Skip to main content
Erschienen in: Rare Metals 2/2021

01.09.2020 | Original Article

Nonsolvent-induced phase separation-derived TiO2 nanotube arrays/porous Ti electrode as high-energy-density anode for lithium-ion batteries

verfasst von: Zhi-Jia Zhang, Jun Zhao, Zhi-Jun Qiao, Jia-Min Wang, Shi-Hao Sun, Wen-Xing Fu, Xi-Yuan Zhang, Zhen-Yang Yu, Yu-Hai Dou, Jian-Li Kang, Ding Yuan, Yue-Zhan Feng, Jian-Min Ma

Erschienen in: Rare Metals | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

TiO2 nanotube arrays, growing on three-dimensional (3D) porous Ti membrane, were synthesized using a facile nonsolvent-induced phase separation and anodization process. The length of those three-dimensional nanotube arrays could be tuned by prolonging the anodizing time. When the anodizing time is 8 h, the three-dimensional TiO2 nanotube arrays/porous Ti electrode exhibits well cycling stability and ultra-high specific capacity, which is used in lithium-ion batteries, attributed to the high utilization rate of the substrate and the high growth intensity of the active materials. Three-dimensional TiO2 nanotube arrays/porous Ti electrode, at 100 μA·cm−2 with 8 h anodizing time, shows a typical discharge plateau at 1.78 V and exhibits the specific capacity with 2126.7 μAh·cm−2. The novel nanotube arrays@3D porous architecture effectively shortens the electron/ion transmission path, which could pave way for optimizing the design of high-performance anode materials for next-generation energy storage system.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
[2]
Zurück zum Zitat Wu ZH, Yang JY, Yu B, Shi BM, Zhao CR, Yu ZL. Self-healing alginate-carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries. Rare Met. 2019;38(9):832.CrossRef Wu ZH, Yang JY, Yu B, Shi BM, Zhao CR, Yu ZL. Self-healing alginate-carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries. Rare Met. 2019;38(9):832.CrossRef
[3]
Zurück zum Zitat Yue X-Y, Abulikemu A, Li XL, Qiu QQ, Wang F, Wu XJ, Zhou Y-N. Vermiculite derived porous silicon nanosheet as a scalable and low cost anode material for lithium-ion batteries. J Power Sour. 2019;410:132.CrossRef Yue X-Y, Abulikemu A, Li XL, Qiu QQ, Wang F, Wu XJ, Zhou Y-N. Vermiculite derived porous silicon nanosheet as a scalable and low cost anode material for lithium-ion batteries. J Power Sour. 2019;410:132.CrossRef
[5]
Zurück zum Zitat Jun M, Ayoko GA, Hu C, Bell JM, Sun ZQ. Two-dimensional fluorine-free mesoporous Mo2C MXene via UV-induced selective etching of Mo2Ga2C for energy storage. Sustain Mater Technol. 2020;25:e00156. Jun M, Ayoko GA, Hu C, Bell JM, Sun ZQ. Two-dimensional fluorine-free mesoporous Mo2C MXene via UV-induced selective etching of Mo2Ga2C for energy storage. Sustain Mater Technol. 2020;25:e00156.
[6]
Zurück zum Zitat Lyu Y, Liu Y, Yu ZE, Su N, Liu Y, Li W, Li Q, Guo B, Liu B. Recent advances in high energy-density cathode materials for sodium-ion batteries. Sustain Mater Technol. 2019;21:e00098. Lyu Y, Liu Y, Yu ZE, Su N, Liu Y, Li W, Li Q, Guo B, Liu B. Recent advances in high energy-density cathode materials for sodium-ion batteries. Sustain Mater Technol. 2019;21:e00098.
[7]
Zurück zum Zitat Yue XY, Wang WW, Wang QC, Meng JK, Wang XX, Song Y, Fu ZW, Wu XJ, Zhou YN. Cuprite-coated Cu foam skeleton host enabling lateral growth of lithium dendrites for advanced Li metal batteries. Energy Storage Mater. 2019;21:180.CrossRef Yue XY, Wang WW, Wang QC, Meng JK, Wang XX, Song Y, Fu ZW, Wu XJ, Zhou YN. Cuprite-coated Cu foam skeleton host enabling lateral growth of lithium dendrites for advanced Li metal batteries. Energy Storage Mater. 2019;21:180.CrossRef
[8]
Zurück zum Zitat Yue X-Y, Li X-L, Wang W-W, Chen D, Qiu QQ, Wang QC, Wu XJ, Fu Z-W, Shadike Z, Yang XQ, Zhou YN. Wettable carbon felt framework for high loading Li-metal composite anode. Nano Energy. 2019;60:257.CrossRef Yue X-Y, Li X-L, Wang W-W, Chen D, Qiu QQ, Wang QC, Wu XJ, Fu Z-W, Shadike Z, Yang XQ, Zhou YN. Wettable carbon felt framework for high loading Li-metal composite anode. Nano Energy. 2019;60:257.CrossRef
[9]
Zurück zum Zitat Xu B, Qi S, Jin M, Cai X, Lai L, Sun Z, Han X, Lin Z, Shao H, Peng P, Xiang Z, Elshof JE, Tan R, Liu C, Zhang Z, Duan X, Ma J. 2020 roadmap on two-dimensional materials for energy storage and conversion. Chin Chem Lett. 2019;30(12):2053.CrossRef Xu B, Qi S, Jin M, Cai X, Lai L, Sun Z, Han X, Lin Z, Shao H, Peng P, Xiang Z, Elshof JE, Tan R, Liu C, Zhang Z, Duan X, Ma J. 2020 roadmap on two-dimensional materials for energy storage and conversion. Chin Chem Lett. 2019;30(12):2053.CrossRef
[10]
Zurück zum Zitat Wang L, Xie X, Dinh KN, Yan Q, Ma J. Synthesis, characterizations, and utilization of oxygen-deficient metal oxides for lithium/sodium-ion batteries and supercapacitors. Coord Chem Rev. 2019;397:138.CrossRef Wang L, Xie X, Dinh KN, Yan Q, Ma J. Synthesis, characterizations, and utilization of oxygen-deficient metal oxides for lithium/sodium-ion batteries and supercapacitors. Coord Chem Rev. 2019;397:138.CrossRef
[11]
Zurück zum Zitat Chen D, Tan H, Rui X, Zhang Q, Feng Y, Geng H, Li C, Huang S, Yu Y. Oxyvanite V3O5: a new intercalation-type anode for lithium-ion battery. InfoMat. 2019;1(2):251. Chen D, Tan H, Rui X, Zhang Q, Feng Y, Geng H, Li C, Huang S, Yu Y. Oxyvanite V3O5: a new intercalation-type anode for lithium-ion battery. InfoMat. 2019;1(2):251.
[12]
Zurück zum Zitat Xu ZX, Wang AQ, Zhu YF. Controllable synthesis and tunable photocatalytic activity of TiO2 nanowires via alcohol-thermal method. Rare Met. 2019;38(5):390.CrossRef Xu ZX, Wang AQ, Zhu YF. Controllable synthesis and tunable photocatalytic activity of TiO2 nanowires via alcohol-thermal method. Rare Met. 2019;38(5):390.CrossRef
[13]
Zurück zum Zitat Zhang Z, Hou Y, Zhang S, Zhang G, Li M, Lu H, Li Y, Zheng X, Qiao Z, Yu Z, Huang Q, Kang J. Facile synthesized Cu-SnO2 anode materials with three-dimensional metal cluster conducting architecture for high performance lithium-ion batteries. Chin Chem Lett. 2018;29(11):1656.CrossRef Zhang Z, Hou Y, Zhang S, Zhang G, Li M, Lu H, Li Y, Zheng X, Qiao Z, Yu Z, Huang Q, Kang J. Facile synthesized Cu-SnO2 anode materials with three-dimensional metal cluster conducting architecture for high performance lithium-ion batteries. Chin Chem Lett. 2018;29(11):1656.CrossRef
[14]
Zurück zum Zitat Huang L, Su K, Zheng YF, Yeung KWK, Liu XM. Construction of TiO2/silane nanofilm on AZ31 magnesium alloy for controlled degradability and enhanced biocompatibility. Rare Met. 2019;38(6):588.CrossRef Huang L, Su K, Zheng YF, Yeung KWK, Liu XM. Construction of TiO2/silane nanofilm on AZ31 magnesium alloy for controlled degradability and enhanced biocompatibility. Rare Met. 2019;38(6):588.CrossRef
[15]
Zurück zum Zitat Opra DP, Gnedenkov SV, Sinebryukhov SL. Recent efforts in design of TiO2 (B) anodes for high-rate lithium-ion batteries: a review. J Power Sour. 2019;442:227225.CrossRef Opra DP, Gnedenkov SV, Sinebryukhov SL. Recent efforts in design of TiO2 (B) anodes for high-rate lithium-ion batteries: a review. J Power Sour. 2019;442:227225.CrossRef
[16]
Zurück zum Zitat Lu HH, Shi CS, Zhao NQ, Liu EZ, He CN, He F. Carbon and few-layer MoS2 nanosheets co-modified TiO2 nanosheets with enhanced electrochemical properties for lithium storage. Rare Met. 2018;37(2):107.CrossRef Lu HH, Shi CS, Zhao NQ, Liu EZ, He CN, He F. Carbon and few-layer MoS2 nanosheets co-modified TiO2 nanosheets with enhanced electrochemical properties for lithium storage. Rare Met. 2018;37(2):107.CrossRef
[17]
Zurück zum Zitat Mujtaba J, Sun H, Zhao YY, Guo LX, Sheng MX, Jing Z. High-performance lithium storage based on the synergy of atomic-thickness nanosheets of TiO2 (B) and ultrafine Co3O4 nanoparticles. J Power Sour. 2017;363:110.CrossRef Mujtaba J, Sun H, Zhao YY, Guo LX, Sheng MX, Jing Z. High-performance lithium storage based on the synergy of atomic-thickness nanosheets of TiO2 (B) and ultrafine Co3O4 nanoparticles. J Power Sour. 2017;363:110.CrossRef
[19]
Zurück zum Zitat Wu D, Wang C, Wu M, Chao Y, He P, Ma J. Porous bowl-shaped VS2 nanosheets/graphene composite for high-rate lithium-ion storage. J Energy Chem. 2020;43:24.CrossRef Wu D, Wang C, Wu M, Chao Y, He P, Ma J. Porous bowl-shaped VS2 nanosheets/graphene composite for high-rate lithium-ion storage. J Energy Chem. 2020;43:24.CrossRef
[20]
Zurück zum Zitat Xu H, Liu SQ, Zhou S, Yuan TZJ, Wang X, Tang X, Yin J, Tao HJ. Morphology and photocatalytic performance of nano-sized TiO2 prepared by simple hydrothermal method with different pH values. Rare Mater. 2018;37(9):750.CrossRef Xu H, Liu SQ, Zhou S, Yuan TZJ, Wang X, Tang X, Yin J, Tao HJ. Morphology and photocatalytic performance of nano-sized TiO2 prepared by simple hydrothermal method with different pH values. Rare Mater. 2018;37(9):750.CrossRef
[21]
Zurück zum Zitat Qian D, Gu Y, Guo S, Liu H, Chen Y, Wang J, Ma G, Wu C. Effect of rich R-TiO2 on the rate and cycle properties of Li4Ti5O12 as anode for lithium ion batteries. J Energy Chem. 2019;32:182.CrossRef Qian D, Gu Y, Guo S, Liu H, Chen Y, Wang J, Ma G, Wu C. Effect of rich R-TiO2 on the rate and cycle properties of Li4Ti5O12 as anode for lithium ion batteries. J Energy Chem. 2019;32:182.CrossRef
[23]
Zurück zum Zitat Liang X, Chen X, Zhao H, Yang Z, Wei F, Tu H. Preparation methods of nano-TiO2 electron transport layers and properties for perovskite solar cells. Chin J Rare Met. 2019;43(2):164. Liang X, Chen X, Zhao H, Yang Z, Wei F, Tu H. Preparation methods of nano-TiO2 electron transport layers and properties for perovskite solar cells. Chin J Rare Met. 2019;43(2):164.
[25]
Zurück zum Zitat Cao ML, Gao L, Lv XW, Shen Y. TiO2-B@VS2 heterogeneous nanowire arrays as superior anodes for lithium-ion batteries. J Power Sour. 2017;350:87.CrossRef Cao ML, Gao L, Lv XW, Shen Y. TiO2-B@VS2 heterogeneous nanowire arrays as superior anodes for lithium-ion batteries. J Power Sour. 2017;350:87.CrossRef
[26]
Zurück zum Zitat Cai X, Liu W, Yang S, Zhang SS, Gao QZ, Yu XY, Li J, Wang HQ, Fang YP. Dual-confined SiO embedded in TiO2 shell and 3D carbon nanofiber web as stable anode material for superior lithium storage. Adv Mater Interfaces. 2019;6(10):1801800.CrossRef Cai X, Liu W, Yang S, Zhang SS, Gao QZ, Yu XY, Li J, Wang HQ, Fang YP. Dual-confined SiO embedded in TiO2 shell and 3D carbon nanofiber web as stable anode material for superior lithium storage. Adv Mater Interfaces. 2019;6(10):1801800.CrossRef
[27]
Zurück zum Zitat Li Z, Fu JY, Feng Y, Dong CK, Liu H, Du XW. A silver catalyst activated by stacking faults for the hydrogen evolution reaction. Nat Catal. 2019;2:1107.CrossRef Li Z, Fu JY, Feng Y, Dong CK, Liu H, Du XW. A silver catalyst activated by stacking faults for the hydrogen evolution reaction. Nat Catal. 2019;2:1107.CrossRef
[28]
Zurück zum Zitat Chen J, Zhang Q, Tan F, Zhou M. Effect of different SiO2 content on dielectric properties of BaO-SrO-PbO-TiO2-SiO2-Nb2O5 glass-ceramic composites. Chin J Rare Met. 2019;43(9):935. Chen J, Zhang Q, Tan F, Zhou M. Effect of different SiO2 content on dielectric properties of BaO-SrO-PbO-TiO2-SiO2-Nb2O5 glass-ceramic composites. Chin J Rare Met. 2019;43(9):935.
[29]
Zurück zum Zitat Li S, Zhang YM, Huang JG. Three-dimensional TiO2 nanotubes immobilized with Fe2O3 nanoparticles as an anode material for lithium-ion batteries. J Alloys Compd. 2019;783:793.CrossRef Li S, Zhang YM, Huang JG. Three-dimensional TiO2 nanotubes immobilized with Fe2O3 nanoparticles as an anode material for lithium-ion batteries. J Alloys Compd. 2019;783:793.CrossRef
[30]
Zurück zum Zitat Guan X, Zhang Z, Zhang S, Wang Y, Yang H, Wang J, Li M, Lu H, Li Y, Huang Q, Zheng X, Qiao Z, Yu Z, Kang J. NIPS derived three-dimensional porous copper membrane for high-energy-density lithium-ion batteries. Electrochim Acta. 2019;312:424.CrossRef Guan X, Zhang Z, Zhang S, Wang Y, Yang H, Wang J, Li M, Lu H, Li Y, Huang Q, Zheng X, Qiao Z, Yu Z, Kang J. NIPS derived three-dimensional porous copper membrane for high-energy-density lithium-ion batteries. Electrochim Acta. 2019;312:424.CrossRef
[31]
Zurück zum Zitat Zhang ZJ, Zeng QY, Chou SL, Li XJ, Li HJ, Ozawa K, Liu HK, Wang JZ. Tuning three-dimensional TiO2 nanotube electrode to achieve high utilization of Ti substrate for lithium storage. Electrochim Acta. 2014;133:570.CrossRef Zhang ZJ, Zeng QY, Chou SL, Li XJ, Li HJ, Ozawa K, Liu HK, Wang JZ. Tuning three-dimensional TiO2 nanotube electrode to achieve high utilization of Ti substrate for lithium storage. Electrochim Acta. 2014;133:570.CrossRef
[32]
Zurück zum Zitat Ariga K, Li J. Nanoarchitectonics for advanced materials: strategy beyond nanotechnology. Adv Mater. 2016;28(6):987.CrossRef Ariga K, Li J. Nanoarchitectonics for advanced materials: strategy beyond nanotechnology. Adv Mater. 2016;28(6):987.CrossRef
[33]
Zurück zum Zitat Opra DP, Gnedenkov SV, Sinebryukhov SL, Voit EI, Sokolov AA, Ustinov AY, Zheleznov VV. Zr4+/F-co-doped TiO2 (anatase) as high performance anode material for lithium-ion battery. Prog Nat Sci Met Mater Int. 2018;28(5):542.CrossRef Opra DP, Gnedenkov SV, Sinebryukhov SL, Voit EI, Sokolov AA, Ustinov AY, Zheleznov VV. Zr4+/F-co-doped TiO2 (anatase) as high performance anode material for lithium-ion battery. Prog Nat Sci Met Mater Int. 2018;28(5):542.CrossRef
Metadaten
Titel
Nonsolvent-induced phase separation-derived TiO2 nanotube arrays/porous Ti electrode as high-energy-density anode for lithium-ion batteries
verfasst von
Zhi-Jia Zhang
Jun Zhao
Zhi-Jun Qiao
Jia-Min Wang
Shi-Hao Sun
Wen-Xing Fu
Xi-Yuan Zhang
Zhen-Yang Yu
Yu-Hai Dou
Jian-Li Kang
Ding Yuan
Yue-Zhan Feng
Jian-Min Ma
Publikationsdatum
01.09.2020
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 2/2021
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01571-6

Weitere Artikel der Ausgabe 2/2021

Rare Metals 2/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.