Skip to main content
Erschienen in: Rare Metals 2/2021

30.07.2020 | REVIEW

Recent progress in Li-ion batteries with TiO2 nanotube anodes grown by electrochemical anodization

verfasst von: Meng-Meng Zhang, Jia-Yuan Chen, Hui Li, Chun-Rui Wang

Erschienen in: Rare Metals | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Self-organized titanium dioxide (TiO2) nanotubes, which are prepared by electrochemical anodizing, have been widely researched as promising anodes for Li-ion batteries. Both nanotubular morphology and bulk structure of TiO2 nanotubes can be easily changed by adjusting the anodizing and annealing parameters. This is provided to investigate different phenomena by selectively adjusting a specific parameter of the Li+ insertion mechanism. In this paper, we reviewed how the morphology and crystallography of TiO2 nanotubes influence the electrochemical performance of Li+ batteries. In particular, electrochemical performances of amorphous and anatase titanium dioxide nanotube anodes were compared in detail. As we all know, TiO2 nanotube anodes have the advantages of nontoxicity, good stability, high safety and large specific surface area, in lithium-ion batteries. However, they suffer from poor electronic conductivity, inferior ion diffusivity and low theoretical capacity (335 mAh·g−1), which limit their practical application. Generally, there are two ways to overcome the shortcomings of titanium dioxide nanotube anodes, including doping and synthesis composites. The achievements and existing problems associated with doped TiO2 nanotube anodes and composite material anodes are summarized in the present review. Based on the analysis of lithium insertion mechanism of titanium dioxide nanotube electrodes, the prospects and possible research directions of TiO2 anodes in lithium-ion batteries are discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Liu Y, Yang Y. Recent progress of TiO2-based anodes for Li ion batteries. J Nanomater. 2016;2016(4):1. Liu Y, Yang Y. Recent progress of TiO2-based anodes for Li ion batteries. J Nanomater. 2016;2016(4):1.
[2]
Zurück zum Zitat Yang Z, Choi D, Kerisit S, Rosso KM, Wang D, Zhang J, Graff G, Liu J. Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: a review. J Power Sour. 2009;192(2):588. Yang Z, Choi D, Kerisit S, Rosso KM, Wang D, Zhang J, Graff G, Liu J. Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: a review. J Power Sour. 2009;192(2):588.
[3]
Zurück zum Zitat Xiong P, Peng L, Chen D, Zhao Y, Wang X, Yu G. Two-dimensional nanosheets based Li-ion full batteries with high rate capability and flexibility. Nano Energy. 2015;12:816. Xiong P, Peng L, Chen D, Zhao Y, Wang X, Yu G. Two-dimensional nanosheets based Li-ion full batteries with high rate capability and flexibility. Nano Energy. 2015;12:816.
[4]
Zurück zum Zitat Auer A, Kunze-Liebhäuser J. Recent progress in understanding ion storage in self-organized anodic TiO2 nanotubes. Small Methods. 2019;3(8):20. Auer A, Kunze-Liebhäuser J. Recent progress in understanding ion storage in self-organized anodic TiO2 nanotubes. Small Methods. 2019;3(8):20.
[5]
Zurück zum Zitat Ma D, Cao Z, Hu A. Si-based anode materials for Li-ion batteries: a mini review. Nanomicro Lett. 2014;6(4):347. Ma D, Cao Z, Hu A. Si-based anode materials for Li-ion batteries: a mini review. Nanomicro Lett. 2014;6(4):347.
[6]
Zurück zum Zitat Zhang SS. The effect of the charging protocol on the cycle life of a Li-ion battery. J Power Sour. 2006;161(2):1385. Zhang SS. The effect of the charging protocol on the cycle life of a Li-ion battery. J Power Sour. 2006;161(2):1385.
[7]
Zurück zum Zitat Park KS, Benayad A, Kang DJ, Doo SG. Nitridation-driven conductive Li4Ti5O12 for lithium ion batteries. J Am Chem Soc. 2008;130(45):14930. Park KS, Benayad A, Kang DJ, Doo SG. Nitridation-driven conductive Li4Ti5O12 for lithium ion batteries. J Am Chem Soc. 2008;130(45):14930.
[8]
Zurück zum Zitat Holzapfel M, Alloin F, Yazami R. Calorimetric investigation of the reactivity of the passivation film on lithiated graphite at elevated temperatures. Electrochim Acta. 2004;49(4):581. Holzapfel M, Alloin F, Yazami R. Calorimetric investigation of the reactivity of the passivation film on lithiated graphite at elevated temperatures. Electrochim Acta. 2004;49(4):581.
[9]
Zurück zum Zitat Chen Z, Belharouak I, Sun YK, Amine K. Titanium-based anode materials for safe lithium-ion batteries. Adv Funct Mater. 2013;23(8):959. Chen Z, Belharouak I, Sun YK, Amine K. Titanium-based anode materials for safe lithium-ion batteries. Adv Funct Mater. 2013;23(8):959.
[10]
Zurück zum Zitat Yu J, Huang D, Liu Y, Luo H. Ternary Ag-TiO2/reduced graphene oxide nanocomposite as anode material for lithium ion battery. Inorg Chem Front. 2019;6(8):2126. Yu J, Huang D, Liu Y, Luo H. Ternary Ag-TiO2/reduced graphene oxide nanocomposite as anode material for lithium ion battery. Inorg Chem Front. 2019;6(8):2126.
[11]
Zurück zum Zitat Li X, Zhang Y, Li T, Zhong Q, Li H, Huang J. Graphene nanoscrolls encapsulated TiO2(B) nanowires for lithium storage. J Power Sour. 2014;268:372. Li X, Zhang Y, Li T, Zhong Q, Li H, Huang J. Graphene nanoscrolls encapsulated TiO2(B) nanowires for lithium storage. J Power Sour. 2014;268:372.
[12]
Zurück zum Zitat Jin J, Huang SZ, Liu J, Li Y, Chen DS, Wang HE, Yu Y, Chen LH, Su BL. Design of new anode materials based on hierarchical, three dimensional ordered macro-mesoporous TiO2 for high performance lithium ion batteries. J Mater Chem A. 2014;2(25):9699. Jin J, Huang SZ, Liu J, Li Y, Chen DS, Wang HE, Yu Y, Chen LH, Su BL. Design of new anode materials based on hierarchical, three dimensional ordered macro-mesoporous TiO2 for high performance lithium ion batteries. J Mater Chem A. 2014;2(25):9699.
[13]
Zurück zum Zitat Yan X, Wang Z, He M, Hou Z, Xia T, Liu G, Chen X. TiO2 nanomaterials as anode materials for lithium-ion rechargeable batteries. Energy Technol. 2015;3(8):801. Yan X, Wang Z, He M, Hou Z, Xia T, Liu G, Chen X. TiO2 nanomaterials as anode materials for lithium-ion rechargeable batteries. Energy Technol. 2015;3(8):801.
[14]
Zurück zum Zitat Aravindan V, Lee YS, Yazami R, Madhavi S. TiO2 polymorphs in ‘rocking-chair’ Li-ion batteries. Mater Today. 2015;18(6):345. Aravindan V, Lee YS, Yazami R, Madhavi S. TiO2 polymorphs in ‘rocking-chair’ Li-ion batteries. Mater Today. 2015;18(6):345.
[15]
Zurück zum Zitat Park SJ, Paek YK, Lee H, Kim YJ. Lithium ion insertion in titania nanotube powders synthesized by rapid breakdown anodization. Electrochem Solid St. 2010;13(7):A85. Park SJ, Paek YK, Lee H, Kim YJ. Lithium ion insertion in titania nanotube powders synthesized by rapid breakdown anodization. Electrochem Solid St. 2010;13(7):A85.
[16]
Zurück zum Zitat Huo KF, Gao B, Fu JJ, Zhao LZ, Chu PK. Fabrication, modification, and biomedical applications of anodized TiO2 nanotube arrays. RSC Adv. 2014;4(33):17300. Huo KF, Gao B, Fu JJ, Zhao LZ, Chu PK. Fabrication, modification, and biomedical applications of anodized TiO2 nanotube arrays. RSC Adv. 2014;4(33):17300.
[17]
Zurück zum Zitat Albu SP, Roy P, Virtanen S, Schmuki P. Self-organized TiO2 nanotube arrays: critical effects on morphology and growth. Isr J Chem. 2010;50(4):453. Albu SP, Roy P, Virtanen S, Schmuki P. Self-organized TiO2 nanotube arrays: critical effects on morphology and growth. Isr J Chem. 2010;50(4):453.
[18]
Zurück zum Zitat Awad NK, Edwards SL, Morsi YS. A review of TiO2 NTs on Ti metal: electrochemical synthesis, functionalization and potential use as bone implants. Mater Sci Eng C Mater. 2017;76:1401. Awad NK, Edwards SL, Morsi YS. A review of TiO2 NTs on Ti metal: electrochemical synthesis, functionalization and potential use as bone implants. Mater Sci Eng C Mater. 2017;76:1401.
[19]
Zurück zum Zitat Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin MY, Aucouturier M. Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf Interface Anal. 1999;27(7):629. Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin MY, Aucouturier M. Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf Interface Anal. 1999;27(7):629.
[20]
Zurück zum Zitat Macak JM, Tsuchiya H, Schmuki P. High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew Chem Int Ed Engl. 2005;44(14):2100. Macak JM, Tsuchiya H, Schmuki P. High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew Chem Int Ed Engl. 2005;44(14):2100.
[21]
Zurück zum Zitat Macak JM, Sirotna K, Schmuki P. Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes. Electrochim Acta. 2005;50(18):3679. Macak JM, Sirotna K, Schmuki P. Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes. Electrochim Acta. 2005;50(18):3679.
[22]
Zurück zum Zitat Macak JM, Tsuchiya H, Taveira L, Aldabergerova S, Schmuki P. Smooth anodic TiO2 nanotubes. Angew Chem Int Ed Engl. 2005;44(45):7463. Macak JM, Tsuchiya H, Taveira L, Aldabergerova S, Schmuki P. Smooth anodic TiO2 nanotubes. Angew Chem Int Ed Engl. 2005;44(45):7463.
[23]
Zurück zum Zitat Macak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P. TiO2 nanotubes: self-organized electrochemical formation, properties and applications. Curr Opin Solid State Mater Sci. 2007;11(1–2):3. Macak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P. TiO2 nanotubes: self-organized electrochemical formation, properties and applications. Curr Opin Solid State Mater Sci. 2007;11(1–2):3.
[24]
Zurück zum Zitat Roy P, Berger S, Schmuki P. TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed Engl. 2011;50(13):2904. Roy P, Berger S, Schmuki P. TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed Engl. 2011;50(13):2904.
[25]
Zurück zum Zitat Zhou X, Nguyen NT, Özkan S, Schmuki P. Anodic TiO2 nanotube layers: why does self-organized growth occur—a mini review. Electrochem Commun. 2014;46:157. Zhou X, Nguyen NT, Özkan S, Schmuki P. Anodic TiO2 nanotube layers: why does self-organized growth occur—a mini review. Electrochem Commun. 2014;46:157.
[26]
Zurück zum Zitat Lee K, Mazare A, Schmuki P. One-dimensional titanium dioxide nanomaterials: nanotubes. Chem Rev. 2014;114(19):9385. Lee K, Mazare A, Schmuki P. One-dimensional titanium dioxide nanomaterials: nanotubes. Chem Rev. 2014;114(19):9385.
[27]
Zurück zum Zitat Beranek R, Tsuchiya H, Sugishima T, Macak JM, Taveira L, Fujimoto S, Kisch H, Schmuki P. Enhancement and limits of the photoelectrochemical response from anodic TiO2 nanotubes. Appl Phys Lett. 2005;87(24):243114. Beranek R, Tsuchiya H, Sugishima T, Macak JM, Taveira L, Fujimoto S, Kisch H, Schmuki P. Enhancement and limits of the photoelectrochemical response from anodic TiO2 nanotubes. Appl Phys Lett. 2005;87(24):243114.
[28]
Zurück zum Zitat Albu SP, Ghicov A, Aldabergenova S, Drechsel P, LeClere D, Thompson GE, Macak JM, Schmuki P. Formation of double-walled TiO2 nanotubes and robust anatase membranes. Adv Mater. 2008;20(21):4135. Albu SP, Ghicov A, Aldabergenova S, Drechsel P, LeClere D, Thompson GE, Macak JM, Schmuki P. Formation of double-walled TiO2 nanotubes and robust anatase membranes. Adv Mater. 2008;20(21):4135.
[29]
Zurück zum Zitat Ghicov A, Albu SP, Hahn R, Kim D, Stergiopoulos T, Kunze J, Schiller CA, Falaras P, Schmuki P. TiO2 nanotubes in dye-sensitized solar cells: critical factors for the conversion efficiency. Chem Asian J. 2009;4(4):520. Ghicov A, Albu SP, Hahn R, Kim D, Stergiopoulos T, Kunze J, Schiller CA, Falaras P, Schmuki P. TiO2 nanotubes in dye-sensitized solar cells: critical factors for the conversion efficiency. Chem Asian J. 2009;4(4):520.
[30]
Zurück zum Zitat Ghicov A, Schmuki P. Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chem Commun (Camb). 2009;20:2791. Ghicov A, Schmuki P. Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chem Commun (Camb). 2009;20:2791.
[31]
Zurück zum Zitat Zhang M, Wang C, Li H, Wang J, Li M, Chen X. Enhanced performance of lithium ion batteries from self-doped TiO2 nanotube anodes via an adjustable electrochemical process. Electrochim Acta. 2019;326:134972. Zhang M, Wang C, Li H, Wang J, Li M, Chen X. Enhanced performance of lithium ion batteries from self-doped TiO2 nanotube anodes via an adjustable electrochemical process. Electrochim Acta. 2019;326:134972.
[32]
Zurück zum Zitat Savva AI, Smith KA, Lawson M, Croft SR, Weltner AE, Jones CD, Bull H, Simmonds PJ, Li L, Xiong H. Defect generation in TiO2 nanotube anodes via heat treatment in various atmospheres for lithium-ion batteries. Phys Chem Chem Phys. 2018;20(35):22537. Savva AI, Smith KA, Lawson M, Croft SR, Weltner AE, Jones CD, Bull H, Simmonds PJ, Li L, Xiong H. Defect generation in TiO2 nanotube anodes via heat treatment in various atmospheres for lithium-ion batteries. Phys Chem Chem Phys. 2018;20(35):22537.
[33]
Zurück zum Zitat Lu Z, Yip CT, Wang L, Huang H, Zhou L. Hydrogenated TiO2 nanotube arrays as high-rate anodes for lithium-ion microbatteries. ChemPlusChem. 2012;77(11):991. Lu Z, Yip CT, Wang L, Huang H, Zhou L. Hydrogenated TiO2 nanotube arrays as high-rate anodes for lithium-ion microbatteries. ChemPlusChem. 2012;77(11):991.
[34]
Zurück zum Zitat SteinerSteiner D, Auer A, Portenkirchner E, Kunze-Liebhäuser J. The role of surface films during lithiation of amorphous and anatase TiO2 nanotubes. J Electroanal Chem. 2018;812:166. SteinerSteiner D, Auer A, Portenkirchner E, Kunze-Liebhäuser J. The role of surface films during lithiation of amorphous and anatase TiO2 nanotubes. J Electroanal Chem. 2018;812:166.
[35]
Zurück zum Zitat Auer A, Steiner D, Portenkirchner E, Kunze-Liebhäuser J. Nonequilibrium phase transitions in amorphous and anatase TiO2 Nanotubes. ACS Appl Energy Mater. 2018;1(5):1924. Auer A, Steiner D, Portenkirchner E, Kunze-Liebhäuser J. Nonequilibrium phase transitions in amorphous and anatase TiO2 Nanotubes. ACS Appl Energy Mater. 2018;1(5):1924.
[36]
Zurück zum Zitat He BL, Dong B, Li HL. Preparation and electrochemical properties of Ag-modified TiO2 nanotube anode material for lithium–ion battery. Electrochem Commun. 2007;9(3):425. He BL, Dong B, Li HL. Preparation and electrochemical properties of Ag-modified TiO2 nanotube anode material for lithium–ion battery. Electrochem Commun. 2007;9(3):425.
[37]
Zurück zum Zitat Kim SH, Choi SY. Fabrication of Cu-coated TiO2 nanotubes and enhanced electrochemical performance of lithium ion batteries. J Electroanal Chem. 2015;744:45. Kim SH, Choi SY. Fabrication of Cu-coated TiO2 nanotubes and enhanced electrochemical performance of lithium ion batteries. J Electroanal Chem. 2015;744:45.
[38]
Zurück zum Zitat Kirchgeorg R, Kallert M, Liu N, Hahn R, Killian MS, Schmuki P. Key factors for an improved lithium ion storage capacity of anodic TiO2 nanotubes. Electrochim Acta. 2016;198:56. Kirchgeorg R, Kallert M, Liu N, Hahn R, Killian MS, Schmuki P. Key factors for an improved lithium ion storage capacity of anodic TiO2 nanotubes. Electrochim Acta. 2016;198:56.
[39]
Zurück zum Zitat Janek J, Martin M, Becker KD. Physical chemistry of solids–the science behind materials engineering. Phys Chem Chem Phys. 2009;11(17):3010. Janek J, Martin M, Becker KD. Physical chemistry of solids–the science behind materials engineering. Phys Chem Chem Phys. 2009;11(17):3010.
[40]
Zurück zum Zitat Xu H, Zhong W, Chen Q, Liu W, Li M, Su L, Gao C, Ren M. One-pot fabricating rambutan-like nitrogen-simultaneously-doped TiO2@carbon@TiO2 double shell composites with superior sodium storage for Na-ion batteries. J Mater Sci: Mater Electron. 2019;30(7):6395. Xu H, Zhong W, Chen Q, Liu W, Li M, Su L, Gao C, Ren M. One-pot fabricating rambutan-like nitrogen-simultaneously-doped TiO2@carbon@TiO2 double shell composites with superior sodium storage for Na-ion batteries. J Mater Sci: Mater Electron. 2019;30(7):6395.
[41]
Zurück zum Zitat Ren M, Xu H, Li F, Liu W, Gao C, Su L, Li G, Hei J. Sugarapple-like N-doped TiO2@carbon core-shell spheres as high-rate and long-life anode materials for lithium-ion batteries. J Power Sour. 2017;353:237. Ren M, Xu H, Li F, Liu W, Gao C, Su L, Li G, Hei J. Sugarapple-like N-doped TiO2@carbon core-shell spheres as high-rate and long-life anode materials for lithium-ion batteries. J Power Sour. 2017;353:237.
[42]
Zurück zum Zitat Ryu WH, Nam DH, Ko YS, Kim RH, Kwon HS. Electrochemical performance of a smooth and highly ordered TiO2 nanotube electrode for Li-ion batteries. Electrochim Acta. 2012;61:19. Ryu WH, Nam DH, Ko YS, Kim RH, Kwon HS. Electrochemical performance of a smooth and highly ordered TiO2 nanotube electrode for Li-ion batteries. Electrochim Acta. 2012;61:19.
[43]
Zurück zum Zitat Borghols WJH, Lutzenkirchen-Hecht D, Haake U, Chan W, Lafont U, Kelder EM, van Eck ERH, Kentgens APM, Mulder FM, Wagemaker M. Lithium storage in amorphous TiO2 nanoparticles. J Electrochem Soc. 2010;157(5):A582. Borghols WJH, Lutzenkirchen-Hecht D, Haake U, Chan W, Lafont U, Kelder EM, van Eck ERH, Kentgens APM, Mulder FM, Wagemaker M. Lithium storage in amorphous TiO2 nanoparticles. J Electrochem Soc. 2010;157(5):A582.
[44]
Zurück zum Zitat Xiong H, Yildirim H, Shevchenko EV, Prakapenka VB, Koo B, Slater MD, Balasubramanian M, Sankaranarayanan SKRS, Greeley JP, Tepavcevic S, Dimitrijevic NM, Podsiadlo P, Johnson CS, Rajh T. Self-improving anode for lithium-ion batteries based on amorphous to cubic phase transition in TiO2 nanotubes. J Phys Chem C. 2012;116(4):3181. Xiong H, Yildirim H, Shevchenko EV, Prakapenka VB, Koo B, Slater MD, Balasubramanian M, Sankaranarayanan SKRS, Greeley JP, Tepavcevic S, Dimitrijevic NM, Podsiadlo P, Johnson CS, Rajh T. Self-improving anode for lithium-ion batteries based on amorphous to cubic phase transition in TiO2 nanotubes. J Phys Chem C. 2012;116(4):3181.
[45]
Zurück zum Zitat Ortiz GF, Hanzu I, Djenizian T, Lavela P, Tirado JL, Knauth P. Alternative Li-ion battery electrode based on self-organized titania nanotubes. Chem Mater. 2009;21(1):63. Ortiz GF, Hanzu I, Djenizian T, Lavela P, Tirado JL, Knauth P. Alternative Li-ion battery electrode based on self-organized titania nanotubes. Chem Mater. 2009;21(1):63.
[46]
Zurück zum Zitat Jiang Y, Hall C, Song N, Lau D, Burr PA, Patterson R, Wang DW, Ouyang Z, Lennon A. Evidence for fast lithium-ion diffusion and charge-transfer reactions in amorphous TiOx nanotubes: insights for high-rate electrochemical energy storage. ACS Appl Mater Interfaces. 2018;10(49):42513. Jiang Y, Hall C, Song N, Lau D, Burr PA, Patterson R, Wang DW, Ouyang Z, Lennon A. Evidence for fast lithium-ion diffusion and charge-transfer reactions in amorphous TiOx nanotubes: insights for high-rate electrochemical energy storage. ACS Appl Mater Interfaces. 2018;10(49):42513.
[47]
Zurück zum Zitat Ortiz GF, Hanzu I, Knauth P, Lavela P, Tirado JL, Djenizian T. TiO2 nanotubes manufactured by anodization of Ti thin films for on-chip Li-ion 2D microbatteries. Electrochim Acta. 2009;54(17):4262. Ortiz GF, Hanzu I, Knauth P, Lavela P, Tirado JL, Djenizian T. TiO2 nanotubes manufactured by anodization of Ti thin films for on-chip Li-ion 2D microbatteries. Electrochim Acta. 2009;54(17):4262.
[48]
Zurück zum Zitat Guan D, Cai C, Wang Y. Amorphous and crystalline TiO2 nanotube arrays for enhanced Li-ion intercalation properties. J Nanosci Nanotechnol. 2011;11(4):3641. Guan D, Cai C, Wang Y. Amorphous and crystalline TiO2 nanotube arrays for enhanced Li-ion intercalation properties. J Nanosci Nanotechnol. 2011;11(4):3641.
[49]
Zurück zum Zitat Gao Q, Gu M, Nie A, Mashayek F, Wang C, Odegard GM, Shahbazian-Yassar R. Direct evidence of lithium-induced atomic ordering in amorphous TiO2 nanotubes. Chem Mater. 2014;26(4):1660. Gao Q, Gu M, Nie A, Mashayek F, Wang C, Odegard GM, Shahbazian-Yassar R. Direct evidence of lithium-induced atomic ordering in amorphous TiO2 nanotubes. Chem Mater. 2014;26(4):1660.
[50]
Zurück zum Zitat Kashani H, Gharibi H, Javadian S, Kakemam J. Study of counter electrodes as an effective controlling factor of crystal orientation of TiO2 nanoarrays used as the anode in lithium-ion batteries. New J Chem. 2017;41(21):12442. Kashani H, Gharibi H, Javadian S, Kakemam J. Study of counter electrodes as an effective controlling factor of crystal orientation of TiO2 nanoarrays used as the anode in lithium-ion batteries. New J Chem. 2017;41(21):12442.
[51]
Zurück zum Zitat Chen JS, Tan YL, Li CM, Cheah YL, Luan DY, Madhavi S, Boey FYC, Archer LA, Lou XW. Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J Am Chem Soc. 2010;132(17):6124. Chen JS, Tan YL, Li CM, Cheah YL, Luan DY, Madhavi S, Boey FYC, Archer LA, Lou XW. Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J Am Chem Soc. 2010;132(17):6124.
[52]
Zurück zum Zitat Tasaki K, Goldberg A, Lian JJ, Walker M, Timmons A, Harris SJ. Solubility of lithium salts formed on the lithium-ion battery negative electrode surface in organic solvents. J Electrochem Soc. 2009;156(12):A1019. Tasaki K, Goldberg A, Lian JJ, Walker M, Timmons A, Harris SJ. Solubility of lithium salts formed on the lithium-ion battery negative electrode surface in organic solvents. J Electrochem Soc. 2009;156(12):A1019.
[53]
Zurück zum Zitat Chadwick AV, Flack KW, Strange JH, Harding J. Defect structures and ionic transport in lithium-oxide. Solid State Ion. 1988;28:185. Chadwick AV, Flack KW, Strange JH, Harding J. Defect structures and ionic transport in lithium-oxide. Solid State Ion. 1988;28:185.
[54]
Zurück zum Zitat Madian M, Giebeler L, Klose M, Jaumann T, Uhlemann M, Gebert A, Oswald S, Ismail N, Eychmüller A, Eckert J. Self-organized TiO2/CoO nanotubes as potential anode materials for lithium ion batteries. ACS Sustain Chem Eng. 2015;3(5):909. Madian M, Giebeler L, Klose M, Jaumann T, Uhlemann M, Gebert A, Oswald S, Ismail N, Eychmüller A, Eckert J. Self-organized TiO2/CoO nanotubes as potential anode materials for lithium ion batteries. ACS Sustain Chem Eng. 2015;3(5):909.
[55]
Zurück zum Zitat Bi Z, Paranthaman MP, Menchhofer PA, Dehoff RR, Bridges CA, Chi M, Guo B, Sun XG, Dai S. Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries. J Power Sour. 2013;222:461. Bi Z, Paranthaman MP, Menchhofer PA, Dehoff RR, Bridges CA, Chi M, Guo B, Sun XG, Dai S. Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries. J Power Sour. 2013;222:461.
[56]
Zurück zum Zitat Wagemaker M, Borghols WJH, Mulder FM. Large impact of particle size on insertion reactions: a case for anatase LixTiO2. J Am Chem Soc. 2007;129(14):4323. Wagemaker M, Borghols WJH, Mulder FM. Large impact of particle size on insertion reactions: a case for anatase LixTiO2. J Am Chem Soc. 2007;129(14):4323.
[57]
Zurück zum Zitat Zhu K, Wang Q, Kim JH, Pesaran AA, Frank AJ. Pseudocapacitive lithium-ion storage in oriented anatase TiO2 nanotube arrays. J Phys Chem C. 2012;116(22):11895. Zhu K, Wang Q, Kim JH, Pesaran AA, Frank AJ. Pseudocapacitive lithium-ion storage in oriented anatase TiO2 nanotube arrays. J Phys Chem C. 2012;116(22):11895.
[58]
Zurück zum Zitat Auer A, Portenkirchner E, Gotsch T, Valero-Vidal C, Penner S, Kunze-Liebhauser J. Preferentially oriented TiO2 nanotubes as anode material for Li-ion batteries: insight into Li-ion storage and lithiation kinetics. ACS Appl Mater Interfaces. 2017;9(42):36828. Auer A, Portenkirchner E, Gotsch T, Valero-Vidal C, Penner S, Kunze-Liebhauser J. Preferentially oriented TiO2 nanotubes as anode material for Li-ion batteries: insight into Li-ion storage and lithiation kinetics. ACS Appl Mater Interfaces. 2017;9(42):36828.
[59]
Zurück zum Zitat Lamberti A, Garino N, Sacco A, Bianco S, Chiodoni A, Gerbaldi C. As-grown vertically aligned amorphous TiO2 nanotube arrays as high-rate Li-based micro-battery anodes with improved long-term performance. Electrochim Acta. 2015;151:222. Lamberti A, Garino N, Sacco A, Bianco S, Chiodoni A, Gerbaldi C. As-grown vertically aligned amorphous TiO2 nanotube arrays as high-rate Li-based micro-battery anodes with improved long-term performance. Electrochim Acta. 2015;151:222.
[60]
Zurück zum Zitat Zukalova M, Kalbac M, Kavan L, Exnar I, Graetzel M. Pseudocapacitive lithium storage in TiO2(B). Chem Mater. 2005;17(5):1248. Zukalova M, Kalbac M, Kavan L, Exnar I, Graetzel M. Pseudocapacitive lithium storage in TiO2(B). Chem Mater. 2005;17(5):1248.
[61]
Zurück zum Zitat Fang HT, Liu M, Wang DW, Sun T, Guan DS, Li F, Zhou J, Sham TK, Cheng HM. Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays. Nanotechnology. 2009;20(22):225701. Fang HT, Liu M, Wang DW, Sun T, Guan DS, Li F, Zhou J, Sham TK, Cheng HM. Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays. Nanotechnology. 2009;20(22):225701.
[62]
Zurück zum Zitat Bresser D, Paillard E, Binetti E, Krueger S, Striccoli M, Winter M, Passerini S. Percolating networks of TiO2 nanorods and carbon for high power lithium insertion electrodes. J Power Sour. 2012;206:301. Bresser D, Paillard E, Binetti E, Krueger S, Striccoli M, Winter M, Passerini S. Percolating networks of TiO2 nanorods and carbon for high power lithium insertion electrodes. J Power Sour. 2012;206:301.
[63]
Zurück zum Zitat Brumbarov J, Vivek JP, Leonardi S, Valero-Vidal C, Portenkirchner E, Kunze-Liebhäuser J. Oxygen deficient, carbon coated self-organized TiO2 nanotubes as anode material for Li-ion intercalation. J Mater Chem A. 2015;3(32):16469. Brumbarov J, Vivek JP, Leonardi S, Valero-Vidal C, Portenkirchner E, Kunze-Liebhäuser J. Oxygen deficient, carbon coated self-organized TiO2 nanotubes as anode material for Li-ion intercalation. J Mater Chem A. 2015;3(32):16469.
[64]
Zurück zum Zitat Froschl T, Hormann U, Kubiak P, Kucerova G, Pfanzelt M, Weiss CK, Behm RJ, Husing N, Kaiser U, Landfester K, Wohlfahrt-Mehrens M. High surface area crystalline titanium dioxide: potential and limits in electrochemical energy storage and catalysis. Chem Soc Rev. 2012;41(15):5313. Froschl T, Hormann U, Kubiak P, Kucerova G, Pfanzelt M, Weiss CK, Behm RJ, Husing N, Kaiser U, Landfester K, Wohlfahrt-Mehrens M. High surface area crystalline titanium dioxide: potential and limits in electrochemical energy storage and catalysis. Chem Soc Rev. 2012;41(15):5313.
[65]
Zurück zum Zitat Jiang C, Wei M, Qi Z, Kudo T, Honma I, Zhou H. Particle size dependence of the lithium storage capability and high rate performance of nanocrystalline anatase TiO2 electrode. J Power Sour. 2007;166(1):239. Jiang C, Wei M, Qi Z, Kudo T, Honma I, Zhou H. Particle size dependence of the lithium storage capability and high rate performance of nanocrystalline anatase TiO2 electrode. J Power Sour. 2007;166(1):239.
[66]
Zurück zum Zitat Kim JH, Zhu K, Kim JY, Frank AJ. Tailoring oriented TiO2 nanotube morphology for improved Li storage kinetics. Electrochim Acta. 2013;88:123. Kim JH, Zhu K, Kim JY, Frank AJ. Tailoring oriented TiO2 nanotube morphology for improved Li storage kinetics. Electrochim Acta. 2013;88:123.
[67]
Zurück zum Zitat Wei W, Oltean G, Tai CW, Edström K, Björefors F, Nyholm L. High energy and power density TiO2 nanotube electrodes for 3D Li-ion microbatteries. J Mater Chem A. 2013;1(28):8160. Wei W, Oltean G, Tai CW, Edström K, Björefors F, Nyholm L. High energy and power density TiO2 nanotube electrodes for 3D Li-ion microbatteries. J Mater Chem A. 2013;1(28):8160.
[68]
Zurück zum Zitat Gonzalez JR, Alcantara R, Ortiz GF, Nacimiento F, Tirado JL. Controlled growth and application in lithium and sodium batteries of high-aspect-ratio, self-organized titania nanotubes. J Electrochem Soc. 2013;160(9):A1390. Gonzalez JR, Alcantara R, Ortiz GF, Nacimiento F, Tirado JL. Controlled growth and application in lithium and sodium batteries of high-aspect-ratio, self-organized titania nanotubes. J Electrochem Soc. 2013;160(9):A1390.
[69]
Zurück zum Zitat Paul N, Brumbarov J, Paul A, Chen Y, Moulin JF, Müller-Buschbaum P, Kunze-Liebhäuser J, Gilles R. GISAXS and TOF-GISANS studies on surface and depth morphology of self-organized TiO2 nanotube arrays: model anode material in Li-ion batteries. J Appl Crystallogr. 2015;48(2):444. Paul N, Brumbarov J, Paul A, Chen Y, Moulin JF, Müller-Buschbaum P, Kunze-Liebhäuser J, Gilles R. GISAXS and TOF-GISANS studies on surface and depth morphology of self-organized TiO2 nanotube arrays: model anode material in Li-ion batteries. J Appl Crystallogr. 2015;48(2):444.
[70]
Zurück zum Zitat Zhou H, Zhang Y. Electrochemically Self-doped TiO2 nanotube arrays for supercapacitors. J Phys Chem C. 2014;118(11):5626. Zhou H, Zhang Y. Electrochemically Self-doped TiO2 nanotube arrays for supercapacitors. J Phys Chem C. 2014;118(11):5626.
[71]
Zurück zum Zitat Mirabolghasemi H, Liu N, Lee K, Schmuki P. Formation of ‘single walled’ TiO2 nanotubes with significantly enhanced electronic properties for higher efficiency dye-sensitized solar cells. Chem Commun (Camb). 2013;49(20):2067. Mirabolghasemi H, Liu N, Lee K, Schmuki P. Formation of ‘single walled’ TiO2 nanotubes with significantly enhanced electronic properties for higher efficiency dye-sensitized solar cells. Chem Commun (Camb). 2013;49(20):2067.
[72]
Zurück zum Zitat Pan D, Huang H, Wang X, Wang L, Liao H, Li Z, Wu M. C-axis preferentially oriented and fully activated TiO2 nanotube arrays for lithium ion batteries and supercapacitors. J Mater Chem A. 2014;2(29):11454. Pan D, Huang H, Wang X, Wang L, Liao H, Li Z, Wu M. C-axis preferentially oriented and fully activated TiO2 nanotube arrays for lithium ion batteries and supercapacitors. J Mater Chem A. 2014;2(29):11454.
[73]
Zurück zum Zitat Liu S, Yu J, Jaroniec M. Anatase TiO2 with dominant high-energy facets: synthesis, properties, and applications. Chem Mater. 2011;23(18):4085. Liu S, Yu J, Jaroniec M. Anatase TiO2 with dominant high-energy facets: synthesis, properties, and applications. Chem Mater. 2011;23(18):4085.
[74]
Zurück zum Zitat Lee S, Park IJ, Kim DH, Seong WM, Kim DW, Han GS, Kim JY, Jung HS, Hong KS. Crystallographically preferred oriented TiO2 nanotube arrays for efficient photovoltaic energy conversion. Energy Environ Sci. 2012;5(7):7989. Lee S, Park IJ, Kim DH, Seong WM, Kim DW, Han GS, Kim JY, Jung HS, Hong KS. Crystallographically preferred oriented TiO2 nanotube arrays for efficient photovoltaic energy conversion. Energy Environ Sci. 2012;5(7):7989.
[75]
Zurück zum Zitat Seong WM, Kim DH, Park IJ, Do Park G, Kang K, Lee S, Hong KS. Roughness of Ti substrates for control of the preferred orientation of TiO2 nanotube arrays as a new orientation factor. J Phys Chem C. 2015;119(23):13297. Seong WM, Kim DH, Park IJ, Do Park G, Kang K, Lee S, Hong KS. Roughness of Ti substrates for control of the preferred orientation of TiO2 nanotube arrays as a new orientation factor. J Phys Chem C. 2015;119(23):13297.
[76]
Zurück zum Zitat Shin JY, Joo JH, Samuelis D, Maier J. Oxygen-deficient TiO2−δ nanoparticles via hydrogen reduction for high rate capability lithium batteries. Chem Mater. 2012;24(3):543. Shin JY, Joo JH, Samuelis D, Maier J. Oxygen-deficient TiO2−δ nanoparticles via hydrogen reduction for high rate capability lithium batteries. Chem Mater. 2012;24(3):543.
[77]
Zurück zum Zitat Allam NK, Grimes CA. Effect of cathode material on the morphology and photoelectrochemical properties of vertically oriented TiO2 nanotube arrays. Sol Energy Mater Sol Cells. 2008;92(11):1468. Allam NK, Grimes CA. Effect of cathode material on the morphology and photoelectrochemical properties of vertically oriented TiO2 nanotube arrays. Sol Energy Mater Sol Cells. 2008;92(11):1468.
[78]
Zurück zum Zitat Li GS, Li LP, Boerio-Goates J, Woodfield BF. High purity anatase TiO2 nanocrystals: near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry. J Am Chem Soc. 2005;127(24):8659. Li GS, Li LP, Boerio-Goates J, Woodfield BF. High purity anatase TiO2 nanocrystals: near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry. J Am Chem Soc. 2005;127(24):8659.
[79]
Zurück zum Zitat Li YM, Young L. Non-thickness-limited growth of anodic oxide films on tantalum. J Electrochem Soc. 2001;148(9):B337. Li YM, Young L. Non-thickness-limited growth of anodic oxide films on tantalum. J Electrochem Soc. 2001;148(9):B337.
[80]
Zurück zum Zitat Wang W, Zhang J, Huang H, Wu Z, Zhang Z. Surface-modification and characterization of H-titanate nanotube. Colloids Surf A. 2008;317(1–3):270. Wang W, Zhang J, Huang H, Wu Z, Zhang Z. Surface-modification and characterization of H-titanate nanotube. Colloids Surf A. 2008;317(1–3):270.
[81]
Zurück zum Zitat Berger S, Hahn R, Roy P, Schmuki P. Self-organized TiO2 nanotubes: factors affecting their morphology and properties. Phys Status Solidi B. 2010;247(10):2424. Berger S, Hahn R, Roy P, Schmuki P. Self-organized TiO2 nanotubes: factors affecting their morphology and properties. Phys Status Solidi B. 2010;247(10):2424.
[82]
Zurück zum Zitat Wei J, Liu JX, Wu ZY, Zhan ZL, Shi J, Xu K. Research on the electrochemical performance of rutile and anatase composite TiO2 nanotube arrays in lithium-ion batteries. J Nanosci Nanotechnol. 2015;15(7):5013. Wei J, Liu JX, Wu ZY, Zhan ZL, Shi J, Xu K. Research on the electrochemical performance of rutile and anatase composite TiO2 nanotube arrays in lithium-ion batteries. J Nanosci Nanotechnol. 2015;15(7):5013.
[83]
Zurück zum Zitat Macklin WJ, Neat RJ. Performance of titanium dioxide-based cathodes in a lithium polymer electrolyte cell. Solid State Ion. 1992;53:694. Macklin WJ, Neat RJ. Performance of titanium dioxide-based cathodes in a lithium polymer electrolyte cell. Solid State Ion. 1992;53:694.
[84]
Zurück zum Zitat Kyeremateng NA, Vacandio F, Sougrati MT, Martinez H, Jumas JC, Knauth P, Djenizian T. Effect of Sn-doping on the electrochemical behaviour of TiO2 nanotubes as potential negative electrode materials for 3D Li-ion micro batteries. J Power Sour. 2013;224:269. Kyeremateng NA, Vacandio F, Sougrati MT, Martinez H, Jumas JC, Knauth P, Djenizian T. Effect of Sn-doping on the electrochemical behaviour of TiO2 nanotubes as potential negative electrode materials for 3D Li-ion micro batteries. J Power Sour. 2013;224:269.
[85]
Zurück zum Zitat Duan J, Hou H, Liu X, Yan C, Liu S, Meng R, Hao Z, Yao Y, Liao Q. In situ Ti3+-doped TiO2 nanotubes anode for lithium ion battery. J Porous Mater. 2016;23(3):837. Duan J, Hou H, Liu X, Yan C, Liu S, Meng R, Hao Z, Yao Y, Liao Q. In situ Ti3+-doped TiO2 nanotubes anode for lithium ion battery. J Porous Mater. 2016;23(3):837.
[86]
Zurück zum Zitat Deng D, Kim MG, Lee JY, Cho J. Green energy storage materials: nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy Environ Sci. 2009;2(8):818. Deng D, Kim MG, Lee JY, Cho J. Green energy storage materials: nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy Environ Sci. 2009;2(8):818.
[87]
Zurück zum Zitat Li Y, Luo J, Hu X, Wang X, Liang J, Yu K. Fabrication of TiO2 hollow nanostructures and their application in Lithium ion batteries. J Alloys Compd. 2015;651:685. Li Y, Luo J, Hu X, Wang X, Liang J, Yu K. Fabrication of TiO2 hollow nanostructures and their application in Lithium ion batteries. J Alloys Compd. 2015;651:685.
[88]
Zurück zum Zitat Kim HS, Yu SH, Sung YE, Kang SH. Carbon treated self-ordered TiO2 nanotube arrays with enhanced lithium-ion intercalation performance. J Alloys Compd. 2014;597:275. Kim HS, Yu SH, Sung YE, Kang SH. Carbon treated self-ordered TiO2 nanotube arrays with enhanced lithium-ion intercalation performance. J Alloys Compd. 2014;597:275.
[89]
Zurück zum Zitat Zhang M, Yin K, Hood ZD, Bi Z, Bridges CA, Dai S, Meng YS, Paranthaman MP, Chi M. In situ TEM observation of the electrochemical lithiation of N-doped anatase TiO2 nanotubes as anodes for lithium-ion batteries. J Mater Chem A. 2017;5(39):20651. Zhang M, Yin K, Hood ZD, Bi Z, Bridges CA, Dai S, Meng YS, Paranthaman MP, Chi M. In situ TEM observation of the electrochemical lithiation of N-doped anatase TiO2 nanotubes as anodes for lithium-ion batteries. J Mater Chem A. 2017;5(39):20651.
[90]
Zurück zum Zitat Choi J, Park H, Hoffmann MR. Effects of single metal-ion doping on the visible-light photoreactivity of TiO2. J Phys Chem C. 2010;114(2):783. Choi J, Park H, Hoffmann MR. Effects of single metal-ion doping on the visible-light photoreactivity of TiO2. J Phys Chem C. 2010;114(2):783.
[91]
Zurück zum Zitat Lin SH, Ou CC, Su MD, Yang CS. Photo-catalytic behavior of vanadia incorporated titania nanoparticles. Catal Sci Technol. 2013;3(8):2081. Lin SH, Ou CC, Su MD, Yang CS. Photo-catalytic behavior of vanadia incorporated titania nanoparticles. Catal Sci Technol. 2013;3(8):2081.
[92]
Zurück zum Zitat Lu XH, Wang GM, Zhai T, Yu MH, Gan JY, Tong YX, Li Y. Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett. 2012;12(3):1690. Lu XH, Wang GM, Zhai T, Yu MH, Gan JY, Tong YX, Li Y. Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett. 2012;12(3):1690.
[93]
Zurück zum Zitat Wu H, Xu C, Xu J, Lu L, Fan Z, Chen X, Song Y, Li D. Enhanced supercapacitance in anodic TiO2 nanotube films by hydrogen plasma treatment. Nanotechnology. 2013;24(45):455401. Wu H, Xu C, Xu J, Lu L, Fan Z, Chen X, Song Y, Li D. Enhanced supercapacitance in anodic TiO2 nanotube films by hydrogen plasma treatment. Nanotechnology. 2013;24(45):455401.
[94]
Zurück zum Zitat Liu DW, Zhang YH, Xiao P, Garcia BB, Zhang QF, Zhou XY, Jeong YH, Cao GZ. TiO2 nanotube arrays annealed in CO exhibiting high performance for lithium ion intercalation. Electrochim Acta. 2009;54(27):6816. Liu DW, Zhang YH, Xiao P, Garcia BB, Zhang QF, Zhou XY, Jeong YH, Cao GZ. TiO2 nanotube arrays annealed in CO exhibiting high performance for lithium ion intercalation. Electrochim Acta. 2009;54(27):6816.
[95]
Zurück zum Zitat Salari M, Konstantinov K, Liu HK. Enhancement of the capacitance in TiO2 nanotubes through controlled introduction of oxygen vacancies. J Mater Chem. 2011;21(13):5128. Salari M, Konstantinov K, Liu HK. Enhancement of the capacitance in TiO2 nanotubes through controlled introduction of oxygen vacancies. J Mater Chem. 2011;21(13):5128.
[96]
Zurück zum Zitat Liu DW, Xiao P, Zhang YH, Garcia BB, Zhang QF, Guo Q, Champion R, Cao GZ. TiO2 nanotube arrays annealed in N2 for efficient lithium-ion intercalation. J Phys Chem C. 2008;112(30):11175. Liu DW, Xiao P, Zhang YH, Garcia BB, Zhang QF, Guo Q, Champion R, Cao GZ. TiO2 nanotube arrays annealed in N2 for efficient lithium-ion intercalation. J Phys Chem C. 2008;112(30):11175.
[97]
Zurück zum Zitat Wang G, Yang Y, Han D, Li Y. Oxygen defective metal oxides for energy conversion and storage. Nano Today. 2017;13:23. Wang G, Yang Y, Han D, Li Y. Oxygen defective metal oxides for energy conversion and storage. Nano Today. 2017;13:23.
[98]
Zurück zum Zitat Fan L, Li X, Yan B, Feng J, Xiong D, Li D, Gu L, Wen Y, Lawes S, Sun X. Controlled SnO2 crystallinity effectively dominating sodium storage performance. Adv Energy Mater. 2016;6(10):1502057. Fan L, Li X, Yan B, Feng J, Xiong D, Li D, Gu L, Wen Y, Lawes S, Sun X. Controlled SnO2 crystallinity effectively dominating sodium storage performance. Adv Energy Mater. 2016;6(10):1502057.
[99]
Zurück zum Zitat Liao AZ, Wang CW, Chen JB, Zhang XQ, Li Y, Wang J. Remarkably improved field emission of TiO2 nanotube arrays by annealing atmosphere engineering. Mater Res Bull. 2015;70:988. Liao AZ, Wang CW, Chen JB, Zhang XQ, Li Y, Wang J. Remarkably improved field emission of TiO2 nanotube arrays by annealing atmosphere engineering. Mater Res Bull. 2015;70:988.
[100]
Zurück zum Zitat Sang LX, Zhang ZY, Ma CF. Photoelectrical and charge transfer properties of hydrogen-evolving TiO2 nanotube arrays electrodes annealed in different gases. Int J Hydrogen Energy. 2011;36(8):4732. Sang LX, Zhang ZY, Ma CF. Photoelectrical and charge transfer properties of hydrogen-evolving TiO2 nanotube arrays electrodes annealed in different gases. Int J Hydrogen Energy. 2011;36(8):4732.
[101]
Zurück zum Zitat Qiu J, Li S, Gray E, Liu H, Gu QF, Sun C, Lai C, Zhao H, Zhang S. Hydrogenation synthesis of blue TiO2 for high-performance lithium-ion batteries. J Phys Chem C. 2014;118(17):8824. Qiu J, Li S, Gray E, Liu H, Gu QF, Sun C, Lai C, Zhao H, Zhang S. Hydrogenation synthesis of blue TiO2 for high-performance lithium-ion batteries. J Phys Chem C. 2014;118(17):8824.
[102]
Zurück zum Zitat Wang GM, Wang HY, Ling YC, Tang YC, Yang XY, Fitzmorris RC, Wang CC, Zhang JZ, Li Y. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 2011;11(7):3026. Wang GM, Wang HY, Ling YC, Tang YC, Yang XY, Fitzmorris RC, Wang CC, Zhang JZ, Li Y. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 2011;11(7):3026.
[103]
Zurück zum Zitat Swider-Lyons KE, Love CT, Rolison DR. Improved lithium capacity of defective V2O5 materials. Solid State Ion. 2002;152:99. Swider-Lyons KE, Love CT, Rolison DR. Improved lithium capacity of defective V2O5 materials. Solid State Ion. 2002;152:99.
[104]
Zurück zum Zitat Koo B, Xiong H, Slater MD, Prakapenka VB, Balasubramanian M, Podsiadlo P, Johnson CS, Rajh T, Shevchenko EV. Hollow iron oxide nanoparticles for application in lithium ion batteries. Nano Lett. 2012;12(5):2429. Koo B, Xiong H, Slater MD, Prakapenka VB, Balasubramanian M, Podsiadlo P, Johnson CS, Rajh T, Shevchenko EV. Hollow iron oxide nanoparticles for application in lithium ion batteries. Nano Lett. 2012;12(5):2429.
[105]
Zurück zum Zitat Hahn BP, Long JW, Mansour AN, Pettigrew KA, Osofsky MS, Rolison DR. Electrochemical Li-ion storage in defect spinel iron oxides: the critical role of cation vacancies. Energy Environ Sci. 2011;4(4):1495. Hahn BP, Long JW, Mansour AN, Pettigrew KA, Osofsky MS, Rolison DR. Electrochemical Li-ion storage in defect spinel iron oxides: the critical role of cation vacancies. Energy Environ Sci. 2011;4(4):1495.
[106]
Zurück zum Zitat Xiong H, Yildirim H, Podsiadlo P, Zhang J, Prakapenka VB, Greeley JP, Shevchenko EV, Zhuravlev KK, Tkachev S, Sankaranarayanan SK, Rajh T. Compositional tuning of structural stability of lithiated cubic titania via a vacancy-filling mechanism under high pressure. Phys Rev Lett. 2013;110(7):078304. Xiong H, Yildirim H, Podsiadlo P, Zhang J, Prakapenka VB, Greeley JP, Shevchenko EV, Zhuravlev KK, Tkachev S, Sankaranarayanan SK, Rajh T. Compositional tuning of structural stability of lithiated cubic titania via a vacancy-filling mechanism under high pressure. Phys Rev Lett. 2013;110(7):078304.
[107]
Zurück zum Zitat Liao WJ, Yang JW, Zhou H, Murugananthan M, Zhang YR. Electrochemically self-doped TiO2 nanotube arrays for efficient visible light photoelectrocatalytic degradation of contaminants. Electrochim Acta. 2014;136:310. Liao WJ, Yang JW, Zhou H, Murugananthan M, Zhang YR. Electrochemically self-doped TiO2 nanotube arrays for efficient visible light photoelectrocatalytic degradation of contaminants. Electrochim Acta. 2014;136:310.
[108]
Zurück zum Zitat Zhu WD, Wang CW, Chen JB, Li Y, Wang J. Enhanced field emission from Ti3+ self-doped TiO2 nanotube arrays synthesized by a facile cathodic reduction process. Appl Surf Sci. 2014;301:525. Zhu WD, Wang CW, Chen JB, Li Y, Wang J. Enhanced field emission from Ti3+ self-doped TiO2 nanotube arrays synthesized by a facile cathodic reduction process. Appl Surf Sci. 2014;301:525.
[109]
Zurück zum Zitat Li H, Chen Z, Tsang CK, Li Z, Ran X, Lee C, Nie B, Zheng L, Hung T, Lu J, Pan B, Li YY. Electrochemical doping of anatase TiO2 in organic electrolytes for high-performance supercapacitors and photocatalysts. J Mater Chem A. 2014;2(1):229. Li H, Chen Z, Tsang CK, Li Z, Ran X, Lee C, Nie B, Zheng L, Hung T, Lu J, Pan B, Li YY. Electrochemical doping of anatase TiO2 in organic electrolytes for high-performance supercapacitors and photocatalysts. J Mater Chem A. 2014;2(1):229.
[110]
Zurück zum Zitat Duan J, Hou H, Liu X, Liao Q, Liu S, Yao Y. Sulfonated poly(phenylene oxide)/Ti3+/TiO2 nanotube arrays membrane/electrode with high performances for lithium ion battery. Ionics. 2017;23(11):3037. Duan J, Hou H, Liu X, Liao Q, Liu S, Yao Y. Sulfonated poly(phenylene oxide)/Ti3+/TiO2 nanotube arrays membrane/electrode with high performances for lithium ion battery. Ionics. 2017;23(11):3037.
[111]
Zurück zum Zitat Li Z, Ding Y, Kang W, Li C, Lin D, Wang X, Chen Z, Wu M, Pan D. Reduction mechanism and capacitive properties of highly electrochemically reduced TiO2 nanotube arrays. Electrochim Acta. 2015;161:40. Li Z, Ding Y, Kang W, Li C, Lin D, Wang X, Chen Z, Wu M, Pan D. Reduction mechanism and capacitive properties of highly electrochemically reduced TiO2 nanotube arrays. Electrochim Acta. 2015;161:40.
[112]
Zurück zum Zitat Fabregat-Santiago F, Barea EM, Bisquert J, Mor GK, Shankar K, Grimes CA. High carrier density and capacitance in TiO2 nanotube arrays induced by electrochemical doping. J Am Chem Soc. 2008;130(34):11312. Fabregat-Santiago F, Barea EM, Bisquert J, Mor GK, Shankar K, Grimes CA. High carrier density and capacitance in TiO2 nanotube arrays induced by electrochemical doping. J Am Chem Soc. 2008;130(34):11312.
[113]
Zurück zum Zitat Meekins BH, Kamat PV. Got TiO2 nanotubes lithium ion intercalation can boost their photoelectrochemical performance. ACS Nano. 2009;3(11):3437. Meekins BH, Kamat PV. Got TiO2 nanotubes lithium ion intercalation can boost their photoelectrochemical performance. ACS Nano. 2009;3(11):3437.
[114]
Zurück zum Zitat Idígoras J, Berger T, Anta JA. Modification of mesoporous TiO2 films by electrochemical doping: impact on photoelectrocatalytic and photovoltaic performance. The J Phys Chem C. 2013;117(4):1561. Idígoras J, Berger T, Anta JA. Modification of mesoporous TiO2 films by electrochemical doping: impact on photoelectrocatalytic and photovoltaic performance. The J Phys Chem C. 2013;117(4):1561.
[115]
Zurück zum Zitat Xu C, Song Y, Lu LF, Cheng CW, Liu DF, Fang XH, Chen XY, Zhu XF, Li DD. Electrochemically hydrogenated TiO2 nanotubes with improved photoelectrochemical water splitting performance. Nanoscale Res Lett. 2013;8:7. Xu C, Song Y, Lu LF, Cheng CW, Liu DF, Fang XH, Chen XY, Zhu XF, Li DD. Electrochemically hydrogenated TiO2 nanotubes with improved photoelectrochemical water splitting performance. Nanoscale Res Lett. 2013;8:7.
[116]
Zurück zum Zitat Song W, Luo H, Hanson K, Concepcion JJ, Brennaman MK, Meyer TJ. Visualization of cation diffusion at the TiO2 interface in dye sensitized photoelectrosynthesis cells (DSPEC). Energy Environ Sci. 2013;6(4):1240. Song W, Luo H, Hanson K, Concepcion JJ, Brennaman MK, Meyer TJ. Visualization of cation diffusion at the TiO2 interface in dye sensitized photoelectrosynthesis cells (DSPEC). Energy Environ Sci. 2013;6(4):1240.
[117]
Zurück zum Zitat Zhou H, Zhang Y. Enhancing the capacitance of TiO2 nanotube arrays by a facile cathodic reduction process. J Power Sour. 2013;239:128. Zhou H, Zhang Y. Enhancing the capacitance of TiO2 nanotube arrays by a facile cathodic reduction process. J Power Sour. 2013;239:128.
[118]
Zurück zum Zitat Ghicov A, Yamamoto M, Schmuki P. Lattice widening in niobium-doped TiO2 nanotubes: efficient ion intercalation and swift electrochromic contrast. Angew Chem Int Ed Engl. 2008;47(41):7934. Ghicov A, Yamamoto M, Schmuki P. Lattice widening in niobium-doped TiO2 nanotubes: efficient ion intercalation and swift electrochromic contrast. Angew Chem Int Ed Engl. 2008;47(41):7934.
[119]
Zurück zum Zitat Zhi J, Cui H, Wang Z, Huang F. Surface confined titania redox couple for ultrafast energy storage. Mater Horiz. 2018;5(4):691. Zhi J, Cui H, Wang Z, Huang F. Surface confined titania redox couple for ultrafast energy storage. Mater Horiz. 2018;5(4):691.
[120]
Zurück zum Zitat Zhang Y, Du F, Yan X, Jin Y, Zhu K, Wang X, Li H, Chen G, Wang C, Wei Y. Improvements in the electrochemical kinetic properties and rate capability of anatase titanium dioxide nanoparticles by nitrogen doping. ACS Appl Mater Interfaces. 2014;6(6):4458. Zhang Y, Du F, Yan X, Jin Y, Zhu K, Wang X, Li H, Chen G, Wang C, Wei Y. Improvements in the electrochemical kinetic properties and rate capability of anatase titanium dioxide nanoparticles by nitrogen doping. ACS Appl Mater Interfaces. 2014;6(6):4458.
[121]
Zurück zum Zitat Yoon S, Bridges CA, Unocic RR, Paranthaman MP. Mesoporous TiO2 spheres with a nitridated conducting layer for lithium-ion batteries. J Mater Sci. 2013;48(15):5125. Yoon S, Bridges CA, Unocic RR, Paranthaman MP. Mesoporous TiO2 spheres with a nitridated conducting layer for lithium-ion batteries. J Mater Sci. 2013;48(15):5125.
[122]
Zurück zum Zitat Salian GD, Koo BM, Lefevre C, Cottineau T, Lebouin C, Tesfaye AT, Knauth P, Keller V, Djenizian T. Niobium alloying of self-organized TiO2 nanotubes as an anode for lithium-ion microbatteries. Adv Mater Technol. 2018;3(3):1700274. Salian GD, Koo BM, Lefevre C, Cottineau T, Lebouin C, Tesfaye AT, Knauth P, Keller V, Djenizian T. Niobium alloying of self-organized TiO2 nanotubes as an anode for lithium-ion microbatteries. Adv Mater Technol. 2018;3(3):1700274.
[123]
Zurück zum Zitat Fraoucene H, Sugiawati VA, Hatem D, Belkaid MS, Vacandio F, Eyraud M, Pasquinelli M, Djenizian T. Optical and electrochemical properties of self-organized TiO2 nanotube arrays from anodized Ti-6Al-4 V alloy. Front Chem. 2019;7:66. Fraoucene H, Sugiawati VA, Hatem D, Belkaid MS, Vacandio F, Eyraud M, Pasquinelli M, Djenizian T. Optical and electrochemical properties of self-organized TiO2 nanotube arrays from anodized Ti-6Al-4 V alloy. Front Chem. 2019;7:66.
[124]
Zurück zum Zitat Weibel A, Bouchet R, Savin SLP, Chadwick AV, Lippens PE, Womes M, Knauth P. Local atomic and electronic structure in nanocrystalline Sn-doped anatase TiO2. ChemPhysChem. 2006;7(11):2377. Weibel A, Bouchet R, Savin SLP, Chadwick AV, Lippens PE, Womes M, Knauth P. Local atomic and electronic structure in nanocrystalline Sn-doped anatase TiO2. ChemPhysChem. 2006;7(11):2377.
[125]
Zurück zum Zitat Fresno F, Tudela D, Coronado JM, Soria J. Synthesis of Ti1−xSnxO2 nanosized photocatalysts in reverse microemulsions. Catal Today. 2009;143(3–4):230. Fresno F, Tudela D, Coronado JM, Soria J. Synthesis of Ti1−xSnxO2 nanosized photocatalysts in reverse microemulsions. Catal Today. 2009;143(3–4):230.
[126]
Zurück zum Zitat Wang Y, Smarsly BM, Djerdj I. Niobium doped TiO2 with mesoporosity and its application for lithium insertion. Chem Mater. 2010;22(24):6624. Wang Y, Smarsly BM, Djerdj I. Niobium doped TiO2 with mesoporosity and its application for lithium insertion. Chem Mater. 2010;22(24):6624.
[127]
Zurück zum Zitat Long M, Rack HJ. Titanium alloys in total joint replacement: a materials science perspective. Biomaterials. 1998;19(18):1621. Long M, Rack HJ. Titanium alloys in total joint replacement: a materials science perspective. Biomaterials. 1998;19(18):1621.
[128]
Zurück zum Zitat Jo CI, Jeong YH, Choe HC, Brantley WA. Hydroxyapatite precipitation on nanotubular films formed on Ti–6Al–4 V alloy for biomedical applications. Thin Solid Films. 2013;549:135. Jo CI, Jeong YH, Choe HC, Brantley WA. Hydroxyapatite precipitation on nanotubular films formed on Ti–6Al–4 V alloy for biomedical applications. Thin Solid Films. 2013;549:135.
[129]
Zurück zum Zitat Su X, Wu Q, Li J, Xiao X, Lott A, Lu W, Sheldon BW, Wu J. Silicon-based nanomaterials for lithium-ion batteries: a review. Adv Energy Mater. 2014;4(1):1300882. Su X, Wu Q, Li J, Xiao X, Lott A, Lu W, Sheldon BW, Wu J. Silicon-based nanomaterials for lithium-ion batteries: a review. Adv Energy Mater. 2014;4(1):1300882.
[130]
Zurück zum Zitat Brumbarov J, Kunze-Liebhäuser J. Silicon on conductive self-organized TiO2 nanotubes-a high capacity anode material for Li-ion batteries. J Power Sour. 2014;258:129. Brumbarov J, Kunze-Liebhäuser J. Silicon on conductive self-organized TiO2 nanotubes-a high capacity anode material for Li-ion batteries. J Power Sour. 2014;258:129.
[131]
Zurück zum Zitat Nemaga AW, Mallet J, Michel J, Guery C, Molinari M, Morcrette M. All electrochemical process for synthesis of Si coating on TiO2 nanotubes as durable negative electrode material for lithium ion batteries. J Power Sour. 2018;393:43. Nemaga AW, Mallet J, Michel J, Guery C, Molinari M, Morcrette M. All electrochemical process for synthesis of Si coating on TiO2 nanotubes as durable negative electrode material for lithium ion batteries. J Power Sour. 2018;393:43.
[132]
Zurück zum Zitat Lee G, Kim S, Kim S, Choi J. SiO2/TiO2 composite film for high capacity and excellent cycling stability in lithium-ion battery anodes. Adv Funct Mater. 2017;27(39):1703538. Lee G, Kim S, Kim S, Choi J. SiO2/TiO2 composite film for high capacity and excellent cycling stability in lithium-ion battery anodes. Adv Funct Mater. 2017;27(39):1703538.
[133]
Zurück zum Zitat Wu X, Zhang S, Wang L, Du Z, Fang H, Ling Y, Huang Z. Coaxial SnO2@TiO2 nanotube hybrids: from robust assembly strategies to potential application in Li+ storage. J Mater Chem. 2012;22(22):11151. Wu X, Zhang S, Wang L, Du Z, Fang H, Ling Y, Huang Z. Coaxial SnO2@TiO2 nanotube hybrids: from robust assembly strategies to potential application in Li+ storage. J Mater Chem. 2012;22(22):11151.
[134]
Zurück zum Zitat Zhang P, Zhu S, He Z, Wang K, Fan H, Zhong Y, Chang L, Shao H, Wang J, Zhang J, Cao CN. Photochemical synthesis of SnO2/TiO2 composite nanotube arrays with enhanced lithium storage performance. J Alloys Compd. 2016;674:1. Zhang P, Zhu S, He Z, Wang K, Fan H, Zhong Y, Chang L, Shao H, Wang J, Zhang J, Cao CN. Photochemical synthesis of SnO2/TiO2 composite nanotube arrays with enhanced lithium storage performance. J Alloys Compd. 2016;674:1.
[135]
Zurück zum Zitat Tang YP, Tan XX, Hou GY, Zheng GQ. Nanocrystalline Li4Ti5O12-coated TiO2 nanotube arrays as three-dimensional anode for lithium-ion batteries. Electrochim Acta. 2014;117:172. Tang YP, Tan XX, Hou GY, Zheng GQ. Nanocrystalline Li4Ti5O12-coated TiO2 nanotube arrays as three-dimensional anode for lithium-ion batteries. Electrochim Acta. 2014;117:172.
[136]
Zurück zum Zitat Guan D, Li J, Gao X, Yuan C. Controllable synthesis of MoO3-deposited TiO2 nanotubes with enhanced lithium-ion intercalation performance. J Power Sour. 2014;246:305. Guan D, Li J, Gao X, Yuan C. Controllable synthesis of MoO3-deposited TiO2 nanotubes with enhanced lithium-ion intercalation performance. J Power Sour. 2014;246:305.
[137]
Zurück zum Zitat Zheng L, Han S, Liu H, Yu P, Fang X. Hierarchical MoS2 nanosheet@TiO2 nanotube array composites with enhanced photocatalytic and photocurrent performances. Small. 2016;12(11):1527. Zheng L, Han S, Liu H, Yu P, Fang X. Hierarchical MoS2 nanosheet@TiO2 nanotube array composites with enhanced photocatalytic and photocurrent performances. Small. 2016;12(11):1527.
[138]
Zurück zum Zitat Su L, Jing Y, Zhou Z. Li ion battery materials with core-shell nanostructures. Nanoscale. 2011;3(10):3967. Su L, Jing Y, Zhou Z. Li ion battery materials with core-shell nanostructures. Nanoscale. 2011;3(10):3967.
[139]
Zurück zum Zitat Menéndez R, Alvarez P, Botas C, Nacimiento F, Alcántara R, Tirado JL, Ortiz GF. Self-organized amorphous titania nanotubes with deposited graphene film like a new heterostructured electrode for lithium ion batteries. J Power Sour. 2014;248:886. Menéndez R, Alvarez P, Botas C, Nacimiento F, Alcántara R, Tirado JL, Ortiz GF. Self-organized amorphous titania nanotubes with deposited graphene film like a new heterostructured electrode for lithium ion batteries. J Power Sour. 2014;248:886.
[140]
Zurück zum Zitat Huang H, Yu J, Gan Y, Xia Y, Liang C, Zhang J, Tao X, Zhang W. Hybrid nanoarchitecture of TiO2 nanotubes and graphene sheet for advanced lithium ion batteries. Mater Res Bull. 2017;96:425. Huang H, Yu J, Gan Y, Xia Y, Liang C, Zhang J, Tao X, Zhang W. Hybrid nanoarchitecture of TiO2 nanotubes and graphene sheet for advanced lithium ion batteries. Mater Res Bull. 2017;96:425.
[141]
Zurück zum Zitat Shen L, Zhang X, Li H, Yuan C, Cao G. Design and tailoring of a three-dimensional TiO2–graphene–carbon nanotube nanocomposite for fast lithium storage. J Phys Chem Lett. 2011;2(24):3096. Shen L, Zhang X, Li H, Yuan C, Cao G. Design and tailoring of a three-dimensional TiO2–graphene–carbon nanotube nanocomposite for fast lithium storage. J Phys Chem Lett. 2011;2(24):3096.
[142]
Zurück zum Zitat Zhen M, Su L, Yuan Z, Liu L, Zhou Z. Well-distributed TiO2 nanocrystals on reduced graphene oxides as high-performance anode materials for lithium ion batteries. RSC Adv. 2013;3(33):13696. Zhen M, Su L, Yuan Z, Liu L, Zhou Z. Well-distributed TiO2 nanocrystals on reduced graphene oxides as high-performance anode materials for lithium ion batteries. RSC Adv. 2013;3(33):13696.
[143]
Zurück zum Zitat Sun XC, Zhang YF, Gu L, Hu LL, Feng K, Chen ZW, Cui B. Nanocomposite of TiO2 nanoparticles-reduced graphene oxide with high-rate performance for Li-Ion battery. ECS Trans. 2015;64(23):11. Sun XC, Zhang YF, Gu L, Hu LL, Feng K, Chen ZW, Cui B. Nanocomposite of TiO2 nanoparticles-reduced graphene oxide with high-rate performance for Li-Ion battery. ECS Trans. 2015;64(23):11.
[144]
Zurück zum Zitat Kim HS, Kang SH, Chung YH, Sung YE. Conformal Sn coated TiO2 nanotube arrays and its electrochemical performance for high rate lithium-ion batteries. Electrochem Solid State Lett. 2010;13(2):A15. Kim HS, Kang SH, Chung YH, Sung YE. Conformal Sn coated TiO2 nanotube arrays and its electrochemical performance for high rate lithium-ion batteries. Electrochem Solid State Lett. 2010;13(2):A15.
[145]
Zurück zum Zitat Meng R, Hou H, Liu X, Duan J, Liu S. Binder-free combination of amorphous TiO2 nanotube arrays with highly conductive Cu bridges for lithium ion battery anode. Ionics. 2016;22(9):1527. Meng R, Hou H, Liu X, Duan J, Liu S. Binder-free combination of amorphous TiO2 nanotube arrays with highly conductive Cu bridges for lithium ion battery anode. Ionics. 2016;22(9):1527.
[146]
Zurück zum Zitat Fang D, Huang K, Liu S, Li Z. Electrochemical properties of ordered TiO2 nanotube loaded with Ag nano-particles for lithium anode material. J Alloys Compd. 2008;464(1–2):L5. Fang D, Huang K, Liu S, Li Z. Electrochemical properties of ordered TiO2 nanotube loaded with Ag nano-particles for lithium anode material. J Alloys Compd. 2008;464(1–2):L5.
Metadaten
Titel
Recent progress in Li-ion batteries with TiO2 nanotube anodes grown by electrochemical anodization
verfasst von
Meng-Meng Zhang
Jia-Yuan Chen
Hui Li
Chun-Rui Wang
Publikationsdatum
30.07.2020
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 2/2021
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01499-x

Weitere Artikel der Ausgabe 2/2021

Rare Metals 2/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.