Skip to main content
Erschienen in: Rare Metals 5/2022

27.02.2022 | Mini Review

CHAIN: unlocking informatics-aided design of Li metal anode from materials to applications

verfasst von: Li-Sheng Zhang, Xin-Lei Gao, Xin-Hua Liu, Zheng-Jie Zhang, Rui Cao, Han-Chao Cheng, Ming-Yue Wang, Xiao-Yu Yan, Shi-Chun Yang

Erschienen in: Rare Metals | Ausgabe 5/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With the rapid development of consumer electronics, electric vehicles and grid-scale stationary energy storage, high-energy batteries are urgently demanded at present. Lithium metal batteries (LMBs) are considered to be one of the most promising high-energy density energy storage devices at present and have received much attention due to their ultra-high theoretical capacity, extremely low electrochemical potential and light mass. However, critical issues, such as uncontrollable lithium dendrite growth, dynamic changes in volume, interfacial impedance, severe chemical and electrochemical corrosion, remain huge challenges for Li metal anodes, which not only lead to low Columbic efficiency of LMBs, but also pose the risk of internal short circuit, causing serious side reactions and safety concerns that hinder LMBs from practical applications. Nevertheless, lithium metal is gradually poised for a revival after decades of oblivion, due to the development of research tools and nanotechnology-based solutions. In this review, various recent material designs for lithium metal anodes are reviewed based on previous theoretical understanding and analysis. Suppressing Li dendrites and ensuring the long life span of practical batteries through limited Li metal anodes design are still challenges. Multi-scale modeling methods are concerned, requiring the application of electrode material development. Hybrid multi-scale modeling application methods with machine learning technology are proposed based on the cloud computing platform. Computational material designs for Li metal anodes on model information are integrated with artificial intelligence. Finally, this review provides a novel framework for next-generation lithium metal anode design methods with a digital solution based on multi-scale data-driven models and machine learning techniques.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Li M, Lu J, Chen Z, Amine K. 30 years of lithium-ion batteries. Adv Mater. 2018;30(33):1.CrossRef Li M, Lu J, Chen Z, Amine K. 30 years of lithium-ion batteries. Adv Mater. 2018;30(33):1.CrossRef
[2]
Zurück zum Zitat Thackeray MM, Wolverton C, Isaacs ED. Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ Sci. 2012;5(7):7854.CrossRef Thackeray MM, Wolverton C, Isaacs ED. Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ Sci. 2012;5(7):7854.CrossRef
[3]
Zurück zum Zitat Zubi G, Dufo-López R, Carvalho M, Pasaoglu G. The lithium-ion battery: state of the art and future perspectives. Renew Sustain Energy Rev. 2018;89:292.CrossRef Zubi G, Dufo-López R, Carvalho M, Pasaoglu G. The lithium-ion battery: state of the art and future perspectives. Renew Sustain Energy Rev. 2018;89:292.CrossRef
[4]
Zurück zum Zitat Winter M, Barnett B, Xu K. Before Li ion batteries. Chem Rev. 2018;118(23):11433.CrossRef Winter M, Barnett B, Xu K. Before Li ion batteries. Chem Rev. 2018;118(23):11433.CrossRef
[5]
Zurück zum Zitat Kwak WJ, Rosy SD, Xia C, Kim H, Johnson LR, Bruce PG, Nazar LF, Sun YK, Frimer AA, Noked M, Freunberger SA, Aurbach D. Lithium-oxygen batteries and related systems: potential, status, and future. Chem Rev. 2020;120(14):6626.CrossRef Kwak WJ, Rosy SD, Xia C, Kim H, Johnson LR, Bruce PG, Nazar LF, Sun YK, Frimer AA, Noked M, Freunberger SA, Aurbach D. Lithium-oxygen batteries and related systems: potential, status, and future. Chem Rev. 2020;120(14):6626.CrossRef
[6]
Zurück zum Zitat Liu B, Zhang JG, Xu W. Advancing lithium metal batteries. Joule. 2018;2(5):833.CrossRef Liu B, Zhang JG, Xu W. Advancing lithium metal batteries. Joule. 2018;2(5):833.CrossRef
[7]
Zurück zum Zitat Li S, Leng D, Li W, Qie L, Dong Z, Cheng Z, Fan Z. Recent progress in developing Li2S cathodes for Li–S batteries. Energy Storage Mater. 2020;27:279.CrossRef Li S, Leng D, Li W, Qie L, Dong Z, Cheng Z, Fan Z. Recent progress in developing Li2S cathodes for Li–S batteries. Energy Storage Mater. 2020;27:279.CrossRef
[8]
Zurück zum Zitat Manthiram A. A reflection on lithium-ion battery cathode chemistry. Nat Commun. 2020;11(1):1.CrossRef Manthiram A. A reflection on lithium-ion battery cathode chemistry. Nat Commun. 2020;11(1):1.CrossRef
[9]
Zurück zum Zitat Li M, Wang C, Chen Z, Xu K, Lu J. New concepts in electrolytes. Chem Rev. 2020;120(14):6783.CrossRef Li M, Wang C, Chen Z, Xu K, Lu J. New concepts in electrolytes. Chem Rev. 2020;120(14):6783.CrossRef
[10]
Zurück zum Zitat Joubert CJ, Chokani N, Abhari RS. Impact of large scale battery energy storage on the 2030 central european transmission grid. In: International Conference on the European Energy Market EEM. IEEE; 2018. 1. Joubert CJ, Chokani N, Abhari RS. Impact of large scale battery energy storage on the 2030 central european transmission grid. In: International Conference on the European Energy Market EEM. IEEE; 2018. 1.
[11]
Zurück zum Zitat Berckmans G, Messagie M, Smekens J, Omar N, Vanhaverbeke L, Van MJ. Cost projection of state of the art lithium-ion batteries for electric vehicles up to 2030. Energies. 2017;10(9):1314.CrossRef Berckmans G, Messagie M, Smekens J, Omar N, Vanhaverbeke L, Van MJ. Cost projection of state of the art lithium-ion batteries for electric vehicles up to 2030. Energies. 2017;10(9):1314.CrossRef
[12]
Zurück zum Zitat Statharas S, Moysoglou Y, Siskos P, Zazias G, Capros P. Factors influencing electric vehicle penetration in the EU by 2030: a model-based policy assessment. Energies. 2019;12:2739.CrossRef Statharas S, Moysoglou Y, Siskos P, Zazias G, Capros P. Factors influencing electric vehicle penetration in the EU by 2030: a model-based policy assessment. Energies. 2019;12:2739.CrossRef
[14]
Zurück zum Zitat Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol. 2017;12(3):194.CrossRef Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol. 2017;12(3):194.CrossRef
[15]
Zurück zum Zitat Yi AF, Zhu ZW, Liu YH, Zhang J, Su H, Qi T. Using highly concentrated chloride solutions to leach valuable metals from cathode-active materials in spent lithium-ion batteries. Rare Met. 2021;40(7):1971. Yi AF, Zhu ZW, Liu YH, Zhang J, Su H, Qi T. Using highly concentrated chloride solutions to leach valuable metals from cathode-active materials in spent lithium-ion batteries. Rare Met. 2021;40(7):1971.
[16]
Zurück zum Zitat Li HP, Ji XY, Liang JJ. Dual-functional ion redistributor for dendrite-free lithium metal anodes. Rare Met. 2020;39(8):861.CrossRef Li HP, Ji XY, Liang JJ. Dual-functional ion redistributor for dendrite-free lithium metal anodes. Rare Met. 2020;39(8):861.CrossRef
[17]
Zurück zum Zitat Liu H, Cheng XB, Jin Z, Zhang R, Wang G, Chen LQ, Liu QB, Huang JQ, Zhang Q. Recent advances in understanding dendrite growth on alkali metal anodes. EnergyChem. 2019;1(1):100003.CrossRef Liu H, Cheng XB, Jin Z, Zhang R, Wang G, Chen LQ, Liu QB, Huang JQ, Zhang Q. Recent advances in understanding dendrite growth on alkali metal anodes. EnergyChem. 2019;1(1):100003.CrossRef
[18]
Zurück zum Zitat Shi P, Zhang XQ, Shen X, Zhang R, Liu H, Zhang Q. A review of composite lithium metal anode for practical applications. Adv Mater Technol. 2020;5(1):1. Shi P, Zhang XQ, Shen X, Zhang R, Liu H, Zhang Q. A review of composite lithium metal anode for practical applications. Adv Mater Technol. 2020;5(1):1.
[19]
Zurück zum Zitat Liu X, Qian X, Tang W, Luo H, Zhao Y, Tan R, Qiao M, Gao X, Hua Y, Wang H, Zhao S, Lai C, Titirici MP, Brandon N, Yang S, Wu B. Designer uniform Li plating/stripping through lithium–cobalt alloying hierarchical scaffolds for scalable high-performance lithium-metal anodes. J Energy Chem. 2020;52:385.CrossRef Liu X, Qian X, Tang W, Luo H, Zhao Y, Tan R, Qiao M, Gao X, Hua Y, Wang H, Zhao S, Lai C, Titirici MP, Brandon N, Yang S, Wu B. Designer uniform Li plating/stripping through lithium–cobalt alloying hierarchical scaffolds for scalable high-performance lithium-metal anodes. J Energy Chem. 2020;52:385.CrossRef
[20]
Zurück zum Zitat Cheng XB, Zhang R, Zhao CZ, Wei F, Zhang JG, Zhang Q. A review of solid electrolyte interphases on lithium metal anode. Adv Sci. 2015;3(3):1. Cheng XB, Zhang R, Zhao CZ, Wei F, Zhang JG, Zhang Q. A review of solid electrolyte interphases on lithium metal anode. Adv Sci. 2015;3(3):1.
[21]
Zurück zum Zitat Jie Y, Ren X, Cao R, Cai W, Jiao S. Advanced liquid electrolytes for rechargeable Li metal batteries. Adv Funct Mater. 2020;30(25):1.CrossRef Jie Y, Ren X, Cao R, Cai W, Jiao S. Advanced liquid electrolytes for rechargeable Li metal batteries. Adv Funct Mater. 2020;30(25):1.CrossRef
[22]
Zurück zum Zitat Cui J, Zhan TG, Da ZK, Chen D. The recent advances in constructing designed electrode in lithium metal batteries. Chin Chem Lett. 2017;28(12):2171.CrossRef Cui J, Zhan TG, Da ZK, Chen D. The recent advances in constructing designed electrode in lithium metal batteries. Chin Chem Lett. 2017;28(12):2171.CrossRef
[23]
Zurück zum Zitat Sun Y, Liu N, Cui Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat Energy. 2016;1(7):16071.CrossRef Sun Y, Liu N, Cui Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat Energy. 2016;1(7):16071.CrossRef
[24]
Zurück zum Zitat Tikekar MD, Choudhury S, Tu Z, Archer LA. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat Energy. 2016;1:16114.CrossRef Tikekar MD, Choudhury S, Tu Z, Archer LA. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat Energy. 2016;1:16114.CrossRef
[25]
Zurück zum Zitat Cheng XB, Zhao CZ, Yao YX, Liu H, Zhang Q. Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes. Chem. 2019;5(1):74.CrossRef Cheng XB, Zhao CZ, Yao YX, Liu H, Zhang Q. Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes. Chem. 2019;5(1):74.CrossRef
[26]
Zurück zum Zitat Wang Q, Yang C, Yang JJ, Wu K, Qi L, Tang H, Zhang ZY, Liu W, Zhou H. Stable Li metal anode with protected interface for high-performance Li metal batteries. Energy Storage Mater. 2018;15:249.CrossRef Wang Q, Yang C, Yang JJ, Wu K, Qi L, Tang H, Zhang ZY, Liu W, Zhou H. Stable Li metal anode with protected interface for high-performance Li metal batteries. Energy Storage Mater. 2018;15:249.CrossRef
[27]
Zurück zum Zitat Peng HJ, Huang JQ, Cheng XB, Zhang Q. Review on high-loading and high-energy lithium-sulfur batteries. Adv Energy Mater. 2017;7(24):1. Peng HJ, Huang JQ, Cheng XB, Zhang Q. Review on high-loading and high-energy lithium-sulfur batteries. Adv Energy Mater. 2017;7(24):1.
[28]
Zurück zum Zitat Fotouhi A, Auger DJ, Propp K, Longo S, Wild M. A review on electric vehicle battery modelling: from lithium-ion toward lithium-sulphur. Renew Sustain Energy Rev. 2016;56:1008.CrossRef Fotouhi A, Auger DJ, Propp K, Longo S, Wild M. A review on electric vehicle battery modelling: from lithium-ion toward lithium-sulphur. Renew Sustain Energy Rev. 2016;56:1008.CrossRef
[29]
Zurück zum Zitat Su YS, Manthiram A. Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat Commun. 2012;3:1166.CrossRef Su YS, Manthiram A. Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat Commun. 2012;3:1166.CrossRef
[30]
Zurück zum Zitat Song Y, Cai W, Kong L, Cai J, Zhang Q, Sun J. Rationalizing electrocatalysis of Li–S chemistry by mediator design: progress and prospects. Adv Energy Mater. 2020;10(11):1.CrossRef Song Y, Cai W, Kong L, Cai J, Zhang Q, Sun J. Rationalizing electrocatalysis of Li–S chemistry by mediator design: progress and prospects. Adv Energy Mater. 2020;10(11):1.CrossRef
[31]
Zurück zum Zitat Zhao M, Peng HJ, Wei JY, Huang JQ, Li BQ, Yuan H, Qiang Z. Dictating high-capacity lithium-sulfur batteries through redox-mediated lithium sulfide growth. Small Methods. 2020;4(6):1. Zhao M, Peng HJ, Wei JY, Huang JQ, Li BQ, Yuan H, Qiang Z. Dictating high-capacity lithium-sulfur batteries through redox-mediated lithium sulfide growth. Small Methods. 2020;4(6):1.
[32]
Zurück zum Zitat Zhao M, Li BQ, Zhang XQ, Huang JQ, Zhang Q. A perspective toward practical lithium-sulfur batteries. ACS Cent Sci. 2020;6(7):1095.CrossRef Zhao M, Li BQ, Zhang XQ, Huang JQ, Zhang Q. A perspective toward practical lithium-sulfur batteries. ACS Cent Sci. 2020;6(7):1095.CrossRef
[33]
Zurück zum Zitat Liu X, He Q, Yuan H, Yan C, Zhao Y, Xu X, Huang JQ, Chueh YL, Zhang Q, Mai LQ. Interface enhanced well-dispersed Co9S8 nanocrystals as an efficient polysulfide host in lithium–sulfur batteries. J Energy Chem. 2020;48:109.CrossRef Liu X, He Q, Yuan H, Yan C, Zhao Y, Xu X, Huang JQ, Chueh YL, Zhang Q, Mai LQ. Interface enhanced well-dispersed Co9S8 nanocrystals as an efficient polysulfide host in lithium–sulfur batteries. J Energy Chem. 2020;48:109.CrossRef
[34]
Zurück zum Zitat Yao Y, Zhang X, Li B, Yan C, Chen P, Huang J, Zhang Q. A compact inorganic layer for robust anode protection in lithium-sulfur batteries. InfoMat. 2020;2(2):379.CrossRef Yao Y, Zhang X, Li B, Yan C, Chen P, Huang J, Zhang Q. A compact inorganic layer for robust anode protection in lithium-sulfur batteries. InfoMat. 2020;2(2):379.CrossRef
[35]
Zurück zum Zitat Zhu GL, Zhao CZ, Yuan H, Zhao BC, Hou LP, Cheng XB, Nan HX, Lu Y, Zhang J, Huang JQ, Liu QB, He CX, Zhang Q. Interfacial redox behaviors of sulfide electrolytes in fast-charging all-solid-state lithium metal batteries. Energy Storage Mater. 2020;31:267.CrossRef Zhu GL, Zhao CZ, Yuan H, Zhao BC, Hou LP, Cheng XB, Nan HX, Lu Y, Zhang J, Huang JQ, Liu QB, He CX, Zhang Q. Interfacial redox behaviors of sulfide electrolytes in fast-charging all-solid-state lithium metal batteries. Energy Storage Mater. 2020;31:267.CrossRef
[36]
Zurück zum Zitat Zhang XQ, Chen X, Cheng XB, Li BQ, Shen X, Yan C, Huang JQ, Zhang Q. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes. Angew Chemie Int Ed. 2018;57(19):5301.CrossRef Zhang XQ, Chen X, Cheng XB, Li BQ, Shen X, Yan C, Huang JQ, Zhang Q. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes. Angew Chemie Int Ed. 2018;57(19):5301.CrossRef
[37]
Zurück zum Zitat Zhang R, Chen X, Shen X, Zhang XQ, Chen XR, Cheng XB, Yan C, Zhao CZ, Zhang Q. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule. 2018;2(4):764.CrossRef Zhang R, Chen X, Shen X, Zhang XQ, Chen XR, Cheng XB, Yan C, Zhao CZ, Zhang Q. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule. 2018;2(4):764.CrossRef
[38]
Zurück zum Zitat Cheng XB, Zhao MQ, Chen C, Pentecost A, Maleski K, Mathis T, Zhang XQ, Zhang Q, Jiang JJ, Gogotsi Y. Nanodiamonds suppress the growth of lithium dendrites. Nat Commun. 2017;8(1):1.CrossRef Cheng XB, Zhao MQ, Chen C, Pentecost A, Maleski K, Mathis T, Zhang XQ, Zhang Q, Jiang JJ, Gogotsi Y. Nanodiamonds suppress the growth of lithium dendrites. Nat Commun. 2017;8(1):1.CrossRef
[39]
Zurück zum Zitat Xu R, Cheng XB, Yan C, Zhang XQ, Xiao Y, Zhao CZ, Huang JQ, Zhang Q. Artificial interphases for highly stable lithium metal anode. Matter. 2019;1(2):317.CrossRef Xu R, Cheng XB, Yan C, Zhang XQ, Xiao Y, Zhao CZ, Huang JQ, Zhang Q. Artificial interphases for highly stable lithium metal anode. Matter. 2019;1(2):317.CrossRef
[40]
Zurück zum Zitat Zhao J, Liao L, Shi F, Lei T, Chen G, Pei A, Sun J, Yan K, Zhou G, Xie J, Liu C, Li YZ, Liang Z, Bao ZN, Cui Y. Surface fluorination of reactive battery anode materials for enhanced stability. J Am Chem Soc. 2017;139(33):11550.CrossRef Zhao J, Liao L, Shi F, Lei T, Chen G, Pei A, Sun J, Yan K, Zhou G, Xie J, Liu C, Li YZ, Liang Z, Bao ZN, Cui Y. Surface fluorination of reactive battery anode materials for enhanced stability. J Am Chem Soc. 2017;139(33):11550.CrossRef
[41]
Zurück zum Zitat Zhao Y, Sun Q, Li X, Wang C, Sun Y, Adair KR, Li R, Sun X. Carbon paper interlayers: a universal and effective approach for highly stable Li metal anodes. Nano Energy. 2018;43:368.CrossRef Zhao Y, Sun Q, Li X, Wang C, Sun Y, Adair KR, Li R, Sun X. Carbon paper interlayers: a universal and effective approach for highly stable Li metal anodes. Nano Energy. 2018;43:368.CrossRef
[42]
Zurück zum Zitat Liu K, Pei A, Lee HR, Kong B, Liu N, Lin D, Liu Y, Liu C, Hsu P, Bao Z, Cui Y. Lithium metal anodes with an adaptive “solid-liquid” interfacial protective layer. J Am Chem Soc. 2017;139(13):4815.CrossRef Liu K, Pei A, Lee HR, Kong B, Liu N, Lin D, Liu Y, Liu C, Hsu P, Bao Z, Cui Y. Lithium metal anodes with an adaptive “solid-liquid” interfacial protective layer. J Am Chem Soc. 2017;139(13):4815.CrossRef
[43]
Zurück zum Zitat Liu K, Kong B, Liu W, Sun Y, Song MS, Chen J, Liu Y, Lin D, Pei A, Cui Y. Stretchable lithium metal anode with improved mechanical and electrochemical cycling stability. Joule. 2018;2(9):1857.CrossRef Liu K, Kong B, Liu W, Sun Y, Song MS, Chen J, Liu Y, Lin D, Pei A, Cui Y. Stretchable lithium metal anode with improved mechanical and electrochemical cycling stability. Joule. 2018;2(9):1857.CrossRef
[44]
Zurück zum Zitat Banerjee A, Wang X, Fang C, Wu EA, Meng YS. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem Rev. 2020;120(14):6878.CrossRef Banerjee A, Wang X, Fang C, Wu EA, Meng YS. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem Rev. 2020;120(14):6878.CrossRef
[45]
Zurück zum Zitat Zhao J, Zhou G, Yan K, Xie J, Li Y, Liao L, Jin Y, Liu K, Hsu P, Wang J, Cheng H, Cui Y. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes. Nat Nanotechnol. 2017;12(10):993.CrossRef Zhao J, Zhou G, Yan K, Xie J, Li Y, Liao L, Jin Y, Liu K, Hsu P, Wang J, Cheng H, Cui Y. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes. Nat Nanotechnol. 2017;12(10):993.CrossRef
[46]
Zurück zum Zitat Ruan Y, Lu Y, Li Y, Zheng C, Su J, Jin J, Xiu T, Song Z, Badding ME, Wen Z. A 3D cross-linking lithiophilic and electronically insulating interfacial engineering for garnet-type solid-state lithium batteries. Adv Funct Mater. 2021;31(5):1.CrossRef Ruan Y, Lu Y, Li Y, Zheng C, Su J, Jin J, Xiu T, Song Z, Badding ME, Wen Z. A 3D cross-linking lithiophilic and electronically insulating interfacial engineering for garnet-type solid-state lithium batteries. Adv Funct Mater. 2021;31(5):1.CrossRef
[47]
Zurück zum Zitat Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J. Lithium metal anodes for rechargeable batteries. Energy Environ Sci. 2014;7(2):513.CrossRef Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J. Lithium metal anodes for rechargeable batteries. Energy Environ Sci. 2014;7(2):513.CrossRef
[48]
Zurück zum Zitat Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414(6861):359.CrossRef Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414(6861):359.CrossRef
[49]
Zurück zum Zitat Monroe C, Newman J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J Electrochem Soc. 2005;152(2):A396.CrossRef Monroe C, Newman J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J Electrochem Soc. 2005;152(2):A396.CrossRef
[50]
Zurück zum Zitat Cao Y, Meng X, Elam JW. Atomic layer deposition of LixAlyS solid-state electrolytes for stabilizing lithium-metal anodes. ChemElectroChem. 2016;3(6):858.CrossRef Cao Y, Meng X, Elam JW. Atomic layer deposition of LixAlyS solid-state electrolytes for stabilizing lithium-metal anodes. ChemElectroChem. 2016;3(6):858.CrossRef
[51]
Zurück zum Zitat Kozen AC, Lin CF, Pearse AJ, Schroeder MA, Han X, Hu L, Lee S, Rublof GW, Noked M. Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano. 2015;9(6):5884.CrossRef Kozen AC, Lin CF, Pearse AJ, Schroeder MA, Han X, Hu L, Lee S, Rublof GW, Noked M. Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano. 2015;9(6):5884.CrossRef
[52]
Zurück zum Zitat Hatzell KB, Chen XC, Cobb CL, Dasgupta NP, Dixit MB, Marbella LE, McDowell MT, Mukherjee PP, Verma A, Viswanathan V, Westover A, Zeier WG. Challenges in lithium metal anodes for solid-state batteries. ACS Energy Lett. 2020;5(3):922.CrossRef Hatzell KB, Chen XC, Cobb CL, Dasgupta NP, Dixit MB, Marbella LE, McDowell MT, Mukherjee PP, Verma A, Viswanathan V, Westover A, Zeier WG. Challenges in lithium metal anodes for solid-state batteries. ACS Energy Lett. 2020;5(3):922.CrossRef
[53]
Zurück zum Zitat Shen X, Zhang R, Chen X, Cheng XB, Li X, Zhang Q. The failure of solid electrolyte interphase on Li metal anode: structural uniformity or mechanical strength? Adv Energy Mater. 2020;10(10):1. Shen X, Zhang R, Chen X, Cheng XB, Li X, Zhang Q. The failure of solid electrolyte interphase on Li metal anode: structural uniformity or mechanical strength? Adv Energy Mater. 2020;10(10):1.
[54]
Zurück zum Zitat Heenan TMM, Tan C, Hack J, Brett DJL, Shearing PR. Developments in X-ray tomography characterization for electrochemical devices. Mater Today. 2019;31:69.CrossRef Heenan TMM, Tan C, Hack J, Brett DJL, Shearing PR. Developments in X-ray tomography characterization for electrochemical devices. Mater Today. 2019;31:69.CrossRef
[55]
Zurück zum Zitat Daemi SR, Tan C, Vamvakeros A, Heenan TMM, Finegan DP, Di Michiel M, Beale AM, Cookson J, Petrucco E, Weaving JS, Jacques S, Jervis R, Brett DJL, Shearing PR. Exploring cycling induced crystallographic change in NMC with X-ray diffraction computed tomography. Phys Chem Chem Phys Royal Soc Chem. 2020;22(32):17814.CrossRef Daemi SR, Tan C, Vamvakeros A, Heenan TMM, Finegan DP, Di Michiel M, Beale AM, Cookson J, Petrucco E, Weaving JS, Jacques S, Jervis R, Brett DJL, Shearing PR. Exploring cycling induced crystallographic change in NMC with X-ray diffraction computed tomography. Phys Chem Chem Phys Royal Soc Chem. 2020;22(32):17814.CrossRef
[56]
Zurück zum Zitat Finegan DP, Vamvakeros A, Cao L, Tan C, Heenan TMM, Daemi SR, Jacques SDM, Beale AM, Michiel MD, Smith K, Brett DJL, Shearing PR, Ban C. Spatially resolving lithiation in silicon-graphite composite electrodes via in situ high-energy X-ray diffraction computed tomography. Nano Lett Am Chem Soc. 2019;19(6):3811.CrossRef Finegan DP, Vamvakeros A, Cao L, Tan C, Heenan TMM, Daemi SR, Jacques SDM, Beale AM, Michiel MD, Smith K, Brett DJL, Shearing PR, Ban C. Spatially resolving lithiation in silicon-graphite composite electrodes via in situ high-energy X-ray diffraction computed tomography. Nano Lett Am Chem Soc. 2019;19(6):3811.CrossRef
[57]
Zurück zum Zitat Cheng XB, Zhang R, Zhao CZ, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev. 2017;117(15):10403.CrossRef Cheng XB, Zhang R, Zhao CZ, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev. 2017;117(15):10403.CrossRef
[58]
Zurück zum Zitat Li Y, Li Y, Pei A, Yan K, Sun Y, Wu CL, Joubert LM, Chin R, Kon A, Perrino YYJ, Butz B, Chu S, Cui Y. Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. Science. 2017;358(6362):506.CrossRef Li Y, Li Y, Pei A, Yan K, Sun Y, Wu CL, Joubert LM, Chin R, Kon A, Perrino YYJ, Butz B, Chu S, Cui Y. Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. Science. 2017;358(6362):506.CrossRef
[59]
Zurück zum Zitat Liu W, Lin D, Pei A, Cui Y. Stabilizing lithium metal anodes by uniform Li-ion flux distribution in nanochannel confinement. J Am Chem Soc. 2016;138(47):15443.CrossRef Liu W, Lin D, Pei A, Cui Y. Stabilizing lithium metal anodes by uniform Li-ion flux distribution in nanochannel confinement. J Am Chem Soc. 2016;138(47):15443.CrossRef
[60]
Zurück zum Zitat Zhang R, Shen X, Cheng XB, Zhang Q. The dendrite growth in 3D structured lithium metal anodes: electron or ion transfer limitation? Energy Storage Mater. 2019;23:556.CrossRef Zhang R, Shen X, Cheng XB, Zhang Q. The dendrite growth in 3D structured lithium metal anodes: electron or ion transfer limitation? Energy Storage Mater. 2019;23:556.CrossRef
[61]
Zurück zum Zitat Aurbach D, Markovsky B, Levi MD, Levi E, Schechter A, Moshkovich M, Cohen Y. New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries. J Power Sources. 1999;81–82:95.CrossRef Aurbach D, Markovsky B, Levi MD, Levi E, Schechter A, Moshkovich M, Cohen Y. New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries. J Power Sources. 1999;81–82:95.CrossRef
[62]
Zurück zum Zitat Morigaki KI, Ohta A. Analysis of the surface of lithium in organic electrolyte by atomic force microscopy, Fourier transform infrared spectroscopy and scanning auger electron microscopy. J Power Sources. 1998;76(2):159.CrossRef Morigaki KI, Ohta A. Analysis of the surface of lithium in organic electrolyte by atomic force microscopy, Fourier transform infrared spectroscopy and scanning auger electron microscopy. J Power Sources. 1998;76(2):159.CrossRef
[63]
Zurück zum Zitat Albertus P, Girishkumar G, McCloskey B, Sánchez-Carrera RS, Kozinsky B, Christensen J, Luntz AC. Identifying capacity limitations in the Li/oxygen battery using experiments and modeling. J Electrochem Soc. 2011;158(3):A343.CrossRef Albertus P, Girishkumar G, McCloskey B, Sánchez-Carrera RS, Kozinsky B, Christensen J, Luntz AC. Identifying capacity limitations in the Li/oxygen battery using experiments and modeling. J Electrochem Soc. 2011;158(3):A343.CrossRef
[64]
Zurück zum Zitat Rechkemmer SK, Zang X, Zhang W, Sawodny O. Empirical Li-ion aging model derived from single particle model. J Energy Storage. 2019;21:773.CrossRef Rechkemmer SK, Zang X, Zhang W, Sawodny O. Empirical Li-ion aging model derived from single particle model. J Energy Storage. 2019;21:773.CrossRef
[65]
Zurück zum Zitat Wu Y, Xie L, Ming H, Guo Y, Hwang JY, Wang W, He X, Wang LM, Alshareef HN, Sun YK, Ming J. An empirical model for the design of batteries with high energy density. ACS Energy Lett. 2020;5(3):807.CrossRef Wu Y, Xie L, Ming H, Guo Y, Hwang JY, Wang W, He X, Wang LM, Alshareef HN, Sun YK, Ming J. An empirical model for the design of batteries with high energy density. ACS Energy Lett. 2020;5(3):807.CrossRef
[66]
Zurück zum Zitat Han B, Li XY, Bai S, Zou YC, Lu BY, Zhang MH, Ma XM, Chan Z, Meng YS, Gu M. Conformal three-dimensional interphase of Li metal anode revealed by low dose cryo-electron microscopy. Matter. 2021;4(11):3741.CrossRef Han B, Li XY, Bai S, Zou YC, Lu BY, Zhang MH, Ma XM, Chan Z, Meng YS, Gu M. Conformal three-dimensional interphase of Li metal anode revealed by low dose cryo-electron microscopy. Matter. 2021;4(11):3741.CrossRef
[67]
Zurück zum Zitat Liu DH, Bai Z, Li M, Yu A, Luo D, Liu W, Yang L, Lu J, Amine K, Chen ZW. Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives. Chem Soc Rev. 2020;49(15):5407.CrossRef Liu DH, Bai Z, Li M, Yu A, Luo D, Liu W, Yang L, Lu J, Amine K, Chen ZW. Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives. Chem Soc Rev. 2020;49(15):5407.CrossRef
[68]
Zurück zum Zitat Chi M, Shi L, Wang Z, Zhu J, Mao X, Zhao Y, Zhang M, Sun L, Yuan S. Excellent rate capability and cycle life of Li metal batteries with ZrO2/POSS multilayer-assembled PE separators. Nano Energy. 2016;28:1. Chi M, Shi L, Wang Z, Zhu J, Mao X, Zhao Y, Zhang M, Sun L, Yuan S. Excellent rate capability and cycle life of Li metal batteries with ZrO2/POSS multilayer-assembled PE separators. Nano Energy. 2016;28:1.
[69]
Zurück zum Zitat Gireaud L, Grugeon S, Laruelle S, Yrieix B, Tarascon JM. Lithium metal stripping/plating mechanisms studies: a metallurgical approach. Electrochem Commun. 2006;8(10):1639.CrossRef Gireaud L, Grugeon S, Laruelle S, Yrieix B, Tarascon JM. Lithium metal stripping/plating mechanisms studies: a metallurgical approach. Electrochem Commun. 2006;8(10):1639.CrossRef
[70]
Zurück zum Zitat Ahmad Z, Xie T, Maheshwari C, Grossman JC, Viswanathan V. Machine learning enabled computational screening of inorganic solid electrolytes for suppression of dendrite formation in lithium metal anodes. ACS Cent Sci. 2018;4(8):996.CrossRef Ahmad Z, Xie T, Maheshwari C, Grossman JC, Viswanathan V. Machine learning enabled computational screening of inorganic solid electrolytes for suppression of dendrite formation in lithium metal anodes. ACS Cent Sci. 2018;4(8):996.CrossRef
[71]
Zurück zum Zitat Xu Q, Li Z, Liu M, Yin WJ. Rationalizing perovskite data for machine learning and materials design. J Phys Chem Lett. 2018;9(24):6948.CrossRef Xu Q, Li Z, Liu M, Yin WJ. Rationalizing perovskite data for machine learning and materials design. J Phys Chem Lett. 2018;9(24):6948.CrossRef
[72]
Zurück zum Zitat Kilic A, Odabaşı Ç, Yildirim R, Eroglu D. Assessment of critical materials and cell design factors for high performance lithium-sulfur batteries using machine learning. Chem Eng J. 2020;390(15):124117.CrossRef Kilic A, Odabaşı Ç, Yildirim R, Eroglu D. Assessment of critical materials and cell design factors for high performance lithium-sulfur batteries using machine learning. Chem Eng J. 2020;390(15):124117.CrossRef
[73]
Zurück zum Zitat Dixit MB, Verma A, Zaman W, Zhong X, Kenesei P, Park JS, Almer J, Mukherjee PP, Hatzell KB. Synchrotron imaging of pore formation in Li metal solid-state batteries aided by machine learning. ACS Appl Energy Mater. 2020;3(10):9534.CrossRef Dixit MB, Verma A, Zaman W, Zhong X, Kenesei P, Park JS, Almer J, Mukherjee PP, Hatzell KB. Synchrotron imaging of pore formation in Li metal solid-state batteries aided by machine learning. ACS Appl Energy Mater. 2020;3(10):9534.CrossRef
[74]
Zurück zum Zitat Chen C, Zuo Y, Ye W, Li X, Deng Z, Ong SP. A critical review of machine learning of energy materials. Adv Energy Mater. 2020;10(8):1.CrossRef Chen C, Zuo Y, Ye W, Li X, Deng Z, Ong SP. A critical review of machine learning of energy materials. Adv Energy Mater. 2020;10(8):1.CrossRef
[75]
Zurück zum Zitat Aykol M, Herring P, Anapolsky A. Machine learning for continuous innovation in battery technologies. Nat Rev Mater. 2020;5(10):725.CrossRef Aykol M, Herring P, Anapolsky A. Machine learning for continuous innovation in battery technologies. Nat Rev Mater. 2020;5(10):725.CrossRef
[76]
Zurück zum Zitat Attia PM, Grover A, Jin N, Severson KA, Markov TM, Liao YH, Chen MH, Cheong B, Perkins N, Yang Z, Herring PK, Aykol M, Harris SJ, Braatz RD, Ermon S, Chueh WC. Closed-loop optimization of fast-charging protocols for batteries with machine learning. Nature. 2020;578(7795):397.CrossRef Attia PM, Grover A, Jin N, Severson KA, Markov TM, Liao YH, Chen MH, Cheong B, Perkins N, Yang Z, Herring PK, Aykol M, Harris SJ, Braatz RD, Ermon S, Chueh WC. Closed-loop optimization of fast-charging protocols for batteries with machine learning. Nature. 2020;578(7795):397.CrossRef
[77]
Zurück zum Zitat Roman D, Saxena S, Robu V, Pecht M, Flynn D. Machine learning pipeline for battery state-of-health estimation. Nat Mach Intell. 2021;3(5):447.CrossRef Roman D, Saxena S, Robu V, Pecht M, Flynn D. Machine learning pipeline for battery state-of-health estimation. Nat Mach Intell. 2021;3(5):447.CrossRef
[78]
Zurück zum Zitat Zhang Y, He X, Chen Z, Bai Q, Nolan AM, Roberts CA, Banerjee D, Matsunaga T, Mo YF, Ling C. Unsupervised discovery of solid-state lithium ion conductors. Nat Commun. 2019;10(1):1. Zhang Y, He X, Chen Z, Bai Q, Nolan AM, Roberts CA, Banerjee D, Matsunaga T, Mo YF, Ling C. Unsupervised discovery of solid-state lithium ion conductors. Nat Commun. 2019;10(1):1.
[79]
Zurück zum Zitat Nie Z, Liu Y, Yang L, Li S, Pan F. Construction and application of materials knowledge graph based on author disambiguation: revisiting the evolution of LiFePO4. Adv Energy Mater. 2021;11(16):1.CrossRef Nie Z, Liu Y, Yang L, Li S, Pan F. Construction and application of materials knowledge graph based on author disambiguation: revisiting the evolution of LiFePO4. Adv Energy Mater. 2021;11(16):1.CrossRef
[80]
Zurück zum Zitat Yang S, He R, Zhang Z, Cao Y, Gao X, Liu X. CHAIN: cyber hierarchy and interactional network enabling digital solution for battery full-lifespan management. Matter. 2020;3(1):27.CrossRef Yang S, He R, Zhang Z, Cao Y, Gao X, Liu X. CHAIN: cyber hierarchy and interactional network enabling digital solution for battery full-lifespan management. Matter. 2020;3(1):27.CrossRef
[81]
Zurück zum Zitat Wu B, Widanage WD, Yang S, Liu X. Battery digital twins: perspectives on the fusion of models, data and artificial intelligence for smart battery management systems. Energy AI. 2020;1:100016.CrossRef Wu B, Widanage WD, Yang S, Liu X. Battery digital twins: perspectives on the fusion of models, data and artificial intelligence for smart battery management systems. Energy AI. 2020;1:100016.CrossRef
Metadaten
Titel
CHAIN: unlocking informatics-aided design of Li metal anode from materials to applications
verfasst von
Li-Sheng Zhang
Xin-Lei Gao
Xin-Hua Liu
Zheng-Jie Zhang
Rui Cao
Han-Chao Cheng
Ming-Yue Wang
Xiao-Yu Yan
Shi-Chun Yang
Publikationsdatum
27.02.2022
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 5/2022
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-021-01925-8

Weitere Artikel der Ausgabe 5/2022

Rare Metals 5/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.