu Y, Wang J, Chen S, Tan J. Improving the reversibility of the H2–H3 phase transitions for layered Ni-rich oxide cathode towards retarded structural transition and enhanced cycle stability. Nano Energy. 2019;59:50.CrossRef Wu F, Liu N, Chen L, Su Y, Tan G, Bao L, Zhang Q, Lu Y, Wang J, Chen S, Tan J. Improving the reversibility of the H2–H3 phase transitions for layered Ni-rich oxide cathode towards retarded structural transition and enhanced cycle stability. Nano Energy. 2019;59:50.CrossRef
[30]
Zurück zum Zitat Assat G, Glazier SL, Delacourt C, Tarascon JM. Probing the thermal effects of voltage hysteresis in anionic redox-based lithium-rich cathodes using isothermal calorimetry. Nat Energy. 2019;4(8):647.CrossRef Assat G, Glazier SL, Delacourt C, Tarascon JM. Probing the thermal effects of voltage hysteresis in anionic redox-based lithium-rich cathodes using isothermal calorimetry. Nat Energy. 2019;4(8):647.CrossRef
[31]
Zurück zum Zitat Xiao B, Liu H, Chen N, Banis MN, Yu H, Liang J, Sun Q, Sham TK, Li R, Cai M, Botton GA, Sun X. Size-mediated recurring spinel sub-nanodomains in Li- and Mn-rich layered cathode materials. Angew Chem Int Ed Engl. 2020;59:14313.CrossRef Xiao B, Liu H, Chen N, Banis MN, Yu H, Liang J, Sun Q, Sham TK, Li R, Cai M, Botton GA, Sun X. Size-mediated recurring spinel sub-nanodomains in Li- and Mn-rich layered cathode materials. Angew Chem Int Ed Engl. 2020;59:14313.CrossRef
[32]
Zurück zum Zitat Eum D, Kim B, Kim SJ, Park H, Wu J, Cho SP, Yoon G, Lee MH, Jung SK, Yang W, Seong WM, Ku K, Tamwattana O, Park SK, Hwang I, Kang K. Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes. Nat Mater. 2020;19(4):419.CrossRef Eum D, Kim B, Kim SJ, Park H, Wu J, Cho SP, Yoon G, Lee MH, Jung SK, Yang W, Seong WM, Ku K, Tamwattana O, Park SK, Hwang I, Kang K. Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes. Nat Mater. 2020;19(4):419.CrossRef
[33]
Zurück zum Zitat Wang C, Xing L, Vatamanu J, Chen Z, Lan G, Li W, Xu K. Overlooked electrolyte destabilization by manganese (II) in lithium-ion batteries. Nat Commun. 2019;10(1):3423.CrossRef Wang C, Xing L, Vatamanu J, Chen Z, Lan G, Li W, Xu K. Overlooked electrolyte destabilization by manganese (II) in lithium-ion batteries. Nat Commun. 2019;10(1):3423.CrossRef
[34]
Zurück zum Zitat Liu D, Shadike Z, Lin R, Qian K, Li H, Li K, Wang S, Yu Q, Liu M, Ganapathy S, Qin X, Yang QH, Wagemaker M, Kang F, Yang XQ, Li B. Review of recent development of in situ/operando characterization techniques for lithium battery research. Adv Mater. 2019;31(28):1806620.CrossRef Liu D, Shadike Z, Lin R, Qian K, Li H, Li K, Wang S, Yu Q, Liu M, Ganapathy S, Qin X, Yang QH, Wagemaker M, Kang F, Yang XQ, Li B. Review of recent development of in situ/operando characterization techniques for lithium battery research. Adv Mater. 2019;31(28):1806620.CrossRef
[35]
Zurück zum Zitat Numata K, Sakaki C, Yamanaka S. Synthesis, characterization of layer structured solid solutions in the system of LiCoO2-Li2MnO3. Solid State Ion. 1999;117:257.CrossRef Numata K, Sakaki C, Yamanaka S. Synthesis, characterization of layer structured solid solutions in the system of LiCoO2-Li2MnO3. Solid State Ion. 1999;117:257.CrossRef
[36]
Zurück zum Zitat Johnson CS, Kim JS, Lefief C, Li N, Vaughey JT, Thackeray MM. The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3·(1–x)LiMn0.5Ni0.5O2 electrodes. Electrochem Commun. 2004;6(10):1085. Johnson CS, Kim JS, Lefief C, Li N, Vaughey JT, Thackeray MM. The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3·(1–x)LiMn0.5Ni0.5O2 electrodes. Electrochem Commun. 2004;6(10):1085.
[37]
Zurück zum Zitat Thackeray MM, Johnson CS, Vaughey JT, Li N, Hackney SA. Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries. J Mater Chem. 2005;15(23):2257.CrossRef Thackeray MM, Johnson CS, Vaughey JT, Li N, Hackney SA. Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries. J Mater Chem. 2005;15(23):2257.CrossRef
[38]
Zurück zum Zitat Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Benedek R, Hackney SA. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem. 2007;17(30):3112.CrossRef Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Benedek R, Hackney SA. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem. 2007;17(30):3112.CrossRef
[39]
Zurück zum Zitat Qiu B, Zhang M, Xia Y, Liu Z, Meng YS. Understanding and controlling anionic electrochemical activity in high-capacity oxides for next generation Li-ion batteries. Chem Mater. 2017;29(3):908.CrossRef Qiu B, Zhang M, Xia Y, Liu Z, Meng YS. Understanding and controlling anionic electrochemical activity in high-capacity oxides for next generation Li-ion batteries. Chem Mater. 2017;29(3):908.CrossRef
[40]
Zurück zum Zitat Hong J, Gent WE, Xiao P, Lim K, Seo DH, Wu J, Csernica PM, Takacs CJ, Nordlund D, Sun CJ, Stone KH, Passarello D, Yang W, Prendergast D, Ceder G, Toney MF, Chueh WC. Metal-oxygen decoordination stabilizes anion redox in Li-rich oxides. Nat Mater. 2019;18(3):256.CrossRef Hong J, Gent WE, Xiao P, Lim K, Seo DH, Wu J, Csernica PM, Takacs CJ, Nordlund D, Sun CJ, Stone KH, Passarello D, Yang W, Prendergast D, Ceder G, Toney MF, Chueh WC. Metal-oxygen decoordination stabilizes anion redox in Li-rich oxides. Nat Mater. 2019;18(3):256.CrossRef
[41]
Zurück zum Zitat Zhang X, Wang B, Zhao S, Li H, Yu H. Oxygen anionic redox activated high-energy cathodes: status and prospects. eTransportation. 2021;8:100118.CrossRef Zhang X, Wang B, Zhao S, Li H, Yu H. Oxygen anionic redox activated high-energy cathodes: status and prospects. eTransportation. 2021;8:100118.CrossRef
[42]
Zurück zum Zitat Liu S, Wang B, Zhang X, Zhao S, Zhang Z, Yu H. Reviving the lithium-manganese-based layered oxide cathodes for lithium-ion batteries. Matter. 2021;4(5):1511.CrossRef Liu S, Wang B, Zhang X, Zhao S, Zhang Z, Yu H. Reviving the lithium-manganese-based layered oxide cathodes for lithium-ion batteries. Matter. 2021;4(5):1511.CrossRef
[43]
Zurück zum Zitat Yu R, Banis MN, Wang C, Wu B, Huang Y, Cao S, Li J, Jamil S, Lin X, Zhao F, Lin W, Chang B, Yang X, Huang H, Wang X, Sun X. Tailoring bulk Li+ ion diffusion kinetics and surface lattice oxygen activity for high-performance lithium-rich manganese-based layered oxides. Energy Storage Mater. 2021;37:509.CrossRef Yu R, Banis MN, Wang C, Wu B, Huang Y, Cao S, Li J, Jamil S, Lin X, Zhao F, Lin W, Chang B, Yang X, Huang H, Wang X, Sun X. Tailoring bulk Li+ ion diffusion kinetics and surface lattice oxygen activity for high-performance lithium-rich manganese-based layered oxides. Energy Storage Mater. 2021;37:509.CrossRef
[44]
Zurück zum Zitat Zhou Y, Cui H, Qiu B, Xia Y, Yin C, Wan L, Shi Z, Liu Z. Sufficient oxygen redox activation against voltage decay in Li-rich layered oxide cathode materials. ACS Mater Lett. 2021;3(4):433.CrossRef Zhou Y, Cui H, Qiu B, Xia Y, Yin C, Wan L, Shi Z, Liu Z. Sufficient oxygen redox activation against voltage decay in Li-rich layered oxide cathode materials. ACS Mater Lett. 2021;3(4):433.CrossRef
[45]
Zurück zum Zitat Cui SL, Gao MY, Li GR, Gao XP. Insights into Li-rich Mn-based cathode materials with high capacity: from dimension to lattice to atom. Adv Energy Mater. 2021;2003885. Cui SL, Gao MY, Li GR, Gao XP. Insights into Li-rich Mn-based cathode materials with high capacity: from dimension to lattice to atom. Adv Energy Mater. 2021;2003885.
[46]
Zurück zum Zitat House RA, Rees GJ, Pérez-Osorio MA, Marie JJ, Boivin E, Robertson AW, Nag A, Garcia-Fernandez M, Zhou KJ, Bruce PG. First-cycle voltage hysteresis in Li-rich 3d cathodes associated with molecular O2 trapped in the bulk. Nat Energy. 2020;5(10):777.CrossRef House RA, Rees GJ, Pérez-Osorio MA, Marie JJ, Boivin E, Robertson AW, Nag A, Garcia-Fernandez M, Zhou KJ, Bruce PG. First-cycle voltage hysteresis in Li-rich 3d cathodes associated with molecular O2 trapped in the bulk. Nat Energy. 2020;5(10):777.CrossRef
[47]
Zurück zum Zitat Jarvis KA, Deng Z, Allard LF, Manthiram A, Ferreira PJ. Understanding structural defects in lithium-rich layered oxide cathodes. J Mater Chem. 2012;22(23):11550.CrossRef Jarvis KA, Deng Z, Allard LF, Manthiram A, Ferreira PJ. Understanding structural defects in lithium-rich layered oxide cathodes. J Mater Chem. 2012;22(23):11550.CrossRef
[48]
Zurück zum Zitat Li J, Camardese J, Glazier S, Dahn JR. Structural and electrochemical study of the Li-Mn-Ni oxide system within the layered single phase region. Chem Mater. 2014;26(24):7059.CrossRef Li J, Camardese J, Glazier S, Dahn JR. Structural and electrochemical study of the Li-Mn-Ni oxide system within the layered single phase region. Chem Mater. 2014;26(24):7059.CrossRef
[49]
Zurück zum Zitat McCalla E, Rowe AW, Camardese J, Dahn JR. The role of metal site vacancies in promoting Li-Mn-Ni-O layered solid solutions. Chem Mater. 2013;25(13):2716.CrossRef McCalla E, Rowe AW, Camardese J, Dahn JR. The role of metal site vacancies in promoting Li-Mn-Ni-O layered solid solutions. Chem Mater. 2013;25(13):2716.CrossRef
[50]
Zurück zum Zitat Lu ZH, Dahn JR. Understanding the anomalous capacity of Li/Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies. J Electrochem Soc. 2002;149(7):A815.CrossRef Lu ZH, Dahn JR. Understanding the anomalous capacity of Li/Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies. J Electrochem Soc. 2002;149(7):A815.CrossRef
[51]
Zurück zum Zitat Jarvis KA, Deng Z, Allard LF, Manthiram A, Ferreira PJ. Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: evidence of a solid solution. Chem Mater. 2011;23(16):3614.CrossRef Jarvis KA, Deng Z, Allard LF, Manthiram A, Ferreira PJ. Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: evidence of a solid solution. Chem Mater. 2011;23(16):3614.CrossRef
[52]
Zurück zum Zitat Boulineau A, Croguennec L, Delmas C, Weill F. Reinvestigation of Li2MnO3 structure: electron diffraction and high resolution TEM. Chem Mater. 2009;21(18):4216.CrossRef Boulineau A, Croguennec L, Delmas C, Weill F. Reinvestigation of Li2MnO3 structure: electron diffraction and high resolution TEM. Chem Mater. 2009;21(18):4216.CrossRef
[53]
Zurück zum Zitat Guerrini N, Jin L, Lozano JG, Luo K, Sobkowiak A, Tsuruta K, Massel F, Duda LC, Roberts MR, Bruce PG. Charging mechanism of Li2MnO3. Chem Mater. 2020;32(9):3733.CrossRef Guerrini N, Jin L, Lozano JG, Luo K, Sobkowiak A, Tsuruta K, Massel F, Duda LC, Roberts MR, Bruce PG. Charging mechanism of Li2MnO3. Chem Mater. 2020;32(9):3733.CrossRef
[54]
Zurück zum Zitat Pan CJ, Lee YJ, Ammundsen B, Grey CP. 6Li MAS NMR studies of the local structure and electrochemical properties of Cr-doped lithium manganese and lithium cobalt oxide cathode materials for lithium-ion batteries. Chem Mater. 2002;14:2289.CrossRef Pan CJ, Lee YJ, Ammundsen B, Grey CP. 6Li MAS NMR studies of the local structure and electrochemical properties of Cr-doped lithium manganese and lithium cobalt oxide cathode materials for lithium-ion batteries. Chem Mater. 2002;14:2289.CrossRef
[55]
Zurück zum Zitat Ammundsen B, Paulsen J, Davidson I, Liu RS, Shen CH, Chen JM, Jang LY, Lee JF. Local structure and first cycle redox mechanism of layered Li1.2Cr0.4Mn0.4O2 cathode material. J Electrochem Soc. 2002;149(4):A431.CrossRef Ammundsen B, Paulsen J, Davidson I, Liu RS, Shen CH, Chen JM, Jang LY, Lee JF. Local structure and first cycle redox mechanism of layered Li1.2Cr0.4Mn0.4O2 cathode material. J Electrochem Soc. 2002;149(4):A431.CrossRef
[56]
Zurück zum Zitat Boulineau A, Simonin L, Colin JF, Canévet E, Daniel L, Patoux S. Evolutions of Li1.2Mn0.61Ni0.18Mg0.01O2 during the initial charge/discharge cycle studied by advanced electron microscopy. Chem Mater. 2012;24(18):3558.CrossRef Boulineau A, Simonin L, Colin JF, Canévet E, Daniel L, Patoux S. Evolutions of Li1.2Mn0.61Ni0.18Mg0.01O2 during the initial charge/discharge cycle studied by advanced electron microscopy. Chem Mater. 2012;24(18):3558.CrossRef
[57]
Zurück zum Zitat Zhang W, Sun X, Tang Y, Xia H, Zeng Y, Qiao L, Zhu Z, Lv Z, Zhang Y, Ge X, Xi S, Wang Z, Du Y, Chen X. Lowering charge transfer barrier of LiMn2O4 via nickel surface doping to enhance Li+ intercalation kinetics at subzero temperatures. J Am Chem Soc. 2019;141(36):14038.CrossRef Zhang W, Sun X, Tang Y, Xia H, Zeng Y, Qiao L, Zhu Z, Lv Z, Zhang Y, Ge X, Xi S, Wang Z, Du Y, Chen X. Lowering charge transfer barrier of LiMn2O4 via nickel surface doping to enhance Li+ intercalation kinetics at subzero temperatures. J Am Chem Soc. 2019;141(36):14038.CrossRef
[58]
Zurück zum Zitat Zhang XD, Shi JL, Liang JY, Yin YX, Zhang JN, Yu XQ, Guo YG. Suppressing surface lattice oxygen release of Li-rich cathode materials via heterostructured spinel Li4Mn5O12 coating. Adv Mater. 2018;30(29):1801751.CrossRef Zhang XD, Shi JL, Liang JY, Yin YX, Zhang JN, Yu XQ, Guo YG. Suppressing surface lattice oxygen release of Li-rich cathode materials via heterostructured spinel Li4Mn5O12 coating. Adv Mater. 2018;30(29):1801751.CrossRef
[59]
Zurück zum Zitat Zhou L, Zhao D, Lou X. LiNi0.5Mn1.5O4 hollow structures as high-performance cathodes for lithium-ion batteries. Angew Chem Int Ed Engl. 2012;51(1):243.CrossRef Zhou L, Zhao D, Lou X. LiNi0.5Mn1.5O4 hollow structures as high-performance cathodes for lithium-ion batteries. Angew Chem Int Ed Engl. 2012;51(1):243.CrossRef
[60]
Zurück zum Zitat Zhao Q, Wu Y, Ma X, Wang R, Xu X, Cao C. Mn oxidation state controllable spinel manganese-based intergrown cathode for excellent reversible lithium storage. J Power Sources. 2017;359:295.CrossRef Zhao Q, Wu Y, Ma X, Wang R, Xu X, Cao C. Mn oxidation state controllable spinel manganese-based intergrown cathode for excellent reversible lithium storage. J Power Sources. 2017;359:295.CrossRef
[61]
Zurück zum Zitat Langdon J, Manthiram A. Crossover effects in batteries with high-nickel cathodes and lithium-metal anodes. Adv Funct Mater. 2021;31(17):2010267.CrossRef Langdon J, Manthiram A. Crossover effects in batteries with high-nickel cathodes and lithium-metal anodes. Adv Funct Mater. 2021;31(17):2010267.CrossRef
[62]
Zurück zum Zitat Muralidharan N, Essehli R, Hermann RP, Amin R, Jafta C, Zhang J, Liu J, Du Z, Meyer HM, Self E, Nanda J, Belharouak I. Lithium iron aluminum nickelate, LiNixFeyAlzO2-new sustainable cathodes for next-generation cobalt-free Li-ion batteries. Adv Mater. 2020;32(34):2002960. Muralidharan N, Essehli R, Hermann RP, Amin R, Jafta C, Zhang J, Liu J, Du Z, Meyer HM, Self E, Nanda J, Belharouak I. Lithium iron aluminum nickelate, LiNixFeyAlzO2-new sustainable cathodes for next-generation cobalt-free Li-ion batteries. Adv Mater. 2020;32(34):2002960.
[63]
Zurück zum Zitat Li W, Lee S, Manthiram A. High-nickel NMA: a cobalt-free alternative to NMC and NCA cathodes for lithium-ion batteries. Adv Mater. 2020;32(33):2002718. Li W, Lee S, Manthiram A. High-nickel NMA: a cobalt-free alternative to NMC and NCA cathodes for lithium-ion batteries. Adv Mater. 2020;32(33):2002718.
[64]
Zurück zum Zitat Zhang H, Omenya F, Whittingham MS, Wang C, Zhou G. Formation of an anti-core-shell structure in layered oxide cathodes for Li-ion batteries. ACS Energy Lett. 2017;2(11):2598.CrossRef Zhang H, Omenya F, Whittingham MS, Wang C, Zhou G. Formation of an anti-core-shell structure in layered oxide cathodes for Li-ion batteries. ACS Energy Lett. 2017;2(11):2598.CrossRef
[65]
Zurück zum Zitat Park NY, Ryu HH, Park GT, Noh TC, Sun YK. Optimized Ni-rich NCMA cathode for electric vehicle batteries. Adv Energy Mater. 2021;11(9):2003767. Park NY, Ryu HH, Park GT, Noh TC, Sun YK. Optimized Ni-rich NCMA cathode for electric vehicle batteries. Adv Energy Mater. 2021;11(9):2003767.
[66]
Zurück zum Zitat Kim UH, Kuo LY, Kaghazchi P, Yoon CS, Sun YK. Quaternary layered Ni-rich NCMA cathode for lithium-ion batteries. ACS Energy Lett. 2019;4(2):576. Kim UH, Kuo LY, Kaghazchi P, Yoon CS, Sun YK. Quaternary layered Ni-rich NCMA cathode for lithium-ion batteries. ACS Energy Lett. 2019;4(2):576.
[67]
Zurück zum Zitat Saubanère M, McCalla E, Tarascon JM, Doublet ML. The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries. Energy Environ Sci. 2016;9(3):984.CrossRef Saubanère M, McCalla E, Tarascon JM, Doublet ML. The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries. Energy Environ Sci. 2016;9(3):984.CrossRef
[68]
Zurück zum Zitat Zuo Y, Li B, Jiang N, Chu W, Zhang H, Zou R, Xia D. A high-capacity O2-type Li-rich cathode material with a single-layer Li2MnO3 superstructure. Adv Mater. 2018;30(16):1707255.CrossRef Zuo Y, Li B, Jiang N, Chu W, Zhang H, Zou R, Xia D. A high-capacity O2-type Li-rich cathode material with a single-layer Li2MnO3 superstructure. Adv Mater. 2018;30(16):1707255.CrossRef
[69]
Zurück zum Zitat Liang G, Wu Z, Didier C, Zhang W, Cuan J, Li B, Ko KY, Hung PY, Lu CZ, Chen Y, Leniec G, Kaczmarek SM, Johannessen B, Thomsen L, Peterson VK, Pang WK, Guo Z. A long cycle-life high-voltage spinel lithium-ion battery electrode achieved by site-selective doping. Angew Chem Int Ed Engl. 2020;59(26):10594.CrossRef Liang G, Wu Z, Didier C, Zhang W, Cuan J, Li B, Ko KY, Hung PY, Lu CZ, Chen Y, Leniec G, Kaczmarek SM, Johannessen B, Thomsen L, Peterson VK, Pang WK, Guo Z. A long cycle-life high-voltage spinel lithium-ion battery electrode achieved by site-selective doping. Angew Chem Int Ed Engl. 2020;59(26):10594.CrossRef
[70]
Zurück zum Zitat Lin M, Ben L, Sun Y, Wang H, Yang Z, Gu L, Yu X, Yang XQ, Zhao H, Yu R, Armand M, Huang X. Insight into the atomic structure of high-voltage spinel LiNi0.5Mn1.5O4 cathode material in the first cycle. Chem Mater. 2014;27(1):292.CrossRef Lin M, Ben L, Sun Y, Wang H, Yang Z, Gu L, Yu X, Yang XQ, Zhao H, Yu R, Armand M, Huang X. Insight into the atomic structure of high-voltage spinel LiNi0.5Mn1.5O4 cathode material in the first cycle. Chem Mater. 2014;27(1):292.CrossRef
[71]
Zurück zum Zitat Ding Z, Zhang C, Xu S, Liu J, Liang C, Chen L, Wang P, Ivey DG, Deng Y, Wei W. Stable heteroepitaxial interface of Li-rich layered oxide cathodes with enhanced lithium storage. Energy Storage Mater. 2019;21:69.CrossRef Ding Z, Zhang C, Xu S, Liu J, Liang C, Chen L, Wang P, Ivey DG, Deng Y, Wei W. Stable heteroepitaxial interface of Li-rich layered oxide cathodes with enhanced lithium storage. Energy Storage Mater. 2019;21:69.CrossRef
[72]
Zurück zum Zitat Zhou YN, Yue JL, Hu E, Li H, Gu L, Nam KW, Bak SM, Yu X, Liu J, Bai J, Dooryhee E, Fu ZW, Yang XQ. High-rate charging induced intermediate phases and structural changes of layer-structured cathode for lithium-ion batteries. Adv Energy Mater. 2016;6(21):1600597.CrossRef Zhou YN, Yue JL, Hu E, Li H, Gu L, Nam KW, Bak SM, Yu X, Liu J, Bai J, Dooryhee E, Fu ZW, Yang XQ. High-rate charging induced intermediate phases and structural changes of layer-structured cathode for lithium-ion batteries. Adv Energy Mater. 2016;6(21):1600597.CrossRef
[73]
Zurück zum Zitat He W, Liu P, Qu B, Zheng Z, Zheng H, Deng P, Li P, Li S, Huang H, Wang L, Xie Q, Peng DL. Uniform Na+ doping-induced defects in Li- and Mn-rich cathodes for high-performance lithium-ion batteries. Adv Sci (Weinh). 2019;6(14):1802114.CrossRef He W, Liu P, Qu B, Zheng Z, Zheng H, Deng P, Li P, Li S, Huang H, Wang L, Xie Q, Peng DL. Uniform Na+ doping-induced defects in Li- and Mn-rich cathodes for high-performance lithium-ion batteries. Adv Sci (Weinh). 2019;6(14):1802114.CrossRef
[74]
Zurück zum Zitat He W, Liu P, Zhou Y, Zheng H, Zheng Z, Liu B, Yuan J, Zhang Q, Wang L, Luo Q, Xie Q, Qu B, Peng DL. A novel morphology-controlled synthesis of Na+-doped Li- and Mn-rich cathodes by the self-assembly of amphiphilic spherical micelles. Sustainable Mater Technol. 2020;25:e00171.CrossRef He W, Liu P, Zhou Y, Zheng H, Zheng Z, Liu B, Yuan J, Zhang Q, Wang L, Luo Q, Xie Q, Qu B, Peng DL. A novel morphology-controlled synthesis of Na+-doped Li- and Mn-rich cathodes by the self-assembly of amphiphilic spherical micelles. Sustainable Mater Technol. 2020;25:e00171.CrossRef
[75]
Zurück zum Zitat He W, Liu P, Zhang Y, Lin J, Qu B, Zheng Z, Wang J, Zhang Y, Sa B, Wang L, Xie Q, Peng DL. Utilizing the different distribution habit of La and Zr in Li-rich Mn-based cathode to achieve fast lithium-ion diffusion kinetics. J Power Sources. 2021;499:229915.CrossRef He W, Liu P, Zhang Y, Lin J, Qu B, Zheng Z, Wang J, Zhang Y, Sa B, Wang L, Xie Q, Peng DL. Utilizing the different distribution habit of La and Zr in Li-rich Mn-based cathode to achieve fast lithium-ion diffusion kinetics. J Power Sources. 2021;499:229915.CrossRef
[76]
Zurück zum Zitat Wang Q, He W, Wang L, Li S, Zheng H, Liu Q, Cai Y, Lin J, Xie Q, Peng DL. Morphology control and Na+ doping toward high-performance Li-rich layered cathode materials for lithium-ion batteries. ACS Sustain Chem Eng. 2020;9(1):197.CrossRef Wang Q, He W, Wang L, Li S, Zheng H, Liu Q, Cai Y, Lin J, Xie Q, Peng DL. Morphology control and Na+ doping toward high-performance Li-rich layered cathode materials for lithium-ion batteries. ACS Sustain Chem Eng. 2020;9(1):197.CrossRef
[77]
Zurück zum Zitat Hua W, Wang S, Knapp M, Leake SJ, Senyshyn A, Richter C, Yavuz M, Binder JR, Grey CP, Ehrenberg H, Indris S, Schwarz B. Structural insights into the formation and voltage degradation of lithium- and manganese-rich layered oxides. Nat Commun. 2019;10(1):5365.CrossRef Hua W, Wang S, Knapp M, Leake SJ, Senyshyn A, Richter C, Yavuz M, Binder JR, Grey CP, Ehrenberg H, Indris S, Schwarz B. Structural insights into the formation and voltage degradation of lithium- and manganese-rich layered oxides. Nat Commun. 2019;10(1):5365.CrossRef
[78]
Zurück zum Zitat McCalla E, Abakumov AM, Saubanère M, Foix D, Berg EJ, Rousse G, Doublet ML, Gonbeau D, Novák P, Tendeloo VG, Dominko R, Tarascon JM. Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries. Science. 2015;350(6267):1516.CrossRef McCalla E, Abakumov AM, Saubanère M, Foix D, Berg EJ, Rousse G, Doublet ML, Gonbeau D, Novák P, Tendeloo VG, Dominko R, Tarascon JM. Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries. Science. 2015;350(6267):1516.CrossRef
[79]
Zurück zum Zitat Luo K, Roberts MR, Guerrini N, TapiaRuiz N, Hao R, Massel F, Pickup DM, Ramos S, Liu YS, Guo J, Chadwick AV, Duda LC, Bruce PG. Anion redox chemistry in the cobalt free 3d transition metal oxide intercalation electrode Li[Li0.2Ni0.2Mn0.6]O2. J Am Chem Soc. 2016;138(35):11211.CrossRef Luo K, Roberts MR, Guerrini N, TapiaRuiz N, Hao R, Massel F, Pickup DM, Ramos S, Liu YS, Guo J, Chadwick AV, Duda LC, Bruce PG. Anion redox chemistry in the cobalt free 3d transition metal oxide intercalation electrode Li[Li0.2Ni0.2Mn0.6]O2. J Am Chem Soc. 2016;138(35):11211.CrossRef
[80]
Zurück zum Zitat Foix D, Sathiya M, McCalla E, Tarascon JM, Gonbeau D. X-ray photoemission spectroscopy study of cationic and anionic redox processes in high-capacity Li-ion battery layered-oxide electrodes. J Phys Chem C. 2016;120(2):862.CrossRef Foix D, Sathiya M, McCalla E, Tarascon JM, Gonbeau D. X-ray photoemission spectroscopy study of cationic and anionic redox processes in high-capacity Li-ion battery layered-oxide electrodes. J Phys Chem C. 2016;120(2):862.CrossRef
[81]
Zurück zum Zitat Seo DH, Lee J, Urban A, Malik R, Kang S, Ceder G. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat Chem. 2016;8(7):692.CrossRef Seo DH, Lee J, Urban A, Malik R, Kang S, Ceder G. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat Chem. 2016;8(7):692.CrossRef
[82]
Zurück zum Zitat Luo K, Roberts MR, Hao R, Guerrini N, Pickup DM, Liu YS, Edstrom K, Guo J, Chadwick AV, Duda LC, Bruce PG. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat Chem. 2016;8(7):684.CrossRef Luo K, Roberts MR, Hao R, Guerrini N, Pickup DM, Liu YS, Edstrom K, Guo J, Chadwick AV, Duda LC, Bruce PG. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat Chem. 2016;8(7):684.CrossRef
[83]
Zurück zum Zitat Liu H, Harris KJ, Jiang M, Wu Y, Goward GR, Botton GA. Unraveling the rapid performance decay of layered high-energy cathodes: from nanoscale degradation to drastic bulk evolution. ACS Nano. 2018;12(3):2708.CrossRef Liu H, Harris KJ, Jiang M, Wu Y, Goward GR, Botton GA. Unraveling the rapid performance decay of layered high-energy cathodes: from nanoscale degradation to drastic bulk evolution. ACS Nano. 2018;12(3):2708.CrossRef
[84]
Zurück zum Zitat Kong F, Liang C, Wang L, Zheng Y, Perananthan S, Longo RC, Ferraris JP, Kim M, Cho K. Kinetic stability of bulk LiNiO2 and surface degradation by oxygen evolution in LiNiO2-based cathode materials. Adv Energy Mater. 2019;9(2):1802586.CrossRef Kong F, Liang C, Wang L, Zheng Y, Perananthan S, Longo RC, Ferraris JP, Kim M, Cho K. Kinetic stability of bulk LiNiO2 and surface degradation by oxygen evolution in LiNiO2-based cathode materials. Adv Energy Mater. 2019;9(2):1802586.CrossRef
[85]
Zurück zum Zitat Sudayama T, Uehara K, Mukai T, Asakura D, Shi XM, Tsuchimoto A, MortemarddeBoisse B, Shimada T, Watanabe E, Harada Y, Nakayama M, Okubo M, Yamada A. Multiorbital bond formation for stable oxygen-redox reaction in battery electrodes. Energy Environ Sci. 2020;13(5):1492.CrossRef Sudayama T, Uehara K, Mukai T, Asakura D, Shi XM, Tsuchimoto A, MortemarddeBoisse B, Shimada T, Watanabe E, Harada Y, Nakayama M, Okubo M, Yamada A. Multiorbital bond formation for stable oxygen-redox reaction in battery electrodes. Energy Environ Sci. 2020;13(5):1492.CrossRef
[86]
Zurück zum Zitat Gent WE, Lim K, Liang Y, Li Q, Barnes T, Ahn SJ, Stone KH, McIntire M, Hong J, Song JH, Li Y, Mehta A, Ermon S, Tyliszczak T, Kilcoyne D, Vine D, Park JH, Doo SK, Toney MF, Yang W, Prendergast D, Chueh WC. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nat Commun. 2017;8(1):2091.CrossRef Gent WE, Lim K, Liang Y, Li Q, Barnes T, Ahn SJ, Stone KH, McIntire M, Hong J, Song JH, Li Y, Mehta A, Ermon S, Tyliszczak T, Kilcoyne D, Vine D, Park JH, Doo SK, Toney MF, Yang W, Prendergast D, Chueh WC. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nat Commun. 2017;8(1):2091.CrossRef
[87]
Zurück zum Zitat Malik R. Li-rich layered cathode materials: transition metals in transit. Joule. 2017;1(4):647.CrossRef Malik R. Li-rich layered cathode materials: transition metals in transit. Joule. 2017;1(4):647.CrossRef
[88]
Zurück zum Zitat Yabuuchi N, Nakayama M, Takeuchi M, Komaba S, Hashimoto Y, Mukai T, Shiiba H, Sato K, Kobayashi Y, Nakao A, Yonemura M, Yamanaka K, Mitsuhara K, Ohta T. Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries. Nat Commun. 2016;7:13814.CrossRef Yabuuchi N, Nakayama M, Takeuchi M, Komaba S, Hashimoto Y, Mukai T, Shiiba H, Sato K, Kobayashi Y, Nakao A, Yonemura M, Yamanaka K, Mitsuhara K, Ohta T. Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries. Nat Commun. 2016;7:13814.CrossRef
[89]
Zurück zum Zitat Zhang H, May BM, Omenya F, Whittingham MS, Cabana J, Zhou G. Layered oxide cathodes for Li-ion batteries: oxygen loss and vacancy evolution. Chem Mater. 2019;31(18):7790.CrossRef Zhang H, May BM, Omenya F, Whittingham MS, Cabana J, Zhou G. Layered oxide cathodes for Li-ion batteries: oxygen loss and vacancy evolution. Chem Mater. 2019;31(18):7790.CrossRef
[90]
Zurück zum Zitat Qian D, Xu B, Chi M, Meng YS. Uncovering the roles of oxygen vacancies in cation migration in lithium excess layered oxides. Phys Chem Chem Phys. 2014;16(28):14665.CrossRef Qian D, Xu B, Chi M, Meng YS. Uncovering the roles of oxygen vacancies in cation migration in lithium excess layered oxides. Phys Chem Chem Phys. 2014;16(28):14665.CrossRef
[91]
Zurück zum Zitat Gu M, Belharouak I, Zheng JM, Wu HM, Xiao J, Genc A, Amine K, Thevuthasan S, Baer DR, Zhang JG, Browning ND, Liu J, Wang CM. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano. 2013;7(1):760.CrossRef Gu M, Belharouak I, Zheng JM, Wu HM, Xiao J, Genc A, Amine K, Thevuthasan S, Baer DR, Zhang JG, Browning ND, Liu J, Wang CM. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano. 2013;7(1):760.CrossRef
[92]
Zurück zum Zitat Zheng J, Xu P, Gu M, Xiao J, Browning ND, Yan P, Wang C, Zhang JG. Structural and chemical evolution of Li- and Mn-rich layered cathode material. Chem Mater. 2015;27(4):1381.CrossRef Zheng J, Xu P, Gu M, Xiao J, Browning ND, Yan P, Wang C, Zhang JG. Structural and chemical evolution of Li- and Mn-rich layered cathode material. Chem Mater. 2015;27(4):1381.CrossRef
[93]
Zurück zum Zitat Kim D, Sandi G, Croy JR, Gallagher KG, Kang SH, Lee E, Slater MD, Johnson CS, Thackeray MM. Composite ‘layered-layered-spinel’ cathode structures for lithium-ion batteries. J Electrochem Soc. 2012;160(1):A31.CrossRef Kim D, Sandi G, Croy JR, Gallagher KG, Kang SH, Lee E, Slater MD, Johnson CS, Thackeray MM. Composite ‘layered-layered-spinel’ cathode structures for lithium-ion batteries. J Electrochem Soc. 2012;160(1):A31.CrossRef
[94]
Zurück zum Zitat Liu P, Zhang H, He W, Xiong T, Cheng Y, Xie Q, Ma Y, Zheng H, Wang L, Zhu Z.Z, Peng Y, Mai L.Q, Peng D.L. Lithium deficiencies engineering in Li-rich layered oxide Li1.098Mn0.533Ni0.113Co0.138O2 for high-stability cathode. J Am Chem Soc. 2019;141(27):10876. Liu P, Zhang H, He W, Xiong T, Cheng Y, Xie Q, Ma Y, Zheng H, Wang L, Zhu Z.Z, Peng Y, Mai L.Q, Peng D.L. Lithium deficiencies engineering in Li-rich layered oxide Li1.098Mn0.533Ni0.113Co0.138O2 for high-stability cathode. J Am Chem Soc. 2019;141(27):10876.
[95]
Zurück zum Zitat Jarvis KA, Wang CC, Manthiram A, Ferreira PJ. The role of composition in the atomic structure, oxygen loss, and capacity of layered Li-Mn-Ni oxide cathodes. J Mater Chem A. 2014;2(5):1353.CrossRef Jarvis KA, Wang CC, Manthiram A, Ferreira PJ. The role of composition in the atomic structure, oxygen loss, and capacity of layered Li-Mn-Ni oxide cathodes. J Mater Chem A. 2014;2(5):1353.CrossRef
[96]
Zurück zum Zitat Zhao J, Huang R, Gao W, Zuo JM, Zhang XF, Misture ST, Chen Y, Lockard JV, Zhang B, Guo S, Khoshi MR, Dooley K, He H, Wang Y. An ion-exchange promoted phase transition in a Li-excess layered cathode material for high-performance lithium ion batteries. Adv Energy Mater. 2015;5(9):1401937.CrossRef Zhao J, Huang R, Gao W, Zuo JM, Zhang XF, Misture ST, Chen Y, Lockard JV, Zhang B, Guo S, Khoshi MR, Dooley K, He H, Wang Y. An ion-exchange promoted phase transition in a Li-excess layered cathode material for high-performance lithium ion batteries. Adv Energy Mater. 2015;5(9):1401937.CrossRef
[97]
Zurück zum Zitat Shukla AK, Ramasse QM, Ophus C, Kepaptsoglou DM, Hage FS, Gammer C, Bowling C, Gallegos PAH, Venkatachalam S. Effect of composition on the structure of lithium- and manganese-rich transition metal oxides. Energy Environ Sci. 2018;11(4):830.CrossRef Shukla AK, Ramasse QM, Ophus C, Kepaptsoglou DM, Hage FS, Gammer C, Bowling C, Gallegos PAH, Venkatachalam S. Effect of composition on the structure of lithium- and manganese-rich transition metal oxides. Energy Environ Sci. 2018;11(4):830.CrossRef
[98]
Zurück zum Zitat Hu E, Lyu Y, Xin HL, Liu J, Han L, Bak SM, Bai J, Yu X, Li H, Yang XQ. Explore the effects of microstructural defects on voltage fade of Li- and Mn-rich cathodes. Nano Lett. 2016;16(10):5999.CrossRef Hu E, Lyu Y, Xin HL, Liu J, Han L, Bak SM, Bai J, Yu X, Li H, Yang XQ. Explore the effects of microstructural defects on voltage fade of Li- and Mn-rich cathodes. Nano Lett. 2016;16(10):5999.CrossRef
[99]
Zurück zum Zitat Yan P, Nie A, Zheng J, Zhou Y, Lu D, Zhang X, Xu R, Belharouak I, Zu X, Xiao J, Amine K, Liu J, Gao F, Shahbazian-Yassar R, Zhang JG, Wang CM. Evolution of lattice structure and chemical composition of the surface reconstruction layer in Li1.2Ni0.2Mn0.6O2 cathode material for lithium ion batteries. Nano Lett. 2015;15(1):514.CrossRef Yan P, Nie A, Zheng J, Zhou Y, Lu D, Zhang X, Xu R, Belharouak I, Zu X, Xiao J, Amine K, Liu J, Gao F, Shahbazian-Yassar R, Zhang JG, Wang CM. Evolution of lattice structure and chemical composition of the surface reconstruction layer in Li1.2Ni0.2Mn0.6O2 cathode material for lithium ion batteries. Nano Lett. 2015;15(1):514.CrossRef
[100]
Zurück zum Zitat Deng YP, Fu F, Wu ZG, Yin ZW, Zhang T, Li JT, Huang L, Sun SG. Layered/spinel heterostructured Li-rich materials synthesized by a one-step solvothermal strategy with enhanced electrochemical performance for Li-ion batteries. J Mater Chem A. 2016;4(1):257.CrossRef Deng YP, Fu F, Wu ZG, Yin ZW, Zhang T, Li JT, Huang L, Sun SG. Layered/spinel heterostructured Li-rich materials synthesized by a one-step solvothermal strategy with enhanced electrochemical performance for Li-ion batteries. J Mater Chem A. 2016;4(1):257.CrossRef
[101]
Zurück zum Zitat Liu Y, Zhuo H, Yin Y, Lu S, Wang Z, Zhuang W. Remaining Li-content dependent structural evolution during high temperature re-heat treatment of quantitatively delithiated Li-rich cathode materials with surface defect-spinel phase. ACS Appl Mater Interfaces. 2020;12(24):27226.CrossRef Liu Y, Zhuo H, Yin Y, Lu S, Wang Z, Zhuang W. Remaining Li-content dependent structural evolution during high temperature re-heat treatment of quantitatively delithiated Li-rich cathode materials with surface defect-spinel phase. ACS Appl Mater Interfaces. 2020;12(24):27226.CrossRef
[102]
Zurück zum Zitat Pei Y, Xu CY, Xiao YC, Chen Q, Huang B, Li B, Li S, Zhen L, Cao G. Phase transition induced synthesis of layered/spinel heterostructure with enhanced electrochemical properties. Adv Funct Mater. 2017;27(7):1604349.CrossRef Pei Y, Xu CY, Xiao YC, Chen Q, Huang B, Li B, Li S, Zhen L, Cao G. Phase transition induced synthesis of layered/spinel heterostructure with enhanced electrochemical properties. Adv Funct Mater. 2017;27(7):1604349.CrossRef
[103]
Zurück zum Zitat Hua W, Chen M, Schwarz B, Knapp M, Bruns M, Barthel J, Yang X, Sigel F, Azmi R, Senyshyn A, Missiul A, Simonelli L, Etter M, Wang S, Mu X, Fiedler A, Binder JR, Guo X, Chou S, Zhong B, Indris S, Ehrenberg H. Lithium/oxygen incorporation and microstructural evolution during synthesis of Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 oxides. Adv Energy Mater. 2019;9(8):1803094.CrossRef Hua W, Chen M, Schwarz B, Knapp M, Bruns M, Barthel J, Yang X, Sigel F, Azmi R, Senyshyn A, Missiul A, Simonelli L, Etter M, Wang S, Mu X, Fiedler A, Binder JR, Guo X, Chou S, Zhong B, Indris S, Ehrenberg H. Lithium/oxygen incorporation and microstructural evolution during synthesis of Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 oxides. Adv Energy Mater. 2019;9(8):1803094.CrossRef
[104]
Zurück zum Zitat Li L, Song BH, Chang YL, Xia H, Yang JR, Lee KS, Lu L. Retarded phase transition by fluorine doping in Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. J Power Sources. 2015;283:162.CrossRef Li L, Song BH, Chang YL, Xia H, Yang JR, Lee KS, Lu L. Retarded phase transition by fluorine doping in Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. J Power Sources. 2015;283:162.CrossRef
[105]
Zurück zum Zitat Ryu HH, Park GT, Yoon CS, Sun YK. Suppressing detrimental phase transitions via tungsten doping of LiNiO2 cathode for next-generation lithium-ion batteries. J Mater Chem A. 2019;7(31):18580.CrossRef Ryu HH, Park GT, Yoon CS, Sun YK. Suppressing detrimental phase transitions via tungsten doping of LiNiO2 cathode for next-generation lithium-ion batteries. J Mater Chem A. 2019;7(31):18580.CrossRef
[106]
Zurück zum Zitat Zhu Z, Yu D, Yang Y, Su C, Huang Y, Dong Y, Waluyo I, Wang B, Hunt A, Yao X, Lee J, Xue W, Li J. Gradient Li-rich oxide cathode particles immunized against oxygen release by a molten salt treatment. Nat Energy. 2019;4(12):1049.CrossRef Zhu Z, Yu D, Yang Y, Su C, Huang Y, Dong Y, Waluyo I, Wang B, Hunt A, Yao X, Lee J, Xue W, Li J. Gradient Li-rich oxide cathode particles immunized against oxygen release by a molten salt treatment. Nat Energy. 2019;4(12):1049.CrossRef
[107]
Zurück zum Zitat House RA, Maitra U, Perez-Osorio MA, Lozano JG, Jin L, Somerville JW, Duda LC, Nag A, Walters A, Zhou KJ, Roberts MR, Bruce PG. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes. Nature. 2020;577(7791):502.CrossRef House RA, Maitra U, Perez-Osorio MA, Lozano JG, Jin L, Somerville JW, Duda LC, Nag A, Walters A, Zhou KJ, Roberts MR, Bruce PG. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes. Nature. 2020;577(7791):502.CrossRef
[108]
Zurück zum Zitat Huang X, Zhu W, Yao J, Bu L, Li X, Tian K, Lu H, Quan C, Xu S, Xu K, Jiang Z, Zhang X, Gao L, Zhao J. Suppressing structural degradation of Ni-rich cathode materials towards improved cycling stability enabled by a Li2MnO3 coating. J Mater Chem A. 2020;8(34):17429.CrossRef Huang X, Zhu W, Yao J, Bu L, Li X, Tian K, Lu H, Quan C, Xu S, Xu K, Jiang Z, Zhang X, Gao L, Zhao J. Suppressing structural degradation of Ni-rich cathode materials towards improved cycling stability enabled by a Li2MnO3 coating. J Mater Chem A. 2020;8(34):17429.CrossRef
[109]
Zurück zum Zitat He W, Zheng H, Ju X, Li S, Ma Y, Xie Q, Wang L, Qu B, Peng DL. Multistage Li1.2Ni0.2Mn0.6O2 micro-architecture towards high-performance cathode materials for lithium-ion batteries. ChemElectroChem. 2017;4(12):3250.CrossRef He W, Zheng H, Ju X, Li S, Ma Y, Xie Q, Wang L, Qu B, Peng DL. Multistage Li1.2Ni0.2Mn0.6O2 micro-architecture towards high-performance cathode materials for lithium-ion batteries. ChemElectroChem. 2017;4(12):3250.CrossRef
[110]
Zurück zum Zitat Liu Q, Xie T, Xie Q, He W, Zhang Y, Zheng H, Lu X, Wei W, Sa B, Wang L, Peng DL. Multiscale deficiency integration by Na-rich engineering for high-stability Li-rich layered oxide cathodes. ACS Appl Mater Interfaces. 2021;13(7):8239.CrossRef Liu Q, Xie T, Xie Q, He W, Zhang Y, Zheng H, Lu X, Wei W, Sa B, Wang L, Peng DL. Multiscale deficiency integration by Na-rich engineering for high-stability Li-rich layered oxide cathodes. ACS Appl Mater Interfaces. 2021;13(7):8239.CrossRef
[111]
Zurück zum Zitat Pei Y, Chen Q, Xiao YC, Liu L, Xu CY, Zhen L, Henkelman G, Cao G. Understanding the phase transitions in spinel-layered-rock salt system: criterion for the rational design of LLO/spinel nanocomposites. Nano Energy. 2017;40:566.CrossRef Pei Y, Chen Q, Xiao YC, Liu L, Xu CY, Zhen L, Henkelman G, Cao G. Understanding the phase transitions in spinel-layered-rock salt system: criterion for the rational design of LLO/spinel nanocomposites. Nano Energy. 2017;40:566.CrossRef
[112]
Zurück zum Zitat Hu E, Yu X, Lin R, Bi X, Lu J, Bak S, Nam KW, Xin HL, Jaye C, Fischer DA, Amine K, Yang XQ. Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release. Nat Energy. 2018;3(8):690.CrossRef Hu E, Yu X, Lin R, Bi X, Lu J, Bak S, Nam KW, Xin HL, Jaye C, Fischer DA, Amine K, Yang XQ. Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release. Nat Energy. 2018;3(8):690.CrossRef
[113]
Zurück zum Zitat Cho Y, Lee S, Lee Y, Hong T, Cho J. Spinel-layered core-shell cathode materials for Li-ion batteries. Adv Energy Mater. 2011;1(5):821.CrossRef Cho Y, Lee S, Lee Y, Hong T, Cho J. Spinel-layered core-shell cathode materials for Li-ion batteries. Adv Energy Mater. 2011;1(5):821.CrossRef
[114]
Zurück zum Zitat Chen S, Zheng Y, Lu Y, Su Y, Bao L, Li N, Li Y, Wang J, Chen R, Wu F. Enhanced electrochemical performance of layered lithium-rich cathode materials by constructing spinel-structure skin and ferric oxide islands. ACS Appl Mater Interfaces. 2017;9(10):8669.CrossRef Chen S, Zheng Y, Lu Y, Su Y, Bao L, Li N, Li Y, Wang J, Chen R, Wu F. Enhanced electrochemical performance of layered lithium-rich cathode materials by constructing spinel-structure skin and ferric oxide islands. ACS Appl Mater Interfaces. 2017;9(10):8669.CrossRef
[115]
Zurück zum Zitat Gu R, Ma Z, Cheng T, Lyu Y, Nie A, Guo B. Improved electrochemical performances of LiCoO2 at elevated voltage and temperature with an in situ formed spinel coating layer. ACS Appl Mater Interfaces. 2018;10(37):31271.CrossRef Gu R, Ma Z, Cheng T, Lyu Y, Nie A, Guo B. Improved electrochemical performances of LiCoO2 at elevated voltage and temperature with an in situ formed spinel coating layer. ACS Appl Mater Interfaces. 2018;10(37):31271.CrossRef
[116]
Zurück zum Zitat Wen X, Liang K, Tian L, Shi K, Zheng J. Al2O3 coating on Li1.256Ni0.198Co0.082Mn0.689O2.25 with spinel-structure interface layer for superior performance lithium ion batteries. Electrochim Acta. 2018;260:549.CrossRef Wen X, Liang K, Tian L, Shi K, Zheng J. Al2O3 coating on Li1.256Ni0.198Co0.082Mn0.689O2.25 with spinel-structure interface layer for superior performance lithium ion batteries. Electrochim Acta. 2018;260:549.CrossRef
[117]
Zurück zum Zitat Maiti S, Sclar H, Rosy, Grinblat J, Talianker M, Burstein L, Noked M, Markovsky B, Aurbach D. Modification of Li- and Mn-rich cathode materials via formation of the rock-salt and spinel surface layers for steady and high-rate electrochemical performances. ACS Appl Mater Interfaces. 2020;12(29):32698.CrossRef Maiti S, Sclar H, Rosy, Grinblat J, Talianker M, Burstein L, Noked M, Markovsky B, Aurbach D. Modification of Li- and Mn-rich cathode materials via formation of the rock-salt and spinel surface layers for steady and high-rate electrochemical performances. ACS Appl Mater Interfaces. 2020;12(29):32698.CrossRef
[118]
Zurück zum Zitat Wang Y, Wang L, Guo X, Wu T, Yang Y, Wang B, Wang E, Yu H. Thermal stability enhancement through structure modification on the microsized crystalline grain surface of lithium-rich layered oxides. ACS Appl Mater Interfaces. 2020;12(7):8306.CrossRef Wang Y, Wang L, Guo X, Wu T, Yang Y, Wang B, Wang E, Yu H. Thermal stability enhancement through structure modification on the microsized crystalline grain surface of lithium-rich layered oxides. ACS Appl Mater Interfaces. 2020;12(7):8306.CrossRef
[119]
Zurück zum Zitat Zhang P, He Y, Huang H, Chen B, Zhai X, Zhou J, Dong J, Guo Z. Reinforcing Li-rich layer cathode via artificial surface reconstruction of spinel shell containing Ni3+. Appl Surf Sci. 2021;554:149626.CrossRef Zhang P, He Y, Huang H, Chen B, Zhai X, Zhou J, Dong J, Guo Z. Reinforcing Li-rich layer cathode via artificial surface reconstruction of spinel shell containing Ni3+. Appl Surf Sci. 2021;554:149626.CrossRef
[120]
Zurück zum Zitat Wu F, Li N, Su Y, Zhang L, Bao L, Wang J, Chen L, Zheng Y, Dai L, Peng J, Chen S. Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li-ion batteries. Nano Lett. 2014;14(6):3550.CrossRef Wu F, Li N, Su Y, Zhang L, Bao L, Wang J, Chen L, Zheng Y, Dai L, Peng J, Chen S. Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li-ion batteries. Nano Lett. 2014;14(6):3550.CrossRef
[121]
Zurück zum Zitat Bian X, Fu Q, Qiu H, Du F, Gao Y, Zhang L, Zou B, Chen G, Wei Y. High-performance Li(Li0.18Ni0.15Co0.15Mn0.52)O2@Li4Mn5O12 heterostructured cathode material coated with a lithium borate oxide glass layer. Chem Mater. 2015;27(16):5745.CrossRef Bian X, Fu Q, Qiu H, Du F, Gao Y, Zhang L, Zou B, Chen G, Wei Y. High-performance Li(Li0.18Ni0.15Co0.15Mn0.52)O2@Li4Mn5O12 heterostructured cathode material coated with a lithium borate oxide glass layer. Chem Mater. 2015;27(16):5745.CrossRef
[122]
Zurück zum Zitat Pang S, Xu K, Wang Y, Shen X, Wang W, Su Y, Zhu M, Xi X. Enhanced electrochemical performance of Li-rich layered cathode materials via chemical activation of Li2MnO3 component and formation of spinel/carbon coating layer. J Power Sources. 2017;365:68.CrossRef Pang S, Xu K, Wang Y, Shen X, Wang W, Su Y, Zhu M, Xi X. Enhanced electrochemical performance of Li-rich layered cathode materials via chemical activation of Li2MnO3 component and formation of spinel/carbon coating layer. J Power Sources. 2017;365:68.CrossRef
[123]
Zurück zum Zitat Xia Q, Zhao X, Xu M, Ding Z, Liu J, Chen L, Ivey DG, Wei W. A Li-rich layered@spinel@carbon heterostructured cathode material for high capacity and high rate lithium-ion batteries fabricated via an in situ synchronous carbonization-reduction method. J Mater Chem A. 2015;3(7):3995.CrossRef Xia Q, Zhao X, Xu M, Ding Z, Liu J, Chen L, Ivey DG, Wei W. A Li-rich layered@spinel@carbon heterostructured cathode material for high capacity and high rate lithium-ion batteries fabricated via an in situ synchronous carbonization-reduction method. J Mater Chem A. 2015;3(7):3995.CrossRef
[124]
Zurück zum Zitat Guo L, Zhao N, Li J, He C, Shi C, Liu E. Surface double phase network modified lithium rich layered oxides with improved rate capability for Li-ion batteries. ACS Appl Mater Interfaces. 2015;7(1):391.CrossRef Guo L, Zhao N, Li J, He C, Shi C, Liu E. Surface double phase network modified lithium rich layered oxides with improved rate capability for Li-ion batteries. ACS Appl Mater Interfaces. 2015;7(1):391.CrossRef
[125]
Zurück zum Zitat Ding X, Luo D, Cui J, Xie H, Ren Q, Lin Z. An ultra-long-life lithium-rich Li1.2Mn0.6Ni0.2O2 cathode by three-in-one surface modification for lithium-ion batteries. Angew Chem Int Ed Engl. 2020;59(20):5778.CrossRef Ding X, Luo D, Cui J, Xie H, Ren Q, Lin Z. An ultra-long-life lithium-rich Li1.2Mn0.6Ni0.2O2 cathode by three-in-one surface modification for lithium-ion batteries. Angew Chem Int Ed Engl. 2020;59(20):5778.CrossRef
[126]
Zurück zum Zitat Jin YC, Duh JG. Fluorination induced the surface segregation of high voltage spinel on lithium-rich layered cathodes for enhanced rate capability in lithium ion batteries. ACS Appl Mater Interfaces. 2016;8(6):3883.CrossRef Jin YC, Duh JG. Fluorination induced the surface segregation of high voltage spinel on lithium-rich layered cathodes for enhanced rate capability in lithium ion batteries. ACS Appl Mater Interfaces. 2016;8(6):3883.CrossRef
[127]
Zurück zum Zitat Park K, Kim J, Park JH, Hwang Y, Han D. Synchronous phase transition and carbon coating on the surface of Li-rich layered oxide cathode materials for rechargeable Li-ion batteries. J Power Sources. 2018;408:105.CrossRef Park K, Kim J, Park JH, Hwang Y, Han D. Synchronous phase transition and carbon coating on the surface of Li-rich layered oxide cathode materials for rechargeable Li-ion batteries. J Power Sources. 2018;408:105.CrossRef
[128]
Zurück zum Zitat Yu FD, Que LF, Xu CY, Wang MJ, Sun G, Duh JG, Wang ZB. Dual conductive surface engineering of Li-rich oxides cathode for superior high-energy-density Li-ion batteries. Nano Energy. 2019;59:527.CrossRef Yu FD, Que LF, Xu CY, Wang MJ, Sun G, Duh JG, Wang ZB. Dual conductive surface engineering of Li-rich oxides cathode for superior high-energy-density Li-ion batteries. Nano Energy. 2019;59:527.CrossRef
[129]
Zurück zum Zitat Chen S, Xie Y, Chen W, Chen J, Yang W, Zou H, Lin Z. Enhanced electrochemical performance of Li-rich cathode materials by organic fluorine doping and spinel Li1+xNiyMn2–yO4 coating. ACS Sustain Chem Eng. 2019;8(1):121.CrossRef Chen S, Xie Y, Chen W, Chen J, Yang W, Zou H, Lin Z. Enhanced electrochemical performance of Li-rich cathode materials by organic fluorine doping and spinel Li1+xNiyMn2–yO4 coating. ACS Sustain Chem Eng. 2019;8(1):121.CrossRef
[130]
Zurück zum Zitat Wu F, Li N, Su Y, Shou H, Bao L, Yang W, Zhang L, An R, Chen S. Spinel/layered heterostructured cathode material for high-capacity and high-rate Li-ion batteries. Adv Mater. 2013;25(27):3722.CrossRef Wu F, Li N, Su Y, Shou H, Bao L, Yang W, Zhang L, An R, Chen S. Spinel/layered heterostructured cathode material for high-capacity and high-rate Li-ion batteries. Adv Mater. 2013;25(27):3722.CrossRef
[131]
Zurück zum Zitat Nayak PK, Levi E, Grinblat J, Levi M, Markovsky B, Munichandraiah N, Sun YK, Aurbach D. High-capacity layered-spinel cathodes for Li-ion batteries. Chemsuschem. 2016;9(17):2404.CrossRef Nayak PK, Levi E, Grinblat J, Levi M, Markovsky B, Munichandraiah N, Sun YK, Aurbach D. High-capacity layered-spinel cathodes for Li-ion batteries. Chemsuschem. 2016;9(17):2404.CrossRef
[132]
Zurück zum Zitat Jo MR, Kim Y, Yang J, Jeong M, Song K, Kim YI, Lim JM, Cho M, Shim JH, Kim YM, Yoon WS, Kang YM. Triggered reversible phase transformation between layered and spinel structure in manganese-based layered compounds. Nat Commun. 2019;10(1):3385.CrossRef Jo MR, Kim Y, Yang J, Jeong M, Song K, Kim YI, Lim JM, Cho M, Shim JH, Kim YM, Yoon WS, Kang YM. Triggered reversible phase transformation between layered and spinel structure in manganese-based layered compounds. Nat Commun. 2019;10(1):3385.CrossRef
[133]
Zurück zum Zitat Liu J, Wang J, Ni Y, Zhang Y, Luo J, Cheng F, Chen J. Spinel/lithium-rich manganese oxide hybrid nanofibers as cathode materials for rechargeable lithium-ion batteries. Small Methods. 2019;3(12):1900350.CrossRef Liu J, Wang J, Ni Y, Zhang Y, Luo J, Cheng F, Chen J. Spinel/lithium-rich manganese oxide hybrid nanofibers as cathode materials for rechargeable lithium-ion batteries. Small Methods. 2019;3(12):1900350.CrossRef
[134]
Zurück zum Zitat Pan H, Zhang S, Chen J, Gao M, Liu Y, Zhu T, Jiang Y. Li- and Mn-rich layered oxide cathode materials for lithium-ion batteries: a review from fundamentals to research progress and applications. Mol Syst Des Eng. 2018;3(5):748.CrossRef Pan H, Zhang S, Chen J, Gao M, Liu Y, Zhu T, Jiang Y. Li- and Mn-rich layered oxide cathode materials for lithium-ion batteries: a review from fundamentals to research progress and applications. Mol Syst Des Eng. 2018;3(5):748.CrossRef
[135]
Zurück zum Zitat Guo H, Wei Z, Jia K, Qiu B, Yin C, Meng F, Zhang Q, Gu L, Han S, Liu Y, Zhao H, Jiang W, Cui H, Xia Y, Liu Z. Abundant nanoscale defects to eliminate voltage decay in Li-rich cathode materials. Energy Storage Mater. 2019;16:220.CrossRef Guo H, Wei Z, Jia K, Qiu B, Yin C, Meng F, Zhang Q, Gu L, Han S, Liu Y, Zhao H, Jiang W, Cui H, Xia Y, Liu Z. Abundant nanoscale defects to eliminate voltage decay in Li-rich cathode materials. Energy Storage Mater. 2019;16:220.CrossRef
[136]
Zurück zum Zitat Ji Y, Weng S, Li X, Zhang Q, Gu L. Atomic-scale structural evolution of electrode materials in Li-ion batteries: a review. Rare Met. 2020;39(3):205.CrossRef Ji Y, Weng S, Li X, Zhang Q, Gu L. Atomic-scale structural evolution of electrode materials in Li-ion batteries: a review. Rare Met. 2020;39(3):205.CrossRef
[137]
Zurück zum Zitat Liu T, Zhao SX, Gou L, Wu X, Nan CW. Electrochemical performance of Li-rich cathode material, 0.3Li2MnO3–0.7LiMn1/3Ni1/3Co1/3O2 microspheres with F-doping. Rare Met. 2019;38(3):189. Liu T, Zhao SX, Gou L, Wu X, Nan CW. Electrochemical performance of Li-rich cathode material, 0.3Li2MnO3–0.7LiMn1/3Ni1/3Co1/3O2 microspheres with F-doping. Rare Met. 2019;38(3):189.
[138]
Zurück zum Zitat Chen M, Chen D, Liao Y, Zhong X, Li W, Zhang Y. Layered lithium-rich oxide nanoparticles doped with spinel phase: acidic sucrose-assistant synthesis and excellent performance as cathode of lithium ion battery. ACS Appl Mater Interfaces. 2016;8(7):4575.CrossRef Chen M, Chen D, Liao Y, Zhong X, Li W, Zhang Y. Layered lithium-rich oxide nanoparticles doped with spinel phase: acidic sucrose-assistant synthesis and excellent performance as cathode of lithium ion battery. ACS Appl Mater Interfaces. 2016;8(7):4575.CrossRef
[139]
Zurück zum Zitat Luo D, Li G, Fu C, Zheng J, Fan J, Li Q, Li L. A new spinel-layered Li-rich microsphere as a high-rate cathode material for Li-ion batteries. Adv Energy Mater. 2014;4(11):1400062.CrossRef Luo D, Li G, Fu C, Zheng J, Fan J, Li Q, Li L. A new spinel-layered Li-rich microsphere as a high-rate cathode material for Li-ion batteries. Adv Energy Mater. 2014;4(11):1400062.CrossRef
[140]
Zurück zum Zitat Liu W, Sun X, Zhang X, Li C, Wang K, Wen W, Ma YW. Structural evolution of mesoporous graphene/LiNi1/3Co1/3Mn1/3O2 composite cathode for Li-ion battery. Rare Met. 2021;40(3):521.CrossRef Liu W, Sun X, Zhang X, Li C, Wang K, Wen W, Ma YW. Structural evolution of mesoporous graphene/LiNi1/3Co1/3Mn1/3O2 composite cathode for Li-ion battery. Rare Met. 2021;40(3):521.CrossRef
[141]
Zurück zum Zitat Qiu B, Zhang M, Lee SY, Liu H, Wynn TA, Wu L, Zhu Y, Wen W, Brown CM, Zhou D, Liu Z, Meng YS. Metastability and reversibility of anionic redox-based cathode for high-energy rechargeable batteries. Cell Rep Phys Sci. 2020;1(3):100028.CrossRef Qiu B, Zhang M, Lee SY, Liu H, Wynn TA, Wu L, Zhu Y, Wen W, Brown CM, Zhou D, Liu Z, Meng YS. Metastability and reversibility of anionic redox-based cathode for high-energy rechargeable batteries. Cell Rep Phys Sci. 2020;1(3):100028.CrossRef
[142]
Zurück zum Zitat Li WW, Zhang X, Si J, Yang J, Sun XY. TiO2-coated LiNi0.9Co0.08Al0.02O2 cathode materials with enhanced cycle performance for Li-ion batteries. Rare Met. 2021;40(7):1719.CrossRef Li WW, Zhang X, Si J, Yang J, Sun XY. TiO2-coated LiNi0.9Co0.08Al0.02O2 cathode materials with enhanced cycle performance for Li-ion batteries. Rare Met. 2021;40(7):1719.CrossRef
[143]
Zurück zum Zitat Deng L, Wu F, Gao X, Wu W. Development of a LiFePO4-based high power lithium secondary battery for HEVs applications. Rare Met. 2020;39(12):1457.CrossRef Deng L, Wu F, Gao X, Wu W. Development of a LiFePO4-based high power lithium secondary battery for HEVs applications. Rare Met. 2020;39(12):1457.CrossRef
[144]
Zurück zum Zitat Yin C, Wan L, Qiu B, Wang F, Jiang W, Cui H, Bai J, Ehrlich S, Wei Z, Liu Z. Boosting energy efficiency of Li-rich layered oxide cathodes by tuning oxygen redox kinetics and reversibility. Energy Storage Mater. 2021;35:388.CrossRef Yin C, Wan L, Qiu B, Wang F, Jiang W, Cui H, Bai J, Ehrlich S, Wei Z, Liu Z. Boosting energy efficiency of Li-rich layered oxide cathodes by tuning oxygen redox kinetics and reversibility. Energy Storage Mater. 2021;35:388.CrossRef
[145]
Zurück zum Zitat Guo W, Zhang C, Zhang Y, Lin L, He W, Xie Q, Sa B, Wang L, Peng DL. A universal strategy toward the precise regulation of initial coulombic efciency of Li-rich Mn-based cathode materials. Adv Mater. 2021;33:2103173.CrossRef Guo W, Zhang C, Zhang Y, Lin L, He W, Xie Q, Sa B, Wang L, Peng DL. A universal strategy toward the precise regulation of initial coulombic efciency of Li-rich Mn-based cathode materials. Adv Mater. 2021;33:2103173.CrossRef
Metadaten
Titel
Mechanisms and applications of layer/spinel phase transition in Li- and Mn-rich cathodes for lithium-ion batteries
verfasst von
Wei He
Qing-Shui Xie
Jie Lin
Bai-Hua Qu
Lai-Sen Wang
Dong-Liang Peng
Publikationsdatum
21.01.2022
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 5/2022
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-021-01896-w

Weitere Artikel der Ausgabe 5/2022

Rare Metals 5/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.