Skip to main content
Erschienen in: Rare Metals 2/2021

24.11.2020 | Review

Alloy anodes for sodium-ion batteries

verfasst von: Shu-Min Zheng, Yan-Ru Tian, Ya-Xia Liu, Shuang Wang, Chao-Quan Hu, Bao Wang, Kai-Ming Wang

Erschienen in: Rare Metals | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Sodium-ion batteries (SIBs) have emerged as one of the most promising candidates for next-generation energy storage systems because sodium is abundant in nature. The practical application of SIBs critically depends on developing robust electrode materials with high specific capacity and long cycling life, developing suitable anode materials is even more challenging. Alloy-type anodes are attractive for their high gravimetric and volumetric specific capacities, demonstrating great potential for high-energy SIBs, however, huge volume swelling hampered their practical application. Given the encouraging breakthroughs on alloy anodes for SIBs, herein, we present a review of the up-to-date progress and works carried out with alloy-based anode materials for SIBs. We review the synthetic strategies and their detailed electrochemical performance. In particular, we extensively reveal the important roles of alloy-based anodes in the development of SIBs. Research progress of alloy-type anodes and their compounds for sodium storage is summarized. Specific efforts to enhance the electrochemical performance of the alloy-based anode materials are discussed. Finally, we proposed multi-component alloys/high-entropy alloys (HEAs) as further research directions for alloy-based anodes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Wang PF, You Y, Yin XY, Guo YG. Layered oxide cathodes for sodium-ion batteries: phase transition, air stability, and performance. Adv Energy Mater. 2018;8(8):1701912. Wang PF, You Y, Yin XY, Guo YG. Layered oxide cathodes for sodium-ion batteries: phase transition, air stability, and performance. Adv Energy Mater. 2018;8(8):1701912.
[2]
Zurück zum Zitat Yu XY, Lou XW. Mixed metal sulfides for electrochemical energy storage and conversion. Adv Energy Mater. 2018;8(3):1701592. Yu XY, Lou XW. Mixed metal sulfides for electrochemical energy storage and conversion. Adv Energy Mater. 2018;8(3):1701592.
[3]
Zurück zum Zitat Fang YJ, Yu XY, Lou XW. Formation of hierarchical Cu-doped CoSe2 microboxes via sequential ion exchange for high-performance sodium-ion batteries. Adv Mater. 2018;30(21):1706668. Fang YJ, Yu XY, Lou XW. Formation of hierarchical Cu-doped CoSe2 microboxes via sequential ion exchange for high-performance sodium-ion batteries. Adv Mater. 2018;30(21):1706668.
[4]
Zurück zum Zitat Wang SB, Fang YJ, Wang X, Lou XW. Hierarchical microboxes constructed by sns nanoplates coated with nitrogen-doped carbon for efficient sodium storage. Angew Chem Int Ed. 2019;58(3):760. Wang SB, Fang YJ, Wang X, Lou XW. Hierarchical microboxes constructed by sns nanoplates coated with nitrogen-doped carbon for efficient sodium storage. Angew Chem Int Ed. 2019;58(3):760.
[5]
Zurück zum Zitat Luo W, Shen F, Bommier C, Zhu HL, Hu LB. Na-ion battery anodes: materials and electrochemistry. Acc Chem Res. 2016;49(2):231. Luo W, Shen F, Bommier C, Zhu HL, Hu LB. Na-ion battery anodes: materials and electrochemistry. Acc Chem Res. 2016;49(2):231.
[6]
Zurück zum Zitat Parant JP, Olazcuag R, Devalette M, Fouassier C, Hagenmuller P. New phases of formula NaxMnO2. J Solid State Chem. 1971;3(1):1. Parant JP, Olazcuag R, Devalette M, Fouassier C, Hagenmuller P. New phases of formula NaxMnO2. J Solid State Chem. 1971;3(1):1.
[7]
Zurück zum Zitat Whittingham MS. Chemistry of intercalation compounds - metal guests in chalcogenide hosts. Prog Solid State Chem. 1978;12(1):41. Whittingham MS. Chemistry of intercalation compounds - metal guests in chalcogenide hosts. Prog Solid State Chem. 1978;12(1):41.
[8]
Zurück zum Zitat Delmas C, Fouassier C, Hagenmuller P. Structural classification and properties of the layered oxides. Phys A B&C. 1980;99(1–4):81. Delmas C, Fouassier C, Hagenmuller P. Structural classification and properties of the layered oxides. Phys A B&C. 1980;99(1–4):81.
[9]
Zurück zum Zitat Fouassier C, Delmas C, Hagenmuller P. Structural development and physical-properties of AxMO2 phases (A = Na, K) (M = Cr, Mn, CO) (x less-than or equal-to one). Mater Res Bull. 1975;10(6):443. Fouassier C, Delmas C, Hagenmuller P. Structural development and physical-properties of AxMO2 phases (A = Na, K) (M = Cr, Mn, CO) (x less-than or equal-to one). Mater Res Bull. 1975;10(6):443.
[10]
Zurück zum Zitat Mizushima K, Jones PC, Wiseman PJ, Goodenough JB. Lixcoo2 “(oless-thanxless-than-or-equal-to1) - a new cathode material for batteries of high-energy density. Mater Res Bull. 1980;15(6):783. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB. Lixcoo2 “(oless-thanxless-than-or-equal-to1) - a new cathode material for batteries of high-energy density. Mater Res Bull. 1980;15(6):783.
[11]
Zurück zum Zitat Jin J, Yu SJ, Shi ZQ, Wang CY, Chong CB. Lignin-based electrospun carbon nanofibrous webs as free-standing and binder-free electrodes for sodium ion batteries. J Power Sources. 2014;272:800. Jin J, Yu SJ, Shi ZQ, Wang CY, Chong CB. Lignin-based electrospun carbon nanofibrous webs as free-standing and binder-free electrodes for sodium ion batteries. J Power Sources. 2014;272:800.
[12]
Zurück zum Zitat Matsushita T, Ishii Y, Kawasaki S. Electrochemical insertion of sodium ion into nanocarbon materials for sodium ion batterie. ECS Trans. 2013;50(15):1. Matsushita T, Ishii Y, Kawasaki S. Electrochemical insertion of sodium ion into nanocarbon materials for sodium ion batterie. ECS Trans. 2013;50(15):1.
[13]
Zurück zum Zitat Wang HG, Wu Z, Meng FL, Ma DL, Huang XL, Wang LM. Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries. Chemsuschem. 2013;6(1):56. Wang HG, Wu Z, Meng FL, Ma DL, Huang XL, Wang LM. Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries. Chemsuschem. 2013;6(1):56.
[14]
Zurück zum Zitat Jian ZL, Liu P, Li FJ, Chen MW, Zhou HS. Monodispersed hierarchical Co3O4 spheres intertwined with carbon nanotubes for use as anode materials in sodium-ion batteries. J Mater Chem A. 2014;2(34):13805. Jian ZL, Liu P, Li FJ, Chen MW, Zhou HS. Monodispersed hierarchical Co3O4 spheres intertwined with carbon nanotubes for use as anode materials in sodium-ion batteries. J Mater Chem A. 2014;2(34):13805.
[15]
Zurück zum Zitat Jian ZL, Zhao B, Liu P, Li F, Zheng MB, Chen MW, Shi Y, Zhou HS. Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries. Chem Commun. 2014;50(10):1215. Jian ZL, Zhao B, Liu P, Li F, Zheng MB, Chen MW, Shi Y, Zhou HS. Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries. Chem Commun. 2014;50(10):1215.
[16]
Zurück zum Zitat Chen H, Jiang J, Zhang L, Wan H, Qi T, Xia D. Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors. Nanoscale. 2013;5(19):8879. Chen H, Jiang J, Zhang L, Wan H, Qi T, Xia D. Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors. Nanoscale. 2013;5(19):8879.
[17]
Zurück zum Zitat Shen LF, Yu L, Wu HB, Yu XY, Zhang XG, Lou XW. Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nat Commun. 2015;6:6694. Shen LF, Yu L, Wu HB, Yu XY, Zhang XG, Lou XW. Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nat Commun. 2015;6:6694.
[18]
Zurück zum Zitat Staszak-Jirkovsky J, Malliakas CD, Lopes PP, Danilovic N, Kota SS, Chang KC, Genorio B, Strmcnik D, Stamenkovic VR, Kanatzidis MG, Markovic NM. Design of active and stable Co-Mo-Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nat Mater. 2016;15(2):197. Staszak-Jirkovsky J, Malliakas CD, Lopes PP, Danilovic N, Kota SS, Chang KC, Genorio B, Strmcnik D, Stamenkovic VR, Kanatzidis MG, Markovic NM. Design of active and stable Co-Mo-Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nat Mater. 2016;15(2):197.
[19]
Zurück zum Zitat Zhang L, Hu X, Chen C, Guo H, Liu X, Xu G, Zhong H, Cheng S, Wu P, Meng J, Huang Y, Dou S, Liu H. In operando mechanism analysis on nanocrystalline silicon anode material for reversible and ultrafast sodium storage. Adv Mater. 2017;29(5):1604708. Zhang L, Hu X, Chen C, Guo H, Liu X, Xu G, Zhong H, Cheng S, Wu P, Meng J, Huang Y, Dou S, Liu H. In operando mechanism analysis on nanocrystalline silicon anode material for reversible and ultrafast sodium storage. Adv Mater. 2017;29(5):1604708.
[20]
Zurück zum Zitat Jung SC, Kim HJ, Kang YJ, Han YK. Advantages of Ge anode for Na-ion batteries: Ge vs. Si and Sn. J Alloys Compd. 2016;688:158. Jung SC, Kim HJ, Kang YJ, Han YK. Advantages of Ge anode for Na-ion batteries: Ge vs. Si and Sn. J Alloys Compd. 2016;688:158.
[21]
Zurück zum Zitat Nam DH, Kim TH, Hong KS, Kwon HS. Template-free electrochemical synthesis of sn nanofibers as high-performance anode materials for Na-ion batteries. ACS Nano. 2014;8(11):11824. Nam DH, Kim TH, Hong KS, Kwon HS. Template-free electrochemical synthesis of sn nanofibers as high-performance anode materials for Na-ion batteries. ACS Nano. 2014;8(11):11824.
[22]
Zurück zum Zitat Zhao L, Zhao JM, Hu YS, Li H, Zhou ZB, Armand M, Chen LQ. Disodium terephthalate (Na2C8H4O4) as high performance anode material for low-cost room-temperature sodium-ion battery. Adv Energy Mater. 2012;2(8):962. Zhao L, Zhao JM, Hu YS, Li H, Zhou ZB, Armand M, Chen LQ. Disodium terephthalate (Na2C8H4O4) as high performance anode material for low-cost room-temperature sodium-ion battery. Adv Energy Mater. 2012;2(8):962.
[23]
Zurück zum Zitat Park Y, Shin DS, Woo SH, Choi NS, Shin KH, Oh SM, Lee KT, Hong SY. Sodium terephthalate as an organic anode material for sodium ion batteries. Adv Mater. 2012;24(26):3562. Park Y, Shin DS, Woo SH, Choi NS, Shin KH, Oh SM, Lee KT, Hong SY. Sodium terephthalate as an organic anode material for sodium ion batteries. Adv Mater. 2012;24(26):3562.
[24]
Zurück zum Zitat Wu X, Ma J, Ma Q, Xu S, Hu YS, Sun Y, Li H, Chen H, Huang X. A spray drying approach for the synthesis of a Na2C6H2O4/CNT nanocomposite anode for sodium-ion batteries. J Mater Chem A. 2015;3(25):13193. Wu X, Ma J, Ma Q, Xu S, Hu YS, Sun Y, Li H, Chen H, Huang X. A spray drying approach for the synthesis of a Na2C6H2O4/CNT nanocomposite anode for sodium-ion batteries. J Mater Chem A. 2015;3(25):13193.
[25]
Zurück zum Zitat Chihara K, Kitajou A, Gocheva ID, Okada S, Yamaki JI. Cathode properties of Na3M2(PO4)2F-3 [M = Ti, Fe, V] for sodium-ion batteries. J Power Sources. 2013;227:80. Chihara K, Kitajou A, Gocheva ID, Okada S, Yamaki JI. Cathode properties of Na3M2(PO4)2F-3 [M = Ti, Fe, V] for sodium-ion batteries. J Power Sources. 2013;227:80.
[26]
Zurück zum Zitat Chen C, Fu K, Lu Y, Zhu J, Xue L, Hu Y. Use of a tin antimony alloy-filled porous carbon nanofiber composite as an anode in sodium-ion batteries. RSC Adv. 2015;5(39):30793. Chen C, Fu K, Lu Y, Zhu J, Xue L, Hu Y. Use of a tin antimony alloy-filled porous carbon nanofiber composite as an anode in sodium-ion batteries. RSC Adv. 2015;5(39):30793.
[27]
Zurück zum Zitat Li W, Chou SL, Wang JZ, Kim JH, Liu HK, Dou SX. Sn4+xP3@amorphous Sn-P composites as anodes for sodium-ion batteries with low cost, high capacity, long life, and superior rate capability. Adv Mater. 2014;26(24):4037. Li W, Chou SL, Wang JZ, Kim JH, Liu HK, Dou SX. Sn4+xP3@amorphous Sn-P composites as anodes for sodium-ion batteries with low cost, high capacity, long life, and superior rate capability. Adv Mater. 2014;26(24):4037.
[28]
Zurück zum Zitat Qian J, Chen Y, Wu L, Cao Y, Ai X, Yang H. High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem Commun. 2012;48(56):7070. Qian J, Chen Y, Wu L, Cao Y, Ai X, Yang H. High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem Commun. 2012;48(56):7070.
[29]
Zurück zum Zitat Oh SM, Myung ST, Jang MW, Scrosati B, Hassoun J, Sun YK. An advanced sodium-ion rechargeable battery based on a tin-carbon anode and a layered oxide framework cathode. Phys Chem Chem Phys. 2013;15(11):3827. Oh SM, Myung ST, Jang MW, Scrosati B, Hassoun J, Sun YK. An advanced sodium-ion rechargeable battery based on a tin-carbon anode and a layered oxide framework cathode. Phys Chem Chem Phys. 2013;15(11):3827.
[30]
Zurück zum Zitat Ramireddy T, Xing T, Rahman MM, Chen Y, Dutercq Q, Gunzelmann D. Phosphorus-carbon nanocomposite anodes for lithium-ion and sodium-ion batteries. Mater Chem A. 2015;3(10):5572. Ramireddy T, Xing T, Rahman MM, Chen Y, Dutercq Q, Gunzelmann D. Phosphorus-carbon nanocomposite anodes for lithium-ion and sodium-ion batteries. Mater Chem A. 2015;3(10):5572.
[31]
Zurück zum Zitat Chevrier VL, Ceder G. Challenges for Na-ion negative electrodes. J Electrochem Soc. 2011;158(9):A1011. Chevrier VL, Ceder G. Challenges for Na-ion negative electrodes. J Electrochem Soc. 2011;158(9):A1011.
[32]
Zurück zum Zitat Komaba S, Ishikawa T, Yabuuchi N, Murata W, Ito A, Ohsawa Y. Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. ACS Appl Mater Interfaces. 2011;3(11):4165. Komaba S, Ishikawa T, Yabuuchi N, Murata W, Ito A, Ohsawa Y. Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. ACS Appl Mater Interfaces. 2011;3(11):4165.
[33]
Zurück zum Zitat Ji L, Gu M, Shao Y, Li X, Engelhard MH, Arey BW, Wang W, Nie Z, Xiao J, Wang C, Zhang JG, Liu J. Controlling SEI formation on SnSb-porous carbon nanofibers for improved Na ion storage. Adv Mater. 2014;26(18):2901. Ji L, Gu M, Shao Y, Li X, Engelhard MH, Arey BW, Wang W, Nie Z, Xiao J, Wang C, Zhang JG, Liu J. Controlling SEI formation on SnSb-porous carbon nanofibers for improved Na ion storage. Adv Mater. 2014;26(18):2901.
[34]
Zurück zum Zitat Darwiche A, Bodenes L, Madec L, Monconduit L, Martinez H. Impact of the salts and solvents on the SEI formation in Sb/Na batteries: an XPS analysis. Electrochim Acta. 2016;207:284. Darwiche A, Bodenes L, Madec L, Monconduit L, Martinez H. Impact of the salts and solvents on the SEI formation in Sb/Na batteries: an XPS analysis. Electrochim Acta. 2016;207:284.
[35]
Zurück zum Zitat Winkler V, Kilibarda G, Schlabach S, Szabó DV, Hanemann T, Bruns M. Surface analytical study regarding the solid electrolyte interphase composition of nanoparticulate SnO2 anodes for Li-ion batteries. J Phys Chem C. 2016;120(43):24706. Winkler V, Kilibarda G, Schlabach S, Szabó DV, Hanemann T, Bruns M. Surface analytical study regarding the solid electrolyte interphase composition of nanoparticulate SnO2 anodes for Li-ion batteries. J Phys Chem C. 2016;120(43):24706.
[36]
Zurück zum Zitat Bodenes L, Darwiche A, Monconduit L, Martinez H. The solid electrolyte interphase a key parameter of the high performance of Sb in sodium-ion batteries: comparative X-ray photoelectron spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries. J Power Sources. 2015;273:14. Bodenes L, Darwiche A, Monconduit L, Martinez H. The solid electrolyte interphase a key parameter of the high performance of Sb in sodium-ion batteries: comparative X-ray photoelectron spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries. J Power Sources. 2015;273:14.
[37]
Zurück zum Zitat Zhang Y, Wang H, Luo Z, Tan HT, Li B, Sun S, Li Z, Zong Y, Xu ZJ, Yang Y, Khor KA, Yan Q. An air-stable densely packed phosphorene-graphene composite toward advanced lithium storage properties. Adv Energy Mater. 2016;6(12):1600453. Zhang Y, Wang H, Luo Z, Tan HT, Li B, Sun S, Li Z, Zong Y, Xu ZJ, Yang Y, Khor KA, Yan Q. An air-stable densely packed phosphorene-graphene composite toward advanced lithium storage properties. Adv Energy Mater. 2016;6(12):1600453.
[38]
Zurück zum Zitat Zhao Q, Huang Y, Hu X. A Si/C nanocomposite anode by ball milling for highly reversible sodium storage. Electrochem Commun. 2016;70:8. Zhao Q, Huang Y, Hu X. A Si/C nanocomposite anode by ball milling for highly reversible sodium storage. Electrochem Commun. 2016;70:8.
[39]
Zurück zum Zitat Lim CH, Huang TY, Shao PS, Chien JH, Weng YT, Huang HF, Hwang BJ, Wu NL. Experimental study on sodiation of amorphous silicon for use as sodium-ion battery anode. Electrochim Acta. 2016;211:265. Lim CH, Huang TY, Shao PS, Chien JH, Weng YT, Huang HF, Hwang BJ, Wu NL. Experimental study on sodiation of amorphous silicon for use as sodium-ion battery anode. Electrochim Acta. 2016;211:265.
[40]
Zurück zum Zitat Chen T, Liu Y, Pan L, Lu T, Yao YF, Sun Z, Chua DHC, Chen Q. Electrospun carbon nanofibers as anode materials for sodium ion batteries with excellent cycle performance. J Mater Chem. 2014;2(12):4117. Chen T, Liu Y, Pan L, Lu T, Yao YF, Sun Z, Chua DHC, Chen Q. Electrospun carbon nanofibers as anode materials for sodium ion batteries with excellent cycle performance. J Mater Chem. 2014;2(12):4117.
[41]
Zurück zum Zitat Chen W, Deng D. Carbonized common filter paper decorated with Sn@C nanospheres as additive-free electrodes for sodium-ion batteries. Carbon. 2015;87:70. Chen W, Deng D. Carbonized common filter paper decorated with Sn@C nanospheres as additive-free electrodes for sodium-ion batteries. Carbon. 2015;87:70.
[42]
Zurück zum Zitat Zhu HL, Jia Z, Chen YC, Weadock N, Wan JY, Vaaland O, Han XG, Li T, Hu LB. Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Lett. 2013;13(7):3093. Zhu HL, Jia Z, Chen YC, Weadock N, Wan JY, Vaaland O, Han XG, Li T, Hu LB. Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Lett. 2013;13(7):3093.
[43]
Zurück zum Zitat Darwiche A, Marino C, Sougrati MT, Fraisse B, Stievano L, Monconduit L. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. J Am Chem Soc. 2012;134(51):20805. Darwiche A, Marino C, Sougrati MT, Fraisse B, Stievano L, Monconduit L. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. J Am Chem Soc. 2012;134(51):20805.
[44]
Zurück zum Zitat Kim Y, Park Y, Choi A, Choi NS, Kim J, Lee J, Ryu JH, Oh SM, Lee KT. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv Mater. 2013;25(22):3045. Kim Y, Park Y, Choi A, Choi NS, Kim J, Lee J, Ryu JH, Oh SM, Lee KT. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv Mater. 2013;25(22):3045.
[45]
Zurück zum Zitat Yang HX, Li JS, Guo T. Evolution of microstructure and hardness in a dual-phase Al0.5CoCrFeNi high-entropy alloy with different grain sizes. Rare Met. 2020;39(2):156. Yang HX, Li JS, Guo T. Evolution of microstructure and hardness in a dual-phase Al0.5CoCrFeNi high-entropy alloy with different grain sizes. Rare Met. 2020;39(2):156.
[46]
Zurück zum Zitat Wu L, Lu HY, Xiao LF, Ai XP, Yang HX, Cao YL. Electrochemical properties and morphological evolution of pitaya-like Sb@C microspheres as high-performance anode for sodium ion batteries. J Mater Chem A. 2015;3(10):5708. Wu L, Lu HY, Xiao LF, Ai XP, Yang HX, Cao YL. Electrochemical properties and morphological evolution of pitaya-like Sb@C microspheres as high-performance anode for sodium ion batteries. J Mater Chem A. 2015;3(10):5708.
[47]
Zurück zum Zitat Kim H, Ding Z, Lee M, Lim K, Yoon G, Kang K. Recent progress in electrode materials for sodium-ion batteries. Adv Energy Mater. 2016;6(19):1600943. Kim H, Ding Z, Lee M, Lim K, Yoon G, Kang K. Recent progress in electrode materials for sodium-ion batteries. Adv Energy Mater. 2016;6(19):1600943.
[48]
Zurück zum Zitat Ellis LD, Wilkes BN, Hatchard TD, Obrovac MN. In situ XRD study of silicon, lead and bismuth negative electrodes in nonaqueous sodium cells. J Electrochem Soc. 2014;161(3):A416. Ellis LD, Wilkes BN, Hatchard TD, Obrovac MN. In situ XRD study of silicon, lead and bismuth negative electrodes in nonaqueous sodium cells. J Electrochem Soc. 2014;161(3):A416.
[49]
Zurück zum Zitat Jung SC, Jung DS, Choi JW, Han YK. Atom-level understanding of the sodiation process in silicon anode material. Phys Chem Lett. 2014;5(7):1283. Jung SC, Jung DS, Choi JW, Han YK. Atom-level understanding of the sodiation process in silicon anode material. Phys Chem Lett. 2014;5(7):1283.
[50]
Zurück zum Zitat Fu Y, Wei Q, Zhang G, Sun S. Advanced phosphorus-based materials for lithium/sodium-ion batteries: recent developments and future perspectives. Adv Energy Mater. 2018;8(13):1702849. Fu Y, Wei Q, Zhang G, Sun S. Advanced phosphorus-based materials for lithium/sodium-ion batteries: recent developments and future perspectives. Adv Energy Mater. 2018;8(13):1702849.
[51]
Zurück zum Zitat Liu Y, Xu Y, Zhu Y, Culver J, Lundgren C, Xu K, Wang C. Tin-coated viral nanoforests as sodium-ion battery anodes. ACS Nano. 2013;7(4):3627. Liu Y, Xu Y, Zhu Y, Culver J, Lundgren C, Xu K, Wang C. Tin-coated viral nanoforests as sodium-ion battery anodes. ACS Nano. 2013;7(4):3627.
[52]
Zurück zum Zitat Wu L, Hu XH, Qian JF, Pei F, Wu FY, Mao RJ, Ai XP, Yang HX, Cao YL. Sb-C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries. Energy Environ Sci. 2014;7(1):323. Wu L, Hu XH, Qian JF, Pei F, Wu FY, Mao RJ, Ai XP, Yang HX, Cao YL. Sb-C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries. Energy Environ Sci. 2014;7(1):323.
[53]
Zurück zum Zitat Sun J, Zheng G, Lee H, Liu N, Wang H, Yao H, Yang H, Cui Y. Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. Nano Lett. 2014;14(8):4573. Sun J, Zheng G, Lee H, Liu N, Wang H, Yao H, Yang H, Cui Y. Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. Nano Lett. 2014;14(8):4573.
[54]
Zurück zum Zitat Abel PR, Lin YM, de Souza T. Nanocolumnar germanium thin films as a high-rate sodium-ion battery anode material. J Phys Chem C. 2013;117(37):18885. Abel PR, Lin YM, de Souza T. Nanocolumnar germanium thin films as a high-rate sodium-ion battery anode material. J Phys Chem C. 2013;117(37):18885.
[55]
Zurück zum Zitat Wang XY, Fan L, Gong DC, Zhu J, Zhang QF, Lu BA. Core-shell Ge@graphene@TiO2 nanofibers as a high-capacity and cycle-stable anode for lithium and sodium ion battery. Adv Funct Mater. 2016;26(7):1104. Wang XY, Fan L, Gong DC, Zhu J, Zhang QF, Lu BA. Core-shell Ge@graphene@TiO2 nanofibers as a high-capacity and cycle-stable anode for lithium and sodium ion battery. Adv Funct Mater. 2016;26(7):1104.
[56]
Zurück zum Zitat Yue C, Yu YJ, Sun SB, He X, Chen BB. High performance 3D Si/Ge nanorods array anode buffered by TiN/Ti interlayer for sodium-ion batteries. Adv Funct Mater. 2015;25(9):1386. Yue C, Yu YJ, Sun SB, He X, Chen BB. High performance 3D Si/Ge nanorods array anode buffered by TiN/Ti interlayer for sodium-ion batteries. Adv Funct Mater. 2015;25(9):1386.
[57]
Zurück zum Zitat Liu JL. Hierarchical N-doping germanium/carbon nanofibers as anode for high-performance lithium-ion and sodium-ion batteries. Nanotechnology. 2020;31:015402. Liu JL. Hierarchical N-doping germanium/carbon nanofibers as anode for high-performance lithium-ion and sodium-ion batteries. Nanotechnology. 2020;31:015402.
[58]
Zurück zum Zitat Sung GK, Nam KH, Choi JH, Park CM. Germanium telluride: layered high-performance anode for sodium-ion batteries. Electrochim Acta. 2020;333:135393. Sung GK, Nam KH, Choi JH, Park CM. Germanium telluride: layered high-performance anode for sodium-ion batteries. Electrochim Acta. 2020;333:135393.
[59]
Zurück zum Zitat Li XW, Li WW, Shen PF, Yang LC, Li YY, Shi JC, Zhang HY. Layered GeP-black P(Ge2P3): an advanced binary-phase anode for Li/Na-storage. Ceram Int. 2019;45(12):15711. Li XW, Li WW, Shen PF, Yang LC, Li YY, Shi JC, Zhang HY. Layered GeP-black P(Ge2P3): an advanced binary-phase anode for Li/Na-storage. Ceram Int. 2019;45(12):15711.
[60]
Zurück zum Zitat Li WW, Li XW, Liao J, Zhao B. Structural design of Ge-based anodes with chemical bonding for high-performance Na-ion batteries. Energy Storage Materials. 2019;20:380. Li WW, Li XW, Liao J, Zhao B. Structural design of Ge-based anodes with chemical bonding for high-performance Na-ion batteries. Energy Storage Materials. 2019;20:380.
[61]
Zurück zum Zitat Li WW, Ke LB, Wei YQ, Guo SH. Highly reversible sodium storage in a GeP5/C composite anode with large capacity and low voltage. J Mater Chem A. 2017;5(9):4413. Li WW, Ke LB, Wei YQ, Guo SH. Highly reversible sodium storage in a GeP5/C composite anode with large capacity and low voltage. J Mater Chem A. 2017;5(9):4413.
[62]
Zurück zum Zitat Baggetto L, Keum JK, Browning JF, Veith GM. Germanium as negative electrode material for sodium-ion batteries. Electrochem Commun. 2013;34:41. Baggetto L, Keum JK, Browning JF, Veith GM. Germanium as negative electrode material for sodium-ion batteries. Electrochem Commun. 2013;34:41.
[63]
Zurück zum Zitat Lu X, Adkins ER, He Y. Germanium as a sodium ion battery material: in situ TEM reveals fast sodiation kinetics with high capacity. Chem Mater. 2016;28(4):12361242. Lu X, Adkins ER, He Y. Germanium as a sodium ion battery material: in situ TEM reveals fast sodiation kinetics with high capacity. Chem Mater. 2016;28(4):12361242.
[64]
Zurück zum Zitat Su D, Dou S, Wang G. Bismuth: a new anode for the Na-ion battery. Nano Energy. 2015;12:88. Su D, Dou S, Wang G. Bismuth: a new anode for the Na-ion battery. Nano Energy. 2015;12:88.
[65]
Zurück zum Zitat Dai R, Wang Y, Da P, Wu H, Xu M, Zheng G. Indirect growth of mesoporous Bi@C core-shell nanowires for enhanced lithium-ion storage. Nanoscale. 2014;6(21):13236. Dai R, Wang Y, Da P, Wu H, Xu M, Zheng G. Indirect growth of mesoporous Bi@C core-shell nanowires for enhanced lithium-ion storage. Nanoscale. 2014;6(21):13236.
[66]
Zurück zum Zitat Ni JF, Bi XX, Jiang Y, Li L, Lu J. Bismuth chalcogenide compounds Bi2X3 (X = O, S, Se): applications in electrochemical energy storage. Nano Energy. 2017;34:356. Ni JF, Bi XX, Jiang Y, Li L, Lu J. Bismuth chalcogenide compounds Bi2X3 (X = O, S, Se): applications in electrochemical energy storage. Nano Energy. 2017;34:356.
[67]
Zurück zum Zitat Cheng L, Liu HJ, Tan XJ, Zhang J, Wei J, Lv HY. Thermoelectric properties of a monolayer bismuth. J Phys Chem C. 2014;118(2):904. Cheng L, Liu HJ, Tan XJ, Zhang J, Wei J, Lv HY. Thermoelectric properties of a monolayer bismuth. J Phys Chem C. 2014;118(2):904.
[68]
Zurück zum Zitat Akturk E, Akturk OU, Ciraci S. Single and bilayer bismuthene: stability at high temperature and mechanical and electronic properties. Phys Rev B. 2016;94(1):014115. Akturk E, Akturk OU, Ciraci S. Single and bilayer bismuthene: stability at high temperature and mechanical and electronic properties. Phys Rev B. 2016;94(1):014115.
[69]
Zurück zum Zitat Liu SN, Luo ZG, Guo JH. Bismuth nanosheets grown on carbon fiber cloth as advanced binder-free anode for sodium-ion batteries. Electrochem Commun. 2017;81:10. Liu SN, Luo ZG, Guo JH. Bismuth nanosheets grown on carbon fiber cloth as advanced binder-free anode for sodium-ion batteries. Electrochem Commun. 2017;81:10.
[70]
Zurück zum Zitat Zhao YB, Manthiram A. High-capacity, high-rate Bi-Sb alloy anodes for lithium-ion and sodium-ion batteries. Chem Mater. 2015;27(8):3096. Zhao YB, Manthiram A. High-capacity, high-rate Bi-Sb alloy anodes for lithium-ion and sodium-ion batteries. Chem Mater. 2015;27(8):3096.
[71]
Zurück zum Zitat Wang CC, Wang LB, Li FJ, Cheng FY, Chen J. Bulk bismuth as a high-capacity and ultralong cycle-life anode for sodium-ion batteries by coupling with glyme-based electrolytes. Adv Mater. 2017;29(35):1702212. Wang CC, Wang LB, Li FJ, Cheng FY, Chen J. Bulk bismuth as a high-capacity and ultralong cycle-life anode for sodium-ion batteries by coupling with glyme-based electrolytes. Adv Mater. 2017;29(35):1702212.
[72]
Zurück zum Zitat Xiong PX, Bai PX, Li A. Bismuth nanoparticle@carbon composite anodes for ultralong cycle life and high-rate sodium-ion batteries. Adv Mater. 2019;31(48):1904771. Xiong PX, Bai PX, Li A. Bismuth nanoparticle@carbon composite anodes for ultralong cycle life and high-rate sodium-ion batteries. Adv Mater. 2019;31(48):1904771.
[73]
Zurück zum Zitat Yang H, Xu R, Yao Y. Multicore-shell Bi@N-doped carbon nanospheres for high power density and long cycle life sodium- and potassium-ion anodes. Adv Funct Mater. 2019;29(13):1809195. Yang H, Xu R, Yao Y. Multicore-shell Bi@N-doped carbon nanospheres for high power density and long cycle life sodium- and potassium-ion anodes. Adv Funct Mater. 2019;29(13):1809195.
[74]
Zurück zum Zitat Guo ST, Li H, Lu Y, Liu ZF, Hu XL. Lattice softening enables highly reversible sodium storage in anti-pulverization Bi-Sb alloy/carbon nanofibers. Energy Storage Mater. 2020;27:270. Guo ST, Li H, Lu Y, Liu ZF, Hu XL. Lattice softening enables highly reversible sodium storage in anti-pulverization Bi-Sb alloy/carbon nanofibers. Energy Storage Mater. 2020;27:270.
[75]
Zurück zum Zitat Wang LB, Wang CC, Li FJ. In situ synthesis of Bi nanoflakes on Ni foam for sodium-ion batteries. Chem Commun. 2018;54(1):38. Wang LB, Wang CC, Li FJ. In situ synthesis of Bi nanoflakes on Ni foam for sodium-ion batteries. Chem Commun. 2018;54(1):38.
[76]
Zurück zum Zitat Zhang W, Yan W, Jiang HQ, Wang C, Zhou Y, Ke FH, Cong HJ, Deng HX. Uniform Bi-Sb alloy nanoparticles synthesized from MOFs by laser metallurgy for sodium-ion batteries. ACS Sustain Chem Eng. 2020;8(1):335. Zhang W, Yan W, Jiang HQ, Wang C, Zhou Y, Ke FH, Cong HJ, Deng HX. Uniform Bi-Sb alloy nanoparticles synthesized from MOFs by laser metallurgy for sodium-ion batteries. ACS Sustain Chem Eng. 2020;8(1):335.
[77]
Zurück zum Zitat Yang H, Chen LW, He FX, Zhang JQ, Feng YZ, Zhao LK, Wang B, He LX, Zhang QB, Yu Y. Optimizing the void size of yolk-shell Bi@Void@C nanospheres for high-power-density sodium-ion batteries. Nano Lett. 2020;20(1):758. Yang H, Chen LW, He FX, Zhang JQ, Feng YZ, Zhao LK, Wang B, He LX, Zhang QB, Yu Y. Optimizing the void size of yolk-shell Bi@Void@C nanospheres for high-power-density sodium-ion batteries. Nano Lett. 2020;20(1):758.
[78]
Zurück zum Zitat Jin YQ, Yuan HC, Lan JL, Yu YH, Lin YH, Yang XP. Bio-inspired spider-web-like membranes with a hierarchical structure for high performance lithium/sodium ion battery electrodes: the case of 3D freestanding and binder-free bismuth/CNF anodes. Nanoscale. 2017;9(35):13298. Jin YQ, Yuan HC, Lan JL, Yu YH, Lin YH, Yang XP. Bio-inspired spider-web-like membranes with a hierarchical structure for high performance lithium/sodium ion battery electrodes: the case of 3D freestanding and binder-free bismuth/CNF anodes. Nanoscale. 2017;9(35):13298.
[79]
Zurück zum Zitat Sottmann Jonas, Herrmann Matthias, Vajeeston Ponniah. How crystallite size controls the reaction path in nonaqueous metal ion batteries: the example of sodium bismuth alloying. Chem Mater. 2016;28(8):2750. Sottmann Jonas, Herrmann Matthias, Vajeeston Ponniah. How crystallite size controls the reaction path in nonaqueous metal ion batteries: the example of sodium bismuth alloying. Chem Mater. 2016;28(8):2750.
[80]
Zurück zum Zitat Park JS, Kang YC. Uniquely structured Sb nanoparticle-embedded carbon/reduced graphene oxide composite shell with empty voids for high performance sodium-ion storage. Chem Eng J. 2019;373:227. Park JS, Kang YC. Uniquely structured Sb nanoparticle-embedded carbon/reduced graphene oxide composite shell with empty voids for high performance sodium-ion storage. Chem Eng J. 2019;373:227.
[81]
Zurück zum Zitat Meng WJ, Guo MQ, Chen JJ, Li DS, Wang ZH, Yang FQ. Porous Sb with three-dimensional Sb nanodendrites as electrode material for high-performance Li/Na-ion batteries. Nanotechnology. 2020;31:175401. Meng WJ, Guo MQ, Chen JJ, Li DS, Wang ZH, Yang FQ. Porous Sb with three-dimensional Sb nanodendrites as electrode material for high-performance Li/Na-ion batteries. Nanotechnology. 2020;31:175401.
[82]
Zurück zum Zitat Ning XM, Zhou XS, Luo J. Ion-assisted construction of Sb/N-doped graphene as an anode for Li/Na ion batteries. Nanotechnology. 2020;31(9):095404. Ning XM, Zhou XS, Luo J. Ion-assisted construction of Sb/N-doped graphene as an anode for Li/Na ion batteries. Nanotechnology. 2020;31(9):095404.
[83]
Zurück zum Zitat Chen BC, Qin HY, Li K. Yolk-shelled Sb@C nanoconfined nitrogen/sulfur co-doped 3D porous carbon microspheres for sodium-ion battery anode with ultralong high-rate cycling. Nano Energy. 2019;66:104133. Chen BC, Qin HY, Li K. Yolk-shelled Sb@C nanoconfined nitrogen/sulfur co-doped 3D porous carbon microspheres for sodium-ion battery anode with ultralong high-rate cycling. Nano Energy. 2019;66:104133.
[84]
Zurück zum Zitat Li HM, Wang KL, Zhou M, Li W, Tao HW, Wang RX, Cheng SJ, Jiang K. Facile tailoring of multidimensional nanostructured Sb for sodium storage applications. ACS Nano. 2019;13(8):9533. Li HM, Wang KL, Zhou M, Li W, Tao HW, Wang RX, Cheng SJ, Jiang K. Facile tailoring of multidimensional nanostructured Sb for sodium storage applications. ACS Nano. 2019;13(8):9533.
[85]
Zurück zum Zitat Wang ZY, Dong KZ, Wang D. A nanosized SnSb alloy confined in N-doped 3D porous carbon coupled with ether-based electrolytes toward high-performance potassium-ion batteries. J Mater Chem A. 2019;7(23):14309. Wang ZY, Dong KZ, Wang D. A nanosized SnSb alloy confined in N-doped 3D porous carbon coupled with ether-based electrolytes toward high-performance potassium-ion batteries. J Mater Chem A. 2019;7(23):14309.
[86]
Zurück zum Zitat Li XY, Sun ML, Ni JF, Li L. Template-free construction of self-supported Sb prisms with stable sodium storage. Adv Energy Mater. 2019;9(24):1901096. Li XY, Sun ML, Ni JF, Li L. Template-free construction of self-supported Sb prisms with stable sodium storage. Adv Energy Mater. 2019;9(24):1901096.
[87]
Zurück zum Zitat Wu ZB, Johannessen B, Zhang WC, Pang WK, Mao JF, Liu HK, Guo ZP. In situ incorporation of nanostructured antimony in an N-doped carbon matrix for advanced sodium-ion batteries. J Mater Chem A. 2019;7(20):12842. Wu ZB, Johannessen B, Zhang WC, Pang WK, Mao JF, Liu HK, Guo ZP. In situ incorporation of nanostructured antimony in an N-doped carbon matrix for advanced sodium-ion batteries. J Mater Chem A. 2019;7(20):12842.
[88]
Zurück zum Zitat Chen H, Chen N, Zhang MN, Ml Li, Gao Y, Wang CZ, Chen G, Du F. Ti3C2Tx MXene decorated with Sb nanoparticles as anodes material for sodium-ion batteries. Nanotechnology. 2019;30(13):134001. Chen H, Chen N, Zhang MN, Ml Li, Gao Y, Wang CZ, Chen G, Du F. Ti3C2Tx MXene decorated with Sb nanoparticles as anodes material for sodium-ion batteries. Nanotechnology. 2019;30(13):134001.
[89]
Zurück zum Zitat Kalisvaart WP, Olsen BC, Luber EJ, Burik JM. Sb-Si alloys and multilayers for sodium-ion battery anodes. J. ACS Appl. Energy Mater. 2019;2(3):2205. Kalisvaart WP, Olsen BC, Luber EJ, Burik JM. Sb-Si alloys and multilayers for sodium-ion battery anodes. J. ACS Appl. Energy Mater. 2019;2(3):2205.
[90]
Zurück zum Zitat Song JH, Xiao DD, Jia HP, Zhu GM, Engelhard M, Xiao BW, Feng S, Li DS, Reed D, Sprenkle VL. A comparative study of pomegranate Sb@C yolk- shell microspheres as Li and Na- ion battery anodes. Nanoscale. 2019;11(1):348. Song JH, Xiao DD, Jia HP, Zhu GM, Engelhard M, Xiao BW, Feng S, Li DS, Reed D, Sprenkle VL. A comparative study of pomegranate Sb@C yolk- shell microspheres as Li and Na- ion battery anodes. Nanoscale. 2019;11(1):348.
[91]
Zurück zum Zitat Ma WS, Yin KB, Gao H. Alloying boosting superior sodium storage performance in nanoporous tin-antimony alloy anode for sodium ion batteries. Nano Energy. 2018;54:349. Ma WS, Yin KB, Gao H. Alloying boosting superior sodium storage performance in nanoporous tin-antimony alloy anode for sodium ion batteries. Nano Energy. 2018;54:349.
[92]
Zurück zum Zitat Zhang Y, Gao H, Niu JZ, Ma WS, Shi YZ, Song MJ, Peng ZQ, Zhang ZH. Scalable fabrication of core-shell Sb@Co(OH)2 nanosheet anodes for advanced sodium-ion batteries via magnetron sputtering. ACS Nano. 2018;12(11):11678. Zhang Y, Gao H, Niu JZ, Ma WS, Shi YZ, Song MJ, Peng ZQ, Zhang ZH. Scalable fabrication of core-shell Sb@Co(OH)2 nanosheet anodes for advanced sodium-ion batteries via magnetron sputtering. ACS Nano. 2018;12(11):11678.
[93]
Zurück zum Zitat Luo W, Li F, Gaumet JJ, Magri P, Diliberto S, Zhou L, Mai LQ. Bottom-up confined synthesis of nanorod-in-nanotube structured Sb@N-C for durable lithium and sodium storage. Adv Energy Mater. 2018;8(19):1703237. Luo W, Li F, Gaumet JJ, Magri P, Diliberto S, Zhou L, Mai LQ. Bottom-up confined synthesis of nanorod-in-nanotube structured Sb@N-C for durable lithium and sodium storage. Adv Energy Mater. 2018;8(19):1703237.
[94]
Zurück zum Zitat Ma WS, Wang JW, Gao H, Niu JZ, Luo FK, Peng ZQ, Zhang ZH. A mesoporous antimony-based nanocomposite for advanced sodium ion batteries. Energy Storage Mater. 2018;13:247. Ma WS, Wang JW, Gao H, Niu JZ, Luo FK, Peng ZQ, Zhang ZH. A mesoporous antimony-based nanocomposite for advanced sodium ion batteries. Energy Storage Mater. 2018;13:247.
[95]
Zurück zum Zitat Dong SH, Li CX, Li ZQ, Zhang LY, Yin LW. Mesoporous hollow Sb/ZnS@C core-shell heterostructures as anodes for high-performance sodium-ion batteries. Small. 2018;14(16):1704517. Dong SH, Li CX, Li ZQ, Zhang LY, Yin LW. Mesoporous hollow Sb/ZnS@C core-shell heterostructures as anodes for high-performance sodium-ion batteries. Small. 2018;14(16):1704517.
[96]
Zurück zum Zitat Zhang M, Ouyang LZ, Zhu M, Fang F, Liu JW, Liu ZW. A phosphorus and carbon composite containing nanocrystalline Sb as a stable and high-capacity anode for sodium ion batteries. J. Mater. Chem. A. 2020;8(1):443. Zhang M, Ouyang LZ, Zhu M, Fang F, Liu JW, Liu ZW. A phosphorus and carbon composite containing nanocrystalline Sb as a stable and high-capacity anode for sodium ion batteries. J. Mater. Chem. A. 2020;8(1):443.
[97]
Zurück zum Zitat Eldho E, Sivaramapanicker S, Srinivasan M. Melt-spun Fe-Sb intermetallic alloy anode for performance enhanced sodium-ion batteries ACS Appl. Mater. Interfaces. 2017;9(45):39399. Eldho E, Sivaramapanicker S, Srinivasan M. Melt-spun Fe-Sb intermetallic alloy anode for performance enhanced sodium-ion batteries ACS Appl. Mater. Interfaces. 2017;9(45):39399.
[98]
Zurück zum Zitat Lin ZH, Wang GH, Xiong XH. Ni-polymer gels-derived hollow NiSb alloy confined in 3D interconnected carbon as superior sodium-ion battery anode. Electrochim Acta. 2018;269:225. Lin ZH, Wang GH, Xiong XH. Ni-polymer gels-derived hollow NiSb alloy confined in 3D interconnected carbon as superior sodium-ion battery anode. Electrochim Acta. 2018;269:225.
[99]
Zurück zum Zitat Li PH, Yu LT, Ji SM. Facile synthesis of three-dimensional porous interconnected carbon matrix embedded with Sb nanoparticles as superior anode for Na-ion batteries. Chem Eng J. 2019;374:502. Li PH, Yu LT, Ji SM. Facile synthesis of three-dimensional porous interconnected carbon matrix embedded with Sb nanoparticles as superior anode for Na-ion batteries. Chem Eng J. 2019;374:502.
[100]
Zurück zum Zitat Zhu YJ, Han XG, Xu YH. Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode. ACS Nano. 2013;7(7):6378. Zhu YJ, Han XG, Xu YH. Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode. ACS Nano. 2013;7(7):6378.
[101]
Zurück zum Zitat Wang LB, Wang CC, Zhang N. High anode performance of in situ formed Cu2Sb nanoparticles integrated on Cu foil via replacement reaction for sodium-ion batteries. ACS Energy Lett. 2017;2:256. Wang LB, Wang CC, Zhang N. High anode performance of in situ formed Cu2Sb nanoparticles integrated on Cu foil via replacement reaction for sodium-ion batteries. ACS Energy Lett. 2017;2:256.
[102]
Zurück zum Zitat Phoebe KA, John MG, Darwiche A. Tracking sodium-antimonide phase transformations in sodium-ion anodes: insights from operando pair distribution function analysis and solid-state NMR spectroscopy. J Am Chem Soc. 2016;138(7):2352. Phoebe KA, John MG, Darwiche A. Tracking sodium-antimonide phase transformations in sodium-ion anodes: insights from operando pair distribution function analysis and solid-state NMR spectroscopy. J Am Chem Soc. 2016;138(7):2352.
[103]
Zurück zum Zitat Liu XX, Li N, Yang C. Sn accommodation in tunable-void and porous graphene bumper for high-performance Li- and Na-ion storage. J Alloy Compd. 2019;790(25):1043. Liu XX, Li N, Yang C. Sn accommodation in tunable-void and porous graphene bumper for high-performance Li- and Na-ion storage. J Alloy Compd. 2019;790(25):1043.
[104]
Zurück zum Zitat Changhyeon K, Icpyo K, Huihun K. A self-healing Sn anode with an ultra-long cycle life for sodium-ion batteries. J Mater Chem A. 2018;6(45):22809. Changhyeon K, Icpyo K, Huihun K. A self-healing Sn anode with an ultra-long cycle life for sodium-ion batteries. J Mater Chem A. 2018;6(45):22809.
[105]
Zurück zum Zitat Jeffrey M, Amy LP. Electrodeposition of pure phase SnSb exhibiting high stability as a sodium-ion battery anode. Chem Commun. 2019;55(48):6938. Jeffrey M, Amy LP. Electrodeposition of pure phase SnSb exhibiting high stability as a sodium-ion battery anode. Chem Commun. 2019;55(48):6938.
[106]
Zurück zum Zitat Qin J, Wang TS, Liu DY. A top-down strategy toward SnSb in-plane nanoconfined 3D N-doped porous graphene composite microspheres for high performance Na-ion battery anode. Adv Mater. 2018;30(9):1704670. Qin J, Wang TS, Liu DY. A top-down strategy toward SnSb in-plane nanoconfined 3D N-doped porous graphene composite microspheres for high performance Na-ion battery anode. Adv Mater. 2018;30(9):1704670.
[107]
Zurück zum Zitat Choi JH, Ha CW, Choi HY. Porous carbon-free SnSb anodes for high-performance Na-ion batteries. J Power Sources. 2018;386:34. Choi JH, Ha CW, Choi HY. Porous carbon-free SnSb anodes for high-performance Na-ion batteries. J Power Sources. 2018;386:34.
[108]
Zurück zum Zitat Xu YH, Zhu YJ, Liu YH. Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries. Adv Energy Mater. 2013;3(1):128. Xu YH, Zhu YJ, Liu YH. Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries. Adv Energy Mater. 2013;3(1):128.
[109]
Zurück zum Zitat Huang B, Yang JW, Li YW. Carbon encapsulated Sn-Co alloy: a stabilized tin-based material for sodium storage. Mater Lett. 2018;210:321. Huang B, Yang JW, Li YW. Carbon encapsulated Sn-Co alloy: a stabilized tin-based material for sodium storage. Mater Lett. 2018;210:321.
[110]
Zurück zum Zitat Xiao LF, Cao YL, Xiao J. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chem Commun. 2012;48(27):3321. Xiao LF, Cao YL, Xiao J. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chem Commun. 2012;48(27):3321.
[111]
Zurück zum Zitat Ji LW, Gu M, Shao YY. Controlling SEI formation on SnSb-porous carbon nanofibers for improved Na ion storage. Adv Mater. 2014;26(18):2901. Ji LW, Gu M, Shao YY. Controlling SEI formation on SnSb-porous carbon nanofibers for improved Na ion storage. Adv Mater. 2014;26(18):2901.
[112]
Zurück zum Zitat Xie HZ, Tan XH, Erik JL. β-SnSb for sodium ion battery anodes: phase transformations responsible for enhanced cycling stability revealed by in situ TEM. ACS Energy Lett. 2018;3(7):1670. Xie HZ, Tan XH, Erik JL. β-SnSb for sodium ion battery anodes: phase transformations responsible for enhanced cycling stability revealed by in situ TEM. ACS Energy Lett. 2018;3(7):1670.
[113]
Zurück zum Zitat Liu YC, Zhang N, Jiao LF. Ultrasmall Sn nanoparticles embedded in carbon as high-performance anode for sodium-ion batteries. Adv Funct Mater. 2015;25(2):214. Liu YC, Zhang N, Jiao LF. Ultrasmall Sn nanoparticles embedded in carbon as high-performance anode for sodium-ion batteries. Adv Funct Mater. 2015;25(2):214.
[114]
Zurück zum Zitat Joshua MS, Martin M. Investigating sodium storage mechanisms in tin anodes: a combined pair distribution function analysis, density functional theory, and solid-state NMR approach. J Am Chem Soc. 2017;139(21):7273. Joshua MS, Martin M. Investigating sodium storage mechanisms in tin anodes: a combined pair distribution function analysis, density functional theory, and solid-state NMR approach. J Am Chem Soc. 2017;139(21):7273.
[115]
Zurück zum Zitat Wang JW, Liu XH, Mao SX. Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. Nano Lett. 2012;12(11):5897. Wang JW, Liu XH, Mao SX. Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. Nano Lett. 2012;12(11):5897.
[116]
Zurück zum Zitat Zhu J, Deng D. Amorphous bimetallic Co3Sn2 nanoalloys are better than crystalline counterparts for sodium storage. J Phys Chem C. 2015;119(37):21323. Zhu J, Deng D. Amorphous bimetallic Co3Sn2 nanoalloys are better than crystalline counterparts for sodium storage. J Phys Chem C. 2015;119(37):21323.
[117]
Zurück zum Zitat Fukunishi M, Yabuuchi N, Dahbi M. Impact of the cut-off voltage on cyclability and passive interphase of Sn-polyacrylate composite electrodes for sodium-ion batteries. J Phys Chem C. 2016;120:15017. Fukunishi M, Yabuuchi N, Dahbi M. Impact of the cut-off voltage on cyclability and passive interphase of Sn-polyacrylate composite electrodes for sodium-ion batteries. J Phys Chem C. 2016;120:15017.
[118]
Zurück zum Zitat Huang JQ, Guo XY, Du XQ. Nanostructures of solid electrolyte interphases and their consequences for microsized Sn anodes in sodium ion batteries. Energy Environ Sci. 2019;12(5):1550. Huang JQ, Guo XY, Du XQ. Nanostructures of solid electrolyte interphases and their consequences for microsized Sn anodes in sodium ion batteries. Energy Environ Sci. 2019;12(5):1550.
[119]
Zurück zum Zitat Sun Y, Guo SH, Zhou HS. Exploration of advanced electrode materials for rechargeable sodium-ion batteries. Adv Energy Mater. 2019;9(23):1800212. Sun Y, Guo SH, Zhou HS. Exploration of advanced electrode materials for rechargeable sodium-ion batteries. Adv Energy Mater. 2019;9(23):1800212.
[120]
Zurück zum Zitat Xu Y, Swaans E, Basak S. Reversible Na-ion uptake in Si nanoparticles. Adv Energy Mater. 2016;6(2):1501436. Xu Y, Swaans E, Basak S. Reversible Na-ion uptake in Si nanoparticles. Adv Energy Mater. 2016;6(2):1501436.
[121]
Zurück zum Zitat Laura CL, Laure M, Vincent S. Si and Ge-Based anode materials for Li-. Na-, and K-ion batteries: a perspective from structure to electrochemical mechanism small. 2020;16(5):1905260. Laura CL, Laure M, Vincent S. Si and Ge-Based anode materials for Li-. Na-, and K-ion batteries: a perspective from structure to electrochemical mechanism small. 2020;16(5):1905260.
[122]
Zurück zum Zitat Huang SZ, Liu LX, Zheng Y. Efficient sodium storage in rolled-up amorphous Si nanomembranes. Adv Mater. 2018;30(20):1706637. Huang SZ, Liu LX, Zheng Y. Efficient sodium storage in rolled-up amorphous Si nanomembranes. Adv Mater. 2018;30(20):1706637.
[123]
Zurück zum Zitat Legrain F, Malyi OI, Manzhos S. Comparative computational study of the diffusion of Li, Na, and Mg in silicon including the effect of vibrations. Solid State Ionics. 2013;253:157. Legrain F, Malyi OI, Manzhos S. Comparative computational study of the diffusion of Li, Na, and Mg in silicon including the effect of vibrations. Solid State Ionics. 2013;253:157.
[124]
Zurück zum Zitat Jung SC, Jung DS, Choi JW. Atom-level understanding of the sodiation process in silicon anode material. Chem Lett. 2014;5(7):12831288. Jung SC, Jung DS, Choi JW. Atom-level understanding of the sodiation process in silicon anode material. Chem Lett. 2014;5(7):12831288.
[125]
Zurück zum Zitat Zhu Y, Wen Y, Fan X. Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries. ACS Nano. 2015;9(3):3254. Zhu Y, Wen Y, Fan X. Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries. ACS Nano. 2015;9(3):3254.
[126]
Zurück zum Zitat Qian J, Wu X, Cao Y. High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew Chem Int Ed. 2013;52(17):463. Qian J, Wu X, Cao Y. High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew Chem Int Ed. 2013;52(17):463.
[127]
Zurück zum Zitat Extance P, Elliott SR. Pressure dependence of the electrical properties of amorphous phosphorus prepared by chemical transport in a low-pressure hydrogen plasma. Philos Mag B. 1981;43(3):485. Extance P, Elliott SR. Pressure dependence of the electrical properties of amorphous phosphorus prepared by chemical transport in a low-pressure hydrogen plasma. Philos Mag B. 1981;43(3):485.
[128]
Zurück zum Zitat Fu Y, Wei Q, Zhang G. Advanced phosphorus-based materials for lithium/sodium-ion batteries: recent developments and future perspectives. Adv Energy Mater. 2018;8(13):1703058. Fu Y, Wei Q, Zhang G. Advanced phosphorus-based materials for lithium/sodium-ion batteries: recent developments and future perspectives. Adv Energy Mater. 2018;8(13):1703058.
[129]
Zurück zum Zitat Song J, Yu Z, Gordin ML. Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries. Nano Lett. 2014;14(11):6329. Song J, Yu Z, Gordin ML. Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries. Nano Lett. 2014;14(11):6329.
[130]
Zurück zum Zitat Li WJ, Chou SL, Wang JZ. Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. Nano Lett. 2013;13:5480. Li WJ, Chou SL, Wang JZ. Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. Nano Lett. 2013;13:5480.
[131]
Zurück zum Zitat Zhou J, Liu X, Cai W. Wet-chemical synthesis of hollow red-phosphorus nanospheres with porous shells as anodes for high-performance lithium-ion and sodium-ion batteries. Adv Mater. 2017;29(29):1700214. Zhou J, Liu X, Cai W. Wet-chemical synthesis of hollow red-phosphorus nanospheres with porous shells as anodes for high-performance lithium-ion and sodium-ion batteries. Adv Mater. 2017;29(29):1700214.
[132]
Zurück zum Zitat Duho K, Zhang K, Maenghyo C. Critical design factors for kinetically favorable P-based compounds toward alloying with Na ions for high-power sodium-ion batteries. Energy Environ Sci. 2019;12(4):1326. Duho K, Zhang K, Maenghyo C. Critical design factors for kinetically favorable P-based compounds toward alloying with Na ions for high-power sodium-ion batteries. Energy Environ Sci. 2019;12(4):1326.
[133]
Zurück zum Zitat Zhao RZ, Qian Z, Liu ZY. Molecular-level heterostructures assembled from layered black phosphorene and Ti3C2 MXene as superior anodes for high-performance sodium ion batteries. Nano Energy. 2019;65:104037. Zhao RZ, Qian Z, Liu ZY. Molecular-level heterostructures assembled from layered black phosphorene and Ti3C2 MXene as superior anodes for high-performance sodium ion batteries. Nano Energy. 2019;65:104037.
[134]
Zurück zum Zitat Zhang YH, Liu BH, Timur B. Red phosphorus confined in N-doped multi-cavity mesoporous carbon for ultrahigh-performance sodium-ion batteries. J Power Sources. 2020;450:227696. Zhang YH, Liu BH, Timur B. Red phosphorus confined in N-doped multi-cavity mesoporous carbon for ultrahigh-performance sodium-ion batteries. J Power Sources. 2020;450:227696.
[135]
Zurück zum Zitat Zhou D, Xue LP, Wang N. Robustly immobilized Ni2P nanoparticles in porous carbon networks promotes high-performance sodium-ion storage. J Alloy Compd. 2019;776:912. Zhou D, Xue LP, Wang N. Robustly immobilized Ni2P nanoparticles in porous carbon networks promotes high-performance sodium-ion storage. J Alloy Compd. 2019;776:912.
[136]
Zurück zum Zitat Jin H, Lu H, Wu WY. Tailoring conductive networks within hollow carbon nanospheres to host phosphorus for advanced sodium ion batteries. Nano Energy. 2020;70:104569. Jin H, Lu H, Wu WY. Tailoring conductive networks within hollow carbon nanospheres to host phosphorus for advanced sodium ion batteries. Nano Energy. 2020;70:104569.
[137]
Zurück zum Zitat Xu Q, Sun JK, Yue FS. Stable sodium storage of red phosphorus anode enabled by a dual-protection strategy. ACS Appl Mater Interfaces. 2018;10(36):30479. Xu Q, Sun JK, Yue FS. Stable sodium storage of red phosphorus anode enabled by a dual-protection strategy. ACS Appl Mater Interfaces. 2018;10(36):30479.
[138]
Zurück zum Zitat Duan J, Deng SY, Wu WY. Chitosan derived carbon matrix encapsulated CuP2 nanoparticles for sodium-ion storage. ACS Appl Mater Interfaces. 2019;11(13):12415. Duan J, Deng SY, Wu WY. Chitosan derived carbon matrix encapsulated CuP2 nanoparticles for sodium-ion storage. ACS Appl Mater Interfaces. 2019;11(13):12415.
[139]
Zurück zum Zitat Zhang SL, Li XY, Yang WT. Novel synthesis of red phosphorus nanodot/Ti3C2Tx MXenes from low-cost Ti3SiC2 MAX phases for superior lithium- and sodium-ion batteries. ACS Appl Mater Interfaces. 2019;11:42086. Zhang SL, Li XY, Yang WT. Novel synthesis of red phosphorus nanodot/Ti3C2Tx MXenes from low-cost Ti3SiC2 MAX phases for superior lithium- and sodium-ion batteries. ACS Appl Mater Interfaces. 2019;11:42086.
[140]
Zurück zum Zitat Nam KH, Yoon H, Cheol-Min P. Zinc–phosphides as outstanding sodium-ion battery anodes. ACS Appl Mater Interfaces. 2020;12:15053. Nam KH, Yoon H, Cheol-Min P. Zinc–phosphides as outstanding sodium-ion battery anodes. ACS Appl Mater Interfaces. 2020;12:15053.
[141]
Zurück zum Zitat Liu BQ, Zhang Q, Li L. Encapsulating red phosphorus in ultralarge pore volume hierarchical porous carbon nanospheres for lithium/sodium-ion half/full batteries. ACS Nano. 2019;13(11):13513. Liu BQ, Zhang Q, Li L. Encapsulating red phosphorus in ultralarge pore volume hierarchical porous carbon nanospheres for lithium/sodium-ion half/full batteries. ACS Nano. 2019;13(11):13513.
[142]
Zurück zum Zitat Liu WL, Ju SL, Yu XB. Phosphorus-amine-based synthesis of nanoscale red phosphorus for application to sodium-ion batteries. ACS Nano. 2020;14(1):974. Liu WL, Ju SL, Yu XB. Phosphorus-amine-based synthesis of nanoscale red phosphorus for application to sodium-ion batteries. ACS Nano. 2020;14(1):974.
[143]
Zurück zum Zitat Song TB, Chen H, Li Z, Xu QZ. Creating an air-stable sulfur-doped black phosphorus-TiO2 composite as high-performance anode material for sodium-ion storage. Adv Funct Mater. 2019;29(22):1900535. Song TB, Chen H, Li Z, Xu QZ. Creating an air-stable sulfur-doped black phosphorus-TiO2 composite as high-performance anode material for sodium-ion storage. Adv Funct Mater. 2019;29(22):1900535.
[144]
Zurück zum Zitat Li H, Liu AM, Ren XF. A black phosphorus/Ti3C2 MXene nanocomposite for sodium-ion batteries: a combined experimental and theoretical study. Nanoscale. 2019;11(42):19862. Li H, Liu AM, Ren XF. A black phosphorus/Ti3C2 MXene nanocomposite for sodium-ion batteries: a combined experimental and theoretical study. Nanoscale. 2019;11(42):19862.
[145]
Zurück zum Zitat Kim Y, Choi A. Tin phosphide as a promising anode material for Na-ion batteries. Adv Mater. 2014;26(24):4139. Kim Y, Choi A. Tin phosphide as a promising anode material for Na-ion batteries. Adv Mater. 2014;26(24):4139.
[146]
Zurück zum Zitat Martin M, Griffith KJ, Pickar CJ. Ab initio study of phosphorus anodes for lithium- and sodium-ion batteries. Chem Mater. 2016;28(7):2011. Martin M, Griffith KJ, Pickar CJ. Ab initio study of phosphorus anodes for lithium- and sodium-ion batteries. Chem Mater. 2016;28(7):2011.
[147]
Zurück zum Zitat Dahbi M, Yabuuchi N, Fukunishi M. Black phosphorus as a high-capacity and high-capability negative electrode for sodium-ion batteries: investigation of the electrode/electrolyte interface. Chem Mater. 2016;28(6):1625. Dahbi M, Yabuuchi N, Fukunishi M. Black phosphorus as a high-capacity and high-capability negative electrode for sodium-ion batteries: investigation of the electrode/electrolyte interface. Chem Mater. 2016;28(6):1625.
[148]
Zurück zum Zitat Xu GL, Chen Z, Zhong GM. Nanostructured black phosphorus/ketjenblack-multiwalled carbon nanotubes composite as high performance anode material for sodium-ion batteries. Nano Lett. 2016;16(6):3955. Xu GL, Chen Z, Zhong GM. Nanostructured black phosphorus/ketjenblack-multiwalled carbon nanotubes composite as high performance anode material for sodium-ion batteries. Nano Lett. 2016;16(6):3955.
[149]
Zurück zum Zitat Li L, Zheng Y, Zhang SL. Recent progress on sodium ion batteries: potential high-performance anodes. Energy Environ Sci. 2018;11(9):2310. Li L, Zheng Y, Zhang SL. Recent progress on sodium ion batteries: potential high-performance anodes. Energy Environ Sci. 2018;11(9):2310.
[150]
Zurück zum Zitat Luo W, Shen F, Clement B. Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries. Acc Chem Res. 2016;49:231. Luo W, Shen F, Clement B. Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries. Acc Chem Res. 2016;49:231.
[151]
Zurück zum Zitat Tan H, Chen D, Rui X. Peering into alloy anodes for sodium-ion batteries: current trends, challenges, and opportunities. Adv Funct Mater. 2019;29(14):1808745. Tan H, Chen D, Rui X. Peering into alloy anodes for sodium-ion batteries: current trends, challenges, and opportunities. Adv Funct Mater. 2019;29(14):1808745.
[152]
Zurück zum Zitat Zhu XC, Sun M, Ni JF. Materials based on group IVA elements for alloying-type sodium storage. Sci china Chem. 2018;61(12):1494. Zhu XC, Sun M, Ni JF. Materials based on group IVA elements for alloying-type sodium storage. Sci china Chem. 2018;61(12):1494.
[153]
Zurück zum Zitat Zheng SM, Feng WQ, Wang SQ. Elastic properties of high entropy alloys by MaxEnt approach. Comput Mater Sci. 2018;142:332. Zheng SM, Feng WQ, Wang SQ. Elastic properties of high entropy alloys by MaxEnt approach. Comput Mater Sci. 2018;142:332.
[154]
Zurück zum Zitat Jia YJ, Chen HN, Liang XD. Microstructure and wear resistance of CoCrNbNiW high-entropy alloy coating prepared by laser melting deposition. Rare Met. 2018;38(12):1153. Jia YJ, Chen HN, Liang XD. Microstructure and wear resistance of CoCrNbNiW high-entropy alloy coating prepared by laser melting deposition. Rare Met. 2018;38(12):1153.
[155]
Zurück zum Zitat Eldho E, Sivaramapanicker S, Hao R. Microstructurally engineered nanocrystalline Fe–Sn–Sb anodes: towards stable high energy density sodium-ion batteries. J Mater Chem A. 2019;7(23):14145. Eldho E, Sivaramapanicker S, Hao R. Microstructurally engineered nanocrystalline Fe–Sn–Sb anodes: towards stable high energy density sodium-ion batteries. J Mater Chem A. 2019;7(23):14145.
[156]
Zurück zum Zitat Marcin WO, Francesco M, McGettrick JD. Synergic effect of Bi, Sb and Te for the increased stability of bulk alloying anodes for sodium-ion batteries. J Mater Chem A. 2017;5(44):23198. Marcin WO, Francesco M, McGettrick JD. Synergic effect of Bi, Sb and Te for the increased stability of bulk alloying anodes for sodium-ion batteries. J Mater Chem A. 2017;5(44):23198.
[157]
Zurück zum Zitat Martine ML, Parzycha G, Franziska T. Na–Sb–Sn ternary phase diagram at room temperature for potential anode materials in sodium-ion batteries. Solid State Ionics. 2014;268:261. Martine ML, Parzycha G, Franziska T. Na–Sb–Sn ternary phase diagram at room temperature for potential anode materials in sodium-ion batteries. Solid State Ionics. 2014;268:261.
[158]
Zurück zum Zitat Farbod B, Cui K, Kalisvaart WP. Anodes for sodium ion batteries based on tin-germanium-antimony alloys. ACS Nano. 2014;8(5):4415. Farbod B, Cui K, Kalisvaart WP. Anodes for sodium ion batteries based on tin-germanium-antimony alloys. ACS Nano. 2014;8(5):4415.
[159]
Zurück zum Zitat Zheng XM, Rong WQ, You JH. An electrodeposition strategy for the controllable and cost-effective fabrication of Sb-Fe-P anodes for Li ion batteries. Electrochim Acta. 2019;309:469. Zheng XM, Rong WQ, You JH. An electrodeposition strategy for the controllable and cost-effective fabrication of Sb-Fe-P anodes for Li ion batteries. Electrochim Acta. 2019;309:469.
[160]
Zurück zum Zitat Su H, Ma YH, Zhao ZP. Anchoring ternary CoNiSn alloys nanoparticles on hollow architectured SnO2 for exceptional lithium storage performance. J Power Sources. 2020;450:227626. Su H, Ma YH, Zhao ZP. Anchoring ternary CoNiSn alloys nanoparticles on hollow architectured SnO2 for exceptional lithium storage performance. J Power Sources. 2020;450:227626.
[161]
Zurück zum Zitat Ma WQ, Wang YH, Yang YJ. Temperature-dependent Li storage performance in nanoporous Cu-Ge-Al alloy. ACS Appl Mater Interfaces. 2019;11(9):9073. Ma WQ, Wang YH, Yang YJ. Temperature-dependent Li storage performance in nanoporous Cu-Ge-Al alloy. ACS Appl Mater Interfaces. 2019;11(9):9073.
[162]
Zurück zum Zitat Cao YD. An investigation of the Fe-Mn-Si system for Li-ion battery negative electrodes. J Electrochem Soc. 2019;166:A21. Cao YD. An investigation of the Fe-Mn-Si system for Li-ion battery negative electrodes. J Electrochem Soc. 2019;166:A21.
[163]
Zurück zum Zitat Zheng XM, Zhang PY, Wang LK. Superior Li storage anode based on novel Fe-Sn-P alloy prepared by electroplating. Electrochim Acta. 2017;247:314. Zheng XM, Zhang PY, Wang LK. Superior Li storage anode based on novel Fe-Sn-P alloy prepared by electroplating. Electrochim Acta. 2017;247:314.
[164]
Zurück zum Zitat Chen XQ, Ru Q, Wang Z. Ternary Sn-Sb-Co alloy particles embedded in reduced graphene oxide as lithium ion battery anodes. Mater Lett. 2017;191(15):218. Chen XQ, Ru Q, Wang Z. Ternary Sn-Sb-Co alloy particles embedded in reduced graphene oxide as lithium ion battery anodes. Mater Lett. 2017;191(15):218.
[165]
Zurück zum Zitat Zhao W, Li P, Liu ZW. High performance antimony-bismuth-tin positive electrode for liquid metal battery. Chem Mater. 2018;30(24):8739. Zhao W, Li P, Liu ZW. High performance antimony-bismuth-tin positive electrode for liquid metal battery. Chem Mater. 2018;30(24):8739.
Metadaten
Titel
Alloy anodes for sodium-ion batteries
verfasst von
Shu-Min Zheng
Yan-Ru Tian
Ya-Xia Liu
Shuang Wang
Chao-Quan Hu
Bao Wang
Kai-Ming Wang
Publikationsdatum
24.11.2020
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 2/2021
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01605-z

Weitere Artikel der Ausgabe 2/2021

Rare Metals 2/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.