Skip to main content
Erschienen in: Rare Metals 2/2021

09.11.2020 | Review

Challenges and strategies for ultrafast aqueous zinc-ion batteries

verfasst von: Qiao-Nan Zhu, Zhen-Ya Wang, Jia-Wei Wang, Xiao-Yu Liu, Dan Yang, Li-Wei Cheng, Meng-Yao Tang, Yu Qin, Hua Wang

Erschienen in: Rare Metals | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With the rising demand for fast-charging technology in electric vehicles and portable devices, significant efforts have been devoted to the development of the high-rate batteries. Among numerous candidates, rechargeable aqueous zinc-ion batteries (ZIBs) are a promising option due to its high theoretical capacity, low redox potential of zinc metal anode and inherent high ionic conductivity of aqueous electrolyte. As the strong electrostatic interaction between Zn2+ and host generally leads to sluggish electrode kinetics, many strategies have been proposed to enhance fast (dis)charging performance. Herein, we review the state-of-the-art ultrafast aqueous ZIBs and focus on the rational electrode-designing strategies, such as crystal structure engineering, nanostructuring and morphology controlling, conductive materials introducing and organic molecule designing. Recent research directions and future perspectives are also proposed in this review.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Tang Y, Zhang Y, Li W, Ma B, Chen X. Rational material design for ultrafast rechargeable lithium-ion batteries. Chem Soc Rev. 2015;44(17):5926. Tang Y, Zhang Y, Li W, Ma B, Chen X. Rational material design for ultrafast rechargeable lithium-ion batteries. Chem Soc Rev. 2015;44(17):5926.
[2]
Zurück zum Zitat Liu Y, Zhu Y, Cui Y. Challenges and opportunities towards fast-charging battery materials. Nat Energy. 2019;4(7):540. Liu Y, Zhu Y, Cui Y. Challenges and opportunities towards fast-charging battery materials. Nat Energy. 2019;4(7):540.
[4]
Zurück zum Zitat Ding GC, Zhu LM, Yang Q, Xie LL, Cao XY, Wang YL, Liu JP, Yang XL. NaV3O8/poly(3,4-ethylenedioxythiophene) composites as high-rate and long-lifespan cathode materials for reversible sodium storage. Rare Met. 2020;39(8):865. Ding GC, Zhu LM, Yang Q, Xie LL, Cao XY, Wang YL, Liu JP, Yang XL. NaV3O8/poly(3,4-ethylenedioxythiophene) composites as high-rate and long-lifespan cathode materials for reversible sodium storage. Rare Met. 2020;39(8):865.
[5]
Zurück zum Zitat Dong S, Yu D, Yang J, Jiang L, Wang J, Cheng L, Zhou Y, Yue H, Wang H, Guo L. Tellurium: a high-volumetric-capacity potassium-ion battery electrode material. Adv Mater. 2020;32(23):1908027. Dong S, Yu D, Yang J, Jiang L, Wang J, Cheng L, Zhou Y, Yue H, Wang H, Guo L. Tellurium: a high-volumetric-capacity potassium-ion battery electrode material. Adv Mater. 2020;32(23):1908027.
[6]
Zurück zum Zitat Zhu GL, Zhao CZ, Huang JQ, He C, Zhang J, Chen S, Xu L, Yuan H, Zhang Q. Fast charging lithium batteries: recent progress and future prospects. Small. 2019;15(15):1805389. Zhu GL, Zhao CZ, Huang JQ, He C, Zhang J, Chen S, Xu L, Yuan H, Zhang Q. Fast charging lithium batteries: recent progress and future prospects. Small. 2019;15(15):1805389.
[7]
Zurück zum Zitat Chen L, Ruan Y, Zhang G, Wei Q, Jiang Y, Xiong T, He P, Yang W, Yan M, An Q, Mai L. Ultrastable and high-performance Zn/VO2 battery based on a reversible single-phase reaction. Chem Mater. 2019;31(3):699. Chen L, Ruan Y, Zhang G, Wei Q, Jiang Y, Xiong T, He P, Yang W, Yan M, An Q, Mai L. Ultrastable and high-performance Zn/VO2 battery based on a reversible single-phase reaction. Chem Mater. 2019;31(3):699.
[8]
Zurück zum Zitat Blanc LE, Kundu D, Nazar LF. Scientific challenges for the implementation of Zn-ion batteries. Joule. 2020;4(4):771. Blanc LE, Kundu D, Nazar LF. Scientific challenges for the implementation of Zn-ion batteries. Joule. 2020;4(4):771.
[9]
Zurück zum Zitat Li H, Ma L, Han C, Wang Z, Liu Z, Tang Z, Zhi C. Advanced rechargeable zinc-based batteries: recent progress and future perspectives. Nano Energy. 2019;62:550. Li H, Ma L, Han C, Wang Z, Liu Z, Tang Z, Zhi C. Advanced rechargeable zinc-based batteries: recent progress and future perspectives. Nano Energy. 2019;62:550.
[10]
Zurück zum Zitat Zhu K, Wu T, Huang K. NaCa0.6V6O16·3H2O as an ultra-stable cathode for Zn-ion batteries: the roles of pre-inserted dual-cations and structural water in V3O8 layer. Adv Energy Mater. 2019;9(38):1901968. Zhu K, Wu T, Huang K. NaCa0.6V6O16·3H2O as an ultra-stable cathode for Zn-ion batteries: the roles of pre-inserted dual-cations and structural water in V3O8 layer. Adv Energy Mater. 2019;9(38):1901968.
[11]
Zurück zum Zitat Song M, Tan H, Chao D, Fan HJ. Recent advances in Zn-ion batteries. Adv Funct Mater. 2018;28(41):1802564. Song M, Tan H, Chao D, Fan HJ. Recent advances in Zn-ion batteries. Adv Funct Mater. 2018;28(41):1802564.
[12]
Zurück zum Zitat Selvakumaran D, Pan A, Liang S, Cao G. A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries. J Mater Chem A. 2019;7(31):18209. Selvakumaran D, Pan A, Liang S, Cao G. A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries. J Mater Chem A. 2019;7(31):18209.
[13]
Zurück zum Zitat Kundu D, Adams BD, Duffort V, Vajargah SH, Nazar LF. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat Energy. 2016;1:16119. Kundu D, Adams BD, Duffort V, Vajargah SH, Nazar LF. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat Energy. 2016;1:16119.
[14]
Zurück zum Zitat Fang G, Zhou J, Pan A, Liang S. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 2018;3(10):2480. Fang G, Zhou J, Pan A, Liang S. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 2018;3(10):2480.
[15]
Zurück zum Zitat Cheng LW, Liang YH, Zhu QN, Yu DD, Chen MX, Liang JF, Wang H. Bio-inspired isoalloxazine redox moieties for rechargeable aqueous zinc-ion batteries. Chem Asian J. 2020;15(8):1290. Cheng LW, Liang YH, Zhu QN, Yu DD, Chen MX, Liang JF, Wang H. Bio-inspired isoalloxazine redox moieties for rechargeable aqueous zinc-ion batteries. Chem Asian J. 2020;15(8):1290.
[16]
Zurück zum Zitat Zhong C, Liu B, Ding J, Liu X, Zhong Y, Li Y, Sun C, Han X, Deng Y, Zhao N, Hu W. Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc–manganese dioxide batteries. Nat Energy. 2020;5(6):440. Zhong C, Liu B, Ding J, Liu X, Zhong Y, Li Y, Sun C, Han X, Deng Y, Zhao N, Hu W. Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc–manganese dioxide batteries. Nat Energy. 2020;5(6):440.
[17]
Zurück zum Zitat Ji B, Yao W, Tang Y. High-performance rechargeable zinc-based dual-ion batteries. Sustain Energy Fuels. 2020;4(1):101. Ji B, Yao W, Tang Y. High-performance rechargeable zinc-based dual-ion batteries. Sustain Energy Fuels. 2020;4(1):101.
[18]
Zurück zum Zitat Wang H, Wang M, Tang Y. A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications. Energy Storage Mater. 2018;13:1. Wang H, Wang M, Tang Y. A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications. Energy Storage Mater. 2018;13:1.
[19]
Zurück zum Zitat Wang P, Shi X, Wu Z, Guo S, Zhou J, Liang S. Layered hydrated vanadium oxide as highly reversible intercalation cathode for aqueous Zn-ion batteries. Carbon Energy. 2020;2(2):294. Wang P, Shi X, Wu Z, Guo S, Zhou J, Liang S. Layered hydrated vanadium oxide as highly reversible intercalation cathode for aqueous Zn-ion batteries. Carbon Energy. 2020;2(2):294.
[20]
Zurück zum Zitat Li C, Xie X, Liang S, Zhou J. Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries. Energy Environ Mater. 2020;3(2):146. Li C, Xie X, Liang S, Zhou J. Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries. Energy Environ Mater. 2020;3(2):146.
[21]
Zurück zum Zitat Soundharrajan V, Sambandam B, Kim S, Alfaruqi MH, Putro DY, Jo J, Kim S, Mathew V, Sun YK, Kim J. Na2V6O16·3H2O barnesite nanorod: an open door to display a stable and high energy for aqueous rechargeable Zn-ion batteries as cathodes. Nano Lett. 2018;18(4):2402. Soundharrajan V, Sambandam B, Kim S, Alfaruqi MH, Putro DY, Jo J, Kim S, Mathew V, Sun YK, Kim J. Na2V6O16·3H2O barnesite nanorod: an open door to display a stable and high energy for aqueous rechargeable Zn-ion batteries as cathodes. Nano Lett. 2018;18(4):2402.
[22]
Zurück zum Zitat Xia C, Guo J, Li P, Zhang X, Alshareef HN. Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode. Angew Chem Int Ed. 2018;57(15):3943. Xia C, Guo J, Li P, Zhang X, Alshareef HN. Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode. Angew Chem Int Ed. 2018;57(15):3943.
[23]
Zurück zum Zitat Yang Y, Tang Y, Liang S, Wu Z, Fang G, Cao X, Wang C, Lin T, Pan A, Zhou J. Transition metal ion-preintercalated V2O5 as high-performance aqueous zinc-ion battery cathode with broad temperature adaptability. Nano Energy. 2019;61:617. Yang Y, Tang Y, Liang S, Wu Z, Fang G, Cao X, Wang C, Lin T, Pan A, Zhou J. Transition metal ion-preintercalated V2O5 as high-performance aqueous zinc-ion battery cathode with broad temperature adaptability. Nano Energy. 2019;61:617.
[24]
Zurück zum Zitat Wang D, Wang L, Liang G, Li H, Liu Z, Tang Z, Liang J, Zhi C. A superior δ-MnO2 cathode and a self-healing Zn–δ–MnO2 battery. ACS Nano. 2019;13(9):10643. Wang D, Wang L, Liang G, Li H, Liu Z, Tang Z, Liang J, Zhi C. A superior δ-MnO2 cathode and a self-healing Zn–δ–MnO2 battery. ACS Nano. 2019;13(9):10643.
[25]
Zurück zum Zitat Liang H, Cao Z, Ming F, Zhang W, Anjum DH, Cui Y, Cavallo L, Alshareef HN. Aqueous zinc-ion storage in MoS2 by tuning the intercalation energy. Nano Lett. 2019;19(5):3199. Liang H, Cao Z, Ming F, Zhang W, Anjum DH, Cui Y, Cavallo L, Alshareef HN. Aqueous zinc-ion storage in MoS2 by tuning the intercalation energy. Nano Lett. 2019;19(5):3199.
[26]
Zurück zum Zitat Yan M, He P, Chen Y, Wang S, Wei Q, Zhao K, Xu X, An Q, Shuang Y, Shao Y, Mueller KT, Mai L, Liu J, Yang J. Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv Mater. 2018;30(1):1703725. Yan M, He P, Chen Y, Wang S, Wei Q, Zhao K, Xu X, An Q, Shuang Y, Shao Y, Mueller KT, Mai L, Liu J, Yang J. Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv Mater. 2018;30(1):1703725.
[27]
Zurück zum Zitat Zhu C, Usiskin RE, Yu Y, Maier J. The nanoscale circuitry of battery electrodes. Science. 2017;358(6369):eaao2808. Zhu C, Usiskin RE, Yu Y, Maier J. The nanoscale circuitry of battery electrodes. Science. 2017;358(6369):eaao2808.
[28]
Zurück zum Zitat Zhou W, Chen J, Chen M, Xu X, Tian Q, Xu J, Wong C. Rod-like anhydrous V2O5 assembled by tiny nanosheets as a high-performance cathode material for aqueous zinc-ion batteries. Rsc Adv. 2019;9(52):30556. Zhou W, Chen J, Chen M, Xu X, Tian Q, Xu J, Wong C. Rod-like anhydrous V2O5 assembled by tiny nanosheets as a high-performance cathode material for aqueous zinc-ion batteries. Rsc Adv. 2019;9(52):30556.
[29]
Zurück zum Zitat Wang L, Huang K-W, Chen J, Zheng J. Ultralong cycle stability of aqueous zinc-ion batteries with zinc vanadium oxide cathodes. Sci Adv. 2019;5(10):eaax.4279. Wang L, Huang K-W, Chen J, Zheng J. Ultralong cycle stability of aqueous zinc-ion batteries with zinc vanadium oxide cathodes. Sci Adv. 2019;5(10):eaax.4279.
[30]
Zurück zum Zitat Pu X, Song T, Tang L, Tao Y, Cao T, Xu Q, Liu H, Wang Y, Xia Y. Rose-like vanadium disulfide coated by hydrophilic hydroxyvanadium oxide with improved electrochemical performance as cathode material for aqueous zinc-ion batteries. J Power Sour. 2019;437:226917. Pu X, Song T, Tang L, Tao Y, Cao T, Xu Q, Liu H, Wang Y, Xia Y. Rose-like vanadium disulfide coated by hydrophilic hydroxyvanadium oxide with improved electrochemical performance as cathode material for aqueous zinc-ion batteries. J Power Sour. 2019;437:226917.
[31]
Zurück zum Zitat Cheng WZ, Liang JL, Yin HB, Wang YJ, Yan WF, Zhang JN. Bifunctional iron-phtalocyanine metal–organic framework catalyst for ORR, OER and rechargeable zinc–air battery. Rare Met. 2020;39(7):815. Cheng WZ, Liang JL, Yin HB, Wang YJ, Yan WF, Zhang JN. Bifunctional iron-phtalocyanine metal–organic framework catalyst for ORR, OER and rechargeable zinc–air battery. Rare Met. 2020;39(7):815.
[32]
Zurück zum Zitat Qiao MF, Wang Y, Li L, Hu GZ, Zou GA, Mamat X, Dong Y-M, Hu X. Self-templated nitrogen-doped mesoporous carbon decorated with double transition-metal active sites for enhanced oxygen electrode catalysis. Rare Met. 2020;39(7):824. Qiao MF, Wang Y, Li L, Hu GZ, Zou GA, Mamat X, Dong Y-M, Hu X. Self-templated nitrogen-doped mesoporous carbon decorated with double transition-metal active sites for enhanced oxygen electrode catalysis. Rare Met. 2020;39(7):824.
[34]
Zurück zum Zitat Wang H, Zhang S, Deng C. In situ encapsulating metal oxides into core-shell hierarchical hybrid fibers for flexible zinc-ion batteries toward high durability and ultrafast capability for wearable applications. ACS Appl Mater Interfaces. 2019;11(39):35796. Wang H, Zhang S, Deng C. In situ encapsulating metal oxides into core-shell hierarchical hybrid fibers for flexible zinc-ion batteries toward high durability and ultrafast capability for wearable applications. ACS Appl Mater Interfaces. 2019;11(39):35796.
[35]
Zurück zum Zitat Fu Y, Wei Q, Zhang G, Wang X, Zhang J, Hu Y, Wang D, Zuin L, Zhou T, Wu Y, Sun S. High-performance reversible aqueous Zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon. Adv Energy Mater. 2018;8(26):1801445. Fu Y, Wei Q, Zhang G, Wang X, Zhang J, Hu Y, Wang D, Zuin L, Zhou T, Wu Y, Sun S. High-performance reversible aqueous Zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon. Adv Energy Mater. 2018;8(26):1801445.
[36]
Zurück zum Zitat Wang X, Ma L, Sun J. Vanadium pentoxide nanosheets in situ spaced with acetylene black as cathodes for high-performance zinc-ion batteries. ACS Appl Mater Interfaces. 2019;11(44):41297. Wang X, Ma L, Sun J. Vanadium pentoxide nanosheets in situ spaced with acetylene black as cathodes for high-performance zinc-ion batteries. ACS Appl Mater Interfaces. 2019;11(44):41297.
[37]
Zurück zum Zitat Wang H, Yu D, Kuang C, Cheng L, Li W, Feng X, Zhang Z, Zhang X, Zhang Y. Alkali metal anodes for rechargeable batteries. Chemistry. 2019;5(2):313. Wang H, Yu D, Kuang C, Cheng L, Li W, Feng X, Zhang Z, Zhang X, Zhang Y. Alkali metal anodes for rechargeable batteries. Chemistry. 2019;5(2):313.
[38]
Zurück zum Zitat Zhou J, Chen J, Chen M, Wang J, Liu X, Wei B, Wang Z, Li J, Gu L, Zhang Q, Wang H, Guo L. Few-layer bismuthene with anisotropic expansion for high-areal-capacity sodium-ion batteries. Adv Mater. 2019;31(12):1807874. Zhou J, Chen J, Chen M, Wang J, Liu X, Wei B, Wang Z, Li J, Gu L, Zhang Q, Wang H, Guo L. Few-layer bismuthene with anisotropic expansion for high-areal-capacity sodium-ion batteries. Adv Mater. 2019;31(12):1807874.
[39]
Zurück zum Zitat Li Q, Zhang Q, Liu C, Zhou Z, Li C, He B, Man P, Wang X, Yao Y. Anchoring V2O5 nanosheets on hierarchical titanium nitride nanowire arrays to form core-shell heterostructures as a superior cathode for high-performance wearable aqueous rechargeable zinc-ion batteries. J Mater Chem A. 2019;7(21):12997. Li Q, Zhang Q, Liu C, Zhou Z, Li C, He B, Man P, Wang X, Yao Y. Anchoring V2O5 nanosheets on hierarchical titanium nitride nanowire arrays to form core-shell heterostructures as a superior cathode for high-performance wearable aqueous rechargeable zinc-ion batteries. J Mater Chem A. 2019;7(21):12997.
[40]
Zurück zum Zitat Liu Y, Zhou X, Liu R, Li X, Bai Y, Xiao H, Wang Y, Yuan G. Tailoring three-dimensional composite architecture for advanced zinc-ion batteries. ACS Appl Mater Interfaces. 2019;11(21):19191. Liu Y, Zhou X, Liu R, Li X, Bai Y, Xiao H, Wang Y, Yuan G. Tailoring three-dimensional composite architecture for advanced zinc-ion batteries. ACS Appl Mater Interfaces. 2019;11(21):19191.
[41]
Zurück zum Zitat Xu D, Wang H, Li F, Guan Z, Wang R, He B, Gong Y, Hu X. Conformal conducting polymer shells on V2O5 nanosheet arrays as a high-rate and stable zinc-ion battery cathode. Adv Mater Interfaces. 2019;6(2):1801506. Xu D, Wang H, Li F, Guan Z, Wang R, He B, Gong Y, Hu X. Conformal conducting polymer shells on V2O5 nanosheet arrays as a high-rate and stable zinc-ion battery cathode. Adv Mater Interfaces. 2019;6(2):1801506.
[42]
Zurück zum Zitat Liu S, Chen X, Zhang Q, Zhou J, Cai Z, Pan A. Fabrication of an inexpensive hydrophilic bridge on a carbon substrate and loading vanadium sulfides for flexible aqueous zinc-ion batteries. ACS Appl Mater Interfaces. 2019;11(40):36676. Liu S, Chen X, Zhang Q, Zhou J, Cai Z, Pan A. Fabrication of an inexpensive hydrophilic bridge on a carbon substrate and loading vanadium sulfides for flexible aqueous zinc-ion batteries. ACS Appl Mater Interfaces. 2019;11(40):36676.
[43]
Zurück zum Zitat Shi HY, Ye YJ, Liu K, Song Y, Sun X. A long-cycle-life self-doped polyaniline cathode for rechargeable aqueous zinc batteries. Angew Chem Int Ed. 2018;57(50):16359. Shi HY, Ye YJ, Liu K, Song Y, Sun X. A long-cycle-life self-doped polyaniline cathode for rechargeable aqueous zinc batteries. Angew Chem Int Ed. 2018;57(50):16359.
[44]
Zurück zum Zitat Haeupler B, Roessel C, Schwenke AM, Winsberg J, Schmidt D, Wild A, Schubert US. Aqueous zinc-organic polymer battery with a high rate performance and long lifetime. NPG Asia Mater. 2016;8:e283. Haeupler B, Roessel C, Schwenke AM, Winsberg J, Schmidt D, Wild A, Schubert US. Aqueous zinc-organic polymer battery with a high rate performance and long lifetime. NPG Asia Mater. 2016;8:e283.
[45]
Zurück zum Zitat Kim C, Ahn BY, Wei TS, Jo Y, Jeong S, Choi Y, Kim I-D, Lewis JA. High-power aqueous zinc-ion batteries for customized electronic devices. ACS Nano. 2018;12(12):11838. Kim C, Ahn BY, Wei TS, Jo Y, Jeong S, Choi Y, Kim I-D, Lewis JA. High-power aqueous zinc-ion batteries for customized electronic devices. ACS Nano. 2018;12(12):11838.
[46]
Zurück zum Zitat Lai J, Tang H, Zhu X, Wang Y. A hydrated NH4V3O8 nanobelt electrode for superior aqueous and quasi-solid-state zinc ion batteries. J Mater Chem A. 2019;7(40):23140. Lai J, Tang H, Zhu X, Wang Y. A hydrated NH4V3O8 nanobelt electrode for superior aqueous and quasi-solid-state zinc ion batteries. J Mater Chem A. 2019;7(40):23140.
[47]
Zurück zum Zitat Huang J, Zhou J, Liang S. Guest pre-intercalation strategy to boost the electrochemical performance of aqueous zinc-ion battery cathodes. Acta Phys. Chim Sin. 2021;37:2005020. Huang J, Zhou J, Liang S. Guest pre-intercalation strategy to boost the electrochemical performance of aqueous zinc-ion battery cathodes. Acta Phys. Chim Sin. 2021;37:2005020.
[48]
Zurück zum Zitat Teng C, Yang F, Sun M, Yin K, Huang Q, Fu G, Zhang C, Lu X, Jiang J. Structural and defect engineering of cobaltosic oxide nanoarchitectures as an ultrahigh energy density and super durable cathode for Zn-based batteries. Chem Sci. 2019;10(32):7600. Teng C, Yang F, Sun M, Yin K, Huang Q, Fu G, Zhang C, Lu X, Jiang J. Structural and defect engineering of cobaltosic oxide nanoarchitectures as an ultrahigh energy density and super durable cathode for Zn-based batteries. Chem Sci. 2019;10(32):7600.
[49]
Zurück zum Zitat Ding J, Du Z, Gu L, Li B, Wang L, Wang S, Gong Y, Yang S. Ultrafast Zn2+ intercalation and deintercalation in vanadium dioxide. Adv Mater. 2018;30(26):1800762. Ding J, Du Z, Gu L, Li B, Wang L, Wang S, Gong Y, Yang S. Ultrafast Zn2+ intercalation and deintercalation in vanadium dioxide. Adv Mater. 2018;30(26):1800762.
[50]
Zurück zum Zitat Chen L, Yang Z, Huang Y. Monoclinic VO2(D) hollow nanospheres with super-long cycle life for aqueous zinc ion batteries. Nanoscale. 2019;11(27):13032. Chen L, Yang Z, Huang Y. Monoclinic VO2(D) hollow nanospheres with super-long cycle life for aqueous zinc ion batteries. Nanoscale. 2019;11(27):13032.
[51]
Zurück zum Zitat Wang J, Sun X, Zhao H, Xu L, Xia J, Luo M, Yang Y, Du Y. Superior-performance aqueous zinc ion battery based on structural transformation of MnO2 by rare earth doping. J Phys Chem C. 2019;123(37):22735. Wang J, Sun X, Zhao H, Xu L, Xia J, Luo M, Yang Y, Du Y. Superior-performance aqueous zinc ion battery based on structural transformation of MnO2 by rare earth doping. J Phys Chem C. 2019;123(37):22735.
[52]
Zurück zum Zitat Ma L, Chen S, Long C, Li X, Zhao Y, Liu Z, Huang Z, Dong B, Zapien JA, Zhi C. Achieving high-voltage and high-capacity aqueous rechargeable zinc ion battery by incorporating two-species redox reaction. Adv Energy Mater. 2019;9(45):1902446. Ma L, Chen S, Long C, Li X, Zhao Y, Liu Z, Huang Z, Dong B, Zapien JA, Zhi C. Achieving high-voltage and high-capacity aqueous rechargeable zinc ion battery by incorporating two-species redox reaction. Adv Energy Mater. 2019;9(45):1902446.
[53]
Zurück zum Zitat Liu F, Chen Z, Fang G, Wang Z, Cai Y, Tang B, Zhou J, Liang S. V2O5 Nanospheres with mixed vanadium valences as high electrochemically active aqueous zinc-ion battery cathode. Nano-Micro Lett. 2019;11(1):25. Liu F, Chen Z, Fang G, Wang Z, Cai Y, Tang B, Zhou J, Liang S. V2O5 Nanospheres with mixed vanadium valences as high electrochemically active aqueous zinc-ion battery cathode. Nano-Micro Lett. 2019;11(1):25.
[54]
Zurück zum Zitat Song H, Liu C, Zhang C, Cao G. Self-doped V4+–V2O5 nanoflake for 2 Li-ion intercalation with enhanced rate and cycling performance. Nano Energy. 2016;22:1. Song H, Liu C, Zhang C, Cao G. Self-doped V4+–V2O5 nanoflake for 2 Li-ion intercalation with enhanced rate and cycling performance. Nano Energy. 2016;22:1.
[55]
Zurück zum Zitat Nam KW, Kim H, Choi JH, Choi JW. Crystal water for high performance layered manganese oxide cathodes in aqueous rechargeable zinc batteries. Energy Environ Sci. 2019;12(6):1999. Nam KW, Kim H, Choi JH, Choi JW. Crystal water for high performance layered manganese oxide cathodes in aqueous rechargeable zinc batteries. Energy Environ Sci. 2019;12(6):1999.
[56]
Zurück zum Zitat Ding J, Du Z, Li B, Wang L, Wang S, Gong Y, Yang S. Unlocking the potential of disordered rocksalts for aqueous zinc-ion batteries. Adv Mater. 2019;31(44):1904369. Ding J, Du Z, Li B, Wang L, Wang S, Gong Y, Yang S. Unlocking the potential of disordered rocksalts for aqueous zinc-ion batteries. Adv Mater. 2019;31(44):1904369.
[57]
Zurück zum Zitat Yang W, Dong L, Yang W, Xu C, Shao G, Wang G. 3D oxygen-defective potassium vanadate/carbon nanoribbon networks as high-performance cathodes for aqueous zinc-ion batteries. Small Methods. 2019;4(1):1900670. Yang W, Dong L, Yang W, Xu C, Shao G, Wang G. 3D oxygen-defective potassium vanadate/carbon nanoribbon networks as high-performance cathodes for aqueous zinc-ion batteries. Small Methods. 2019;4(1):1900670.
[58]
Zurück zum Zitat Lu Y, Wang J, Zeng S, Zhou L, Xu W, Zheng D, Liu J, Zeng Y, Lu X. An ultrathin defect-rich Co3O4 nanosheet cathode for high-energy and durable aqueous zinc ion batteries. J Mater Chem A. 2019;7(38):21678. Lu Y, Wang J, Zeng S, Zhou L, Xu W, Zheng D, Liu J, Zeng Y, Lu X. An ultrathin defect-rich Co3O4 nanosheet cathode for high-energy and durable aqueous zinc ion batteries. J Mater Chem A. 2019;7(38):21678.
[59]
Zurück zum Zitat Wu X, Xiang Y, Peng Q, Wu X, Li Y, Tang F, Song R, Liu Z, He Z, Wu X. Green-low-cost rechargeable aqueous zinc-ion batteries using hollow porous spinel ZnMn2O4 as the cathode material. J Mater Chem A. 2017;5(34):17990. Wu X, Xiang Y, Peng Q, Wu X, Li Y, Tang F, Song R, Liu Z, He Z, Wu X. Green-low-cost rechargeable aqueous zinc-ion batteries using hollow porous spinel ZnMn2O4 as the cathode material. J Mater Chem A. 2017;5(34):17990.
[60]
Zurück zum Zitat Wu M, Liao J, Yu L, Lv R, Li P, Sun W, Tan R, Duan X, Zhang L, Li F, Kim J, Shin KH, Seok Park H, Zhang W, Guo Z, Wang H, Tang Y, Gorgolis G, Galiotis C, Ma J. 2020 roadmap on carbon materials for energy storage and conversion. Chem Asian J. 2020;15(7):995. Wu M, Liao J, Yu L, Lv R, Li P, Sun W, Tan R, Duan X, Zhang L, Li F, Kim J, Shin KH, Seok Park H, Zhang W, Guo Z, Wang H, Tang Y, Gorgolis G, Galiotis C, Ma J. 2020 roadmap on carbon materials for energy storage and conversion. Chem Asian J. 2020;15(7):995.
[61]
Zurück zum Zitat Lu Y, Chen J. Prospects of organic electrode materials for practical lithium batteries. Nat Rev Chem. 2020;4(3):127. Lu Y, Chen J. Prospects of organic electrode materials for practical lithium batteries. Nat Rev Chem. 2020;4(3):127.
[62]
Zurück zum Zitat Lu Y, Zhang Q, Li L, Niu Z, Chen J. Design strategies toward enhancing the performance of organic electrode materials in metal-ion batteries. Chemistry. 2018;4(12):2786. Lu Y, Zhang Q, Li L, Niu Z, Chen J. Design strategies toward enhancing the performance of organic electrode materials in metal-ion batteries. Chemistry. 2018;4(12):2786.
[63]
Zurück zum Zitat Wang H, Yu D, Wang X, Niu Z, Chen M, Cheng L, Zhou W, Guo L. Electrolyte chemistry enables simultaneous stabilization of potassium metal and alloying anode for potassium-ion batteries. Angew Chem Int Ed. 2019;58(46):16451. Wang H, Yu D, Wang X, Niu Z, Chen M, Cheng L, Zhou W, Guo L. Electrolyte chemistry enables simultaneous stabilization of potassium metal and alloying anode for potassium-ion batteries. Angew Chem Int Ed. 2019;58(46):16451.
[64]
Zurück zum Zitat Guo Z, Ma Y, Dong X, Huang J, Wang Y, Xia Y. An environmentally friendly and flexible aqueous zinc battery using an organic cathode. Angew Chem Int Ed. 2018;57(36):11737. Guo Z, Ma Y, Dong X, Huang J, Wang Y, Xia Y. An environmentally friendly and flexible aqueous zinc battery using an organic cathode. Angew Chem Int Ed. 2018;57(36):11737.
[65]
Zurück zum Zitat Chaba N, Neramittagapong S, Neramittagapong A, Eua-Anant N. Morphology study of zinc anode prepared by electroplating method for rechargeable Zn-MnO2 battery. Heliyon. 2019;5(10):e02681. Chaba N, Neramittagapong S, Neramittagapong A, Eua-Anant N. Morphology study of zinc anode prepared by electroplating method for rechargeable Zn-MnO2 battery. Heliyon. 2019;5(10):e02681.
[66]
Zurück zum Zitat Koyama A, Fukami K, Suzuki Y, Kitada A, Sakka T, Abe T, Murase K, Kinoshita M. High-rate charging of zinc anodes achieved by tuning hydration properties of zinc complexes in water confined within nanopores. J Phys Chem C. 2016;120(42):24112. Koyama A, Fukami K, Suzuki Y, Kitada A, Sakka T, Abe T, Murase K, Kinoshita M. High-rate charging of zinc anodes achieved by tuning hydration properties of zinc complexes in water confined within nanopores. J Phys Chem C. 2016;120(42):24112.
[67]
Zurück zum Zitat Yang Q, Liang G, Guo Y, Liu Z, Yan B, Wang D, Huang Z, Li X, Fan J, Zhi C. Do zinc dendrites exist in neutral zinc batteries: a developed electrohealing strategy to in situ rescue in-service batteries. Adv Mater. 2019;31(43):1903778. Yang Q, Liang G, Guo Y, Liu Z, Yan B, Wang D, Huang Z, Li X, Fan J, Zhi C. Do zinc dendrites exist in neutral zinc batteries: a developed electrohealing strategy to in situ rescue in-service batteries. Adv Mater. 2019;31(43):1903778.
[68]
Zurück zum Zitat Glatz H, Tervoort E, Kundu D. Unveiling critical insight into the Zn metal anode cyclability in mildly acidic aqueous electrolytes: implications for aqueous zinc batteries. ACS Appl Mater Interfaces. 2020;12(3):3522. Glatz H, Tervoort E, Kundu D. Unveiling critical insight into the Zn metal anode cyclability in mildly acidic aqueous electrolytes: implications for aqueous zinc batteries. ACS Appl Mater Interfaces. 2020;12(3):3522.
[69]
Zurück zum Zitat Zhang N, Cheng F, Liu Y, Zhao Q, Lei K, Chen C, Liu X, Chen J. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J Am Chem Soc. 2016;138(39):12894. Zhang N, Cheng F, Liu Y, Zhao Q, Lei K, Chen C, Liu X, Chen J. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J Am Chem Soc. 2016;138(39):12894.
[70]
Zurück zum Zitat Zhang L, Rodríguez-Pérez IA, Jiang H, Zhang C, Leonard DP, Guo Q, Wang W, Han S, Wang L, Ji X. ZnCl2 “water-in-salt” electrolyte transforms the performance of vanadium oxide as a Zn battery cathode. Adv Funct Mater. 2019;29(30):1902653. Zhang L, Rodríguez-Pérez IA, Jiang H, Zhang C, Leonard DP, Guo Q, Wang W, Han S, Wang L, Ji X. ZnCl2 “water-in-salt” electrolyte transforms the performance of vanadium oxide as a Zn battery cathode. Adv Funct Mater. 2019;29(30):1902653.
[71]
Zurück zum Zitat Zhang C, Holoubek J, Wu X, Daniyar A, Zhu L, Chen C, Leonard DP, Rodríguez-Pérez IA, Jiang JX, Fang C, Ji X. A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode. Chem Commun. 2018;54(100):14097. Zhang C, Holoubek J, Wu X, Daniyar A, Zhu L, Chen C, Leonard DP, Rodríguez-Pérez IA, Jiang JX, Fang C, Ji X. A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode. Chem Commun. 2018;54(100):14097.
[72]
Zurück zum Zitat Chen CY, Matsumoto K, Kubota K, Hagiwara R, Xu Q. A room-temperature molten hydrate electrolyte for rechargeable zinc–air batteries. Adv Energy Mater. 2019;9(22):1900196. Chen CY, Matsumoto K, Kubota K, Hagiwara R, Xu Q. A room-temperature molten hydrate electrolyte for rechargeable zinc–air batteries. Adv Energy Mater. 2019;9(22):1900196.
[73]
Zurück zum Zitat Chae MS, Heo JW, Kwak HH, Lee H, Hong ST. Organic electrolyte-based rechargeable zinc-ion batteries using potassium nickel hexacyanoferrate as a cathode material. J Power Sour. 2017;337:204. Chae MS, Heo JW, Kwak HH, Lee H, Hong ST. Organic electrolyte-based rechargeable zinc-ion batteries using potassium nickel hexacyanoferrate as a cathode material. J Power Sour. 2017;337:204.
[74]
Zurück zum Zitat Hinatsu JT, Tran VD, Foulkes FR. Electrical conductivities of aqueous ZnSO4–H2SO4 solutions. J Appl Electrochem. 1992;22(3):215. Hinatsu JT, Tran VD, Foulkes FR. Electrical conductivities of aqueous ZnSO4–H2SO4 solutions. J Appl Electrochem. 1992;22(3):215.
[75]
Zurück zum Zitat Li H, Han C, Huang Y, Huang Y, Zhu M, Pei Z, Xue Q, Wang Z, Liu Z, Tang Z, Wang Y, Kang F, Li B, Zhi C. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ Sci. 2018;11(4):941. Li H, Han C, Huang Y, Huang Y, Zhu M, Pei Z, Xue Q, Wang Z, Liu Z, Tang Z, Wang Y, Kang F, Li B, Zhi C. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ Sci. 2018;11(4):941.
[76]
Zurück zum Zitat Lu Y, Zhu T, Xu N, Huang K. A semisolid electrolyte for flexible Zn-ion batteries. ACS Appl Energy Mater. 2019;2(9):6904. Lu Y, Zhu T, Xu N, Huang K. A semisolid electrolyte for flexible Zn-ion batteries. ACS Appl Energy Mater. 2019;2(9):6904.
[77]
Zurück zum Zitat Hashmi SA. Enhanced zinc ion transport in gel polymer electrolyte: effect of nano-sized ZnO dispersion. J Solid State Electrochem. 2012;16(9):3105. Hashmi SA. Enhanced zinc ion transport in gel polymer electrolyte: effect of nano-sized ZnO dispersion. J Solid State Electrochem. 2012;16(9):3105.
[78]
Zurück zum Zitat Han S-D, Rajput NN, Qu X, Pan B, He M, Ferrandon MS, Liao C, Persson KA, Burrell AK. Origin of electrochemical, structural, and transport properties in nonaqueous zinc electrolytes. ACS Appl Mater Interfaces. 2016;8(5):3021. Han S-D, Rajput NN, Qu X, Pan B, He M, Ferrandon MS, Liao C, Persson KA, Burrell AK. Origin of electrochemical, structural, and transport properties in nonaqueous zinc electrolytes. ACS Appl Mater Interfaces. 2016;8(5):3021.
[79]
Zurück zum Zitat Wei T, Li Q, Yang G, Wang C. High-rate and durable aqueous zinc ion battery using dendritic V10O24·12H2O cathode material with large interlamellar spacing. Electrochim Acta. 2018;287:60. Wei T, Li Q, Yang G, Wang C. High-rate and durable aqueous zinc ion battery using dendritic V10O24·12H2O cathode material with large interlamellar spacing. Electrochim Acta. 2018;287:60.
[80]
Zurück zum Zitat Zhang Y, Jiang H, Xu L, Gao Z, Meng C. Ammonium vanadium oxide (NH4)2V4O9 sheets for high capacity electrodes in aqueous zinc ion batteries. ACS Appl Energy Mater. 2019;2(11):7861. Zhang Y, Jiang H, Xu L, Gao Z, Meng C. Ammonium vanadium oxide (NH4)2V4O9 sheets for high capacity electrodes in aqueous zinc ion batteries. ACS Appl Energy Mater. 2019;2(11):7861.
[81]
Zurück zum Zitat Ma L, Li N, Long C, Dong B, Fang D, Liu Z, Zhao Y, Li X, Fan J, Chen S, Zhang S, Zhi C. Achieving both high voltage and high capacity in aqueous zinc-ion battery for record high energy density. Adv Funct Mater. 2019;29(46):1906142. Ma L, Li N, Long C, Dong B, Fang D, Liu Z, Zhao Y, Li X, Fan J, Chen S, Zhang S, Zhi C. Achieving both high voltage and high capacity in aqueous zinc-ion battery for record high energy density. Adv Funct Mater. 2019;29(46):1906142.
[82]
Zurück zum Zitat Wei T, Li Q, Yang G, Wang C. Highly reversible and long-life cycling aqueous zinc-ion battery based on ultrathin (NH4)2V10O25·8H2O nanobelts. J Mater Chem A. 2018;6(41):20402. Wei T, Li Q, Yang G, Wang C. Highly reversible and long-life cycling aqueous zinc-ion battery based on ultrathin (NH4)2V10O25·8H2O nanobelts. J Mater Chem A. 2018;6(41):20402.
[83]
Zurück zum Zitat Chen S, Zhang Y, Geng H, Yang Y, Rui X, Li CC. Zinc ions pillared vanadate cathodes by chemical pre-intercalation towards long cycling life and low-temperature zinc ion batteries. J Power Sour. 2019;441:227192. Chen S, Zhang Y, Geng H, Yang Y, Rui X, Li CC. Zinc ions pillared vanadate cathodes by chemical pre-intercalation towards long cycling life and low-temperature zinc ion batteries. J Power Sour. 2019;441:227192.
[84]
Zurück zum Zitat Liu G, Huang H, Bi R, Xiao X, Ma T, Zhang L. K+ pre-intercalated manganese dioxide with enhanced Zn2+ diffusion for high rate and durable aqueous zinc-ion batteries. J Mater Chem A. 2019;7(36):20806. Liu G, Huang H, Bi R, Xiao X, Ma T, Zhang L. K+ pre-intercalated manganese dioxide with enhanced Zn2+ diffusion for high rate and durable aqueous zinc-ion batteries. J Mater Chem A. 2019;7(36):20806.
[85]
Zurück zum Zitat He P, Yan M, Zhang G, Sun R, Chen L, An Q, Mai L. Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv Energy Mater. 2017;7(11):1601920. He P, Yan M, Zhang G, Sun R, Chen L, An Q, Mai L. Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv Energy Mater. 2017;7(11):1601920.
[86]
Zurück zum Zitat Ren H, Zhao J, Yang L, Liang Q, Madhavi S, Yan Q. Inverse opal manganese dioxide constructed by few-layered ultrathin nanosheets as high-performance cathodes for aqueous zinc-ion batteries. Nano Res. 2019;12(6):1347. Ren H, Zhao J, Yang L, Liang Q, Madhavi S, Yan Q. Inverse opal manganese dioxide constructed by few-layered ultrathin nanosheets as high-performance cathodes for aqueous zinc-ion batteries. Nano Res. 2019;12(6):1347.
[87]
Zurück zum Zitat Wang X, Ma L, Zhang P, Wang H, Li S, Ji S, Wen Z, Sun J. Vanadium pentoxide nanosheets as cathodes for aqueous zinc-ion batteries with high rate capability and long durability. Appl Surf Sci. 2020;502:144207. Wang X, Ma L, Zhang P, Wang H, Li S, Ji S, Wen Z, Sun J. Vanadium pentoxide nanosheets as cathodes for aqueous zinc-ion batteries with high rate capability and long durability. Appl Surf Sci. 2020;502:144207.
[88]
Zurück zum Zitat Wang J, Wang J-G, Liu H, Wei C, Kang F. Zinc ion stabilized MnO2 nanospheres for high capacity and long lifespan aqueous zinc-ion batteries. J Mater Chem A. 2019;7(22):13727. Wang J, Wang J-G, Liu H, Wei C, Kang F. Zinc ion stabilized MnO2 nanospheres for high capacity and long lifespan aqueous zinc-ion batteries. J Mater Chem A. 2019;7(22):13727.
[89]
Zurück zum Zitat Xu G, Liu X, Huang S, Li L, Wei X, Cao J, Yang L, Chu PK. Freestanding, hierarchical, and porous bilayered NaxV2O5·nH2O/rGO/CNT composites as high-performance cathode materials for nonaqueous K-ion batteries and aqueous zinc-ion batteries. ACS Appl Mater Interfaces. 2019;12(1):706. Xu G, Liu X, Huang S, Li L, Wei X, Cao J, Yang L, Chu PK. Freestanding, hierarchical, and porous bilayered NaxV2O5·nH2O/rGO/CNT composites as high-performance cathode materials for nonaqueous K-ion batteries and aqueous zinc-ion batteries. ACS Appl Mater Interfaces. 2019;12(1):706.
[90]
Zurück zum Zitat Yang G, Wei T, Wang C. Self-healing lamellar structure boosts highly stable zinc-storage property of bilayered vanadium oxides. ACS Appl Mater Interfaces. 2018;10(41):35079. Yang G, Wei T, Wang C. Self-healing lamellar structure boosts highly stable zinc-storage property of bilayered vanadium oxides. ACS Appl Mater Interfaces. 2018;10(41):35079.
[91]
Zurück zum Zitat Yang Y, Tang Y, Fang G, Shan L, Guo J, Zhang W, Wang C, Wang L, Zhou J, Liang S. Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ Sci. 2018;11(11):3157. Yang Y, Tang Y, Fang G, Shan L, Guo J, Zhang W, Wang C, Wang L, Zhou J, Liang S. Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ Sci. 2018;11(11):3157.
[92]
Zurück zum Zitat Khayum AM, Ghosh M, Vijayakumar V, Halder A, Nurhuda M, Kumar S, Addicoat M, Kurungot S, Banerjee R. Zinc ion interactions in a two-dimensional covalent organic framework based aqueous zinc ion battery. Chem Sci. 2019;10(38):8889. Khayum AM, Ghosh M, Vijayakumar V, Halder A, Nurhuda M, Kumar S, Addicoat M, Kurungot S, Banerjee R. Zinc ion interactions in a two-dimensional covalent organic framework based aqueous zinc ion battery. Chem Sci. 2019;10(38):8889.
[93]
Zurück zum Zitat Ding Y, Peng Y, Chen S, Zhang X, Li Z, Zhu L, Mo L-E, Hu L. Hierarchical porous metallic V2O3@C for advanced aqueous zinc-ion batteries. ACS Appl Mater Interfaces. 2019;11(47):44109. Ding Y, Peng Y, Chen S, Zhang X, Li Z, Zhu L, Mo L-E, Hu L. Hierarchical porous metallic V2O3@C for advanced aqueous zinc-ion batteries. ACS Appl Mater Interfaces. 2019;11(47):44109.
[94]
Zurück zum Zitat Li S, Chen M, Fang G, Shan L, Cao X, Huang J, Liang S, Zhou J. Synthesis of polycrystalline K0.25V2O5 nanoparticles as cathode for aqueous zinc-ion battery. J Alloys Compd. 2019;801:82. Li S, Chen M, Fang G, Shan L, Cao X, Huang J, Liang S, Zhou J. Synthesis of polycrystalline K0.25V2O5 nanoparticles as cathode for aqueous zinc-ion battery. J Alloys Compd. 2019;801:82.
[95]
Zurück zum Zitat Nam KW, Park SS, dos Reis R, Dravid VP, Kim H, Mirkin CA, Stoddart J. Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries. Nat Commun. 2019;10:4948. Nam KW, Park SS, dos Reis R, Dravid VP, Kim H, Mirkin CA, Stoddart J. Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries. Nat Commun. 2019;10:4948.
[96]
Zurück zum Zitat Guo S, Fang G, Liang S, Chen M, Wu X, Zhou J. Structural perspective on revealing energy storage behaviors of silver vanadate cathodes in aqueous zinc-ion batteries. Acta Mater. 2019;180:51. Guo S, Fang G, Liang S, Chen M, Wu X, Zhou J. Structural perspective on revealing energy storage behaviors of silver vanadate cathodes in aqueous zinc-ion batteries. Acta Mater. 2019;180:51.
[97]
Zurück zum Zitat Tang B, Fang G, Zhou J, Wang L, Lei Y, Wang C, Lin T, Tang Y, Liang S. Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries. Nano Energy. 2018;51:579. Tang B, Fang G, Zhou J, Wang L, Lei Y, Wang C, Lin T, Tang Y, Liang S. Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries. Nano Energy. 2018;51:579.
[98]
Zurück zum Zitat Li Y, Wang S, Salvador JR, Wu J, Liu B, Yang W, Yang J, Zhang W, Liu J, Yang J. Reaction mechanisms for long-life rechargeable Zn/MnO2 batteries. Chem Mater. 2019;31(6):2036. Li Y, Wang S, Salvador JR, Wu J, Liu B, Yang W, Yang J, Zhang W, Liu J, Yang J. Reaction mechanisms for long-life rechargeable Zn/MnO2 batteries. Chem Mater. 2019;31(6):2036.
[99]
Zurück zum Zitat Liu H, Wang JG, Sun H, Li Y, Yang J, Wei C, Kang F. Mechanistic investigation of silver vanadate as superior cathode for high rate and durable zinc-ion batteries. J Colloid Interface Sci. 2020;560:659. Liu H, Wang JG, Sun H, Li Y, Yang J, Wei C, Kang F. Mechanistic investigation of silver vanadate as superior cathode for high rate and durable zinc-ion batteries. J Colloid Interface Sci. 2020;560:659.
[100]
Zurück zum Zitat Fang G, Zhu C, Chen M, Zhou J, Tang B, Cao X, Zheng X, Pan A, Liang S. Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery. Adv Funct Mater. 2019;29(15):1808375. Fang G, Zhu C, Chen M, Zhou J, Tang B, Cao X, Zheng X, Pan A, Liang S. Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery. Adv Funct Mater. 2019;29(15):1808375.
[101]
Zurück zum Zitat Zhang Y, Deng S, Luo M, Pan G, Zeng Y, Lu X, Ai C, Liu Q, Xiong Q, Wang X, Xia X, Tu J. Defect promoted capacity and durability of N-MnO2−x branch arrays via low-temperature NH3 treatment for advanced aqueous zinc ion batteries. Small. 2019;15(47):1905452. Zhang Y, Deng S, Luo M, Pan G, Zeng Y, Lu X, Ai C, Liu Q, Xiong Q, Wang X, Xia X, Tu J. Defect promoted capacity and durability of N-MnO2−x branch arrays via low-temperature NH3 treatment for advanced aqueous zinc ion batteries. Small. 2019;15(47):1905452.
[102]
Zurück zum Zitat Zeng Y, Lai Z, Han Y, Zhang H, Xie S, Lu X. Oxygen-vacancy and surface modulation of ultrathin nickel cobaltite nanosheets as a high-energy cathode for advanced Zn-ion batteries. Adv Mater. 2018;30(33):1802396. Zeng Y, Lai Z, Han Y, Zhang H, Xie S, Lu X. Oxygen-vacancy and surface modulation of ultrathin nickel cobaltite nanosheets as a high-energy cathode for advanced Zn-ion batteries. Adv Mater. 2018;30(33):1802396.
[103]
Zurück zum Zitat Hu F, Xie D, Cui F, Zhang D, Song G. Synthesis and electrochemical performance of NaV3O8 nanobelts for Li/Na-ion batteries and aqueous zinc-ion batteries. Rsc Adv. 2019;9(36):20549. Hu F, Xie D, Cui F, Zhang D, Song G. Synthesis and electrochemical performance of NaV3O8 nanobelts for Li/Na-ion batteries and aqueous zinc-ion batteries. Rsc Adv. 2019;9(36):20549.
[104]
Zurück zum Zitat Shan L, Zhou J, Zhang W, Xia C, Guo S, Ma X, Fang G, Wu X, Liang S. Highly reversible phase transition endows V6O13 with enhanced performance as aqueous zinc-ion battery cathode. Energy Technol. 2019;7(6):1900022. Shan L, Zhou J, Zhang W, Xia C, Guo S, Ma X, Fang G, Wu X, Liang S. Highly reversible phase transition endows V6O13 with enhanced performance as aqueous zinc-ion battery cathode. Energy Technol. 2019;7(6):1900022.
[105]
Zurück zum Zitat Jiang L, Wu Z, Wang Y, Tian W, Yi Z, Cai C, Jiang Y, Hu L. Ultrafast zinc-ion diffusion ability observed in 6.0-nanometer spinel nanodots. ACS Nano. 2019;13(9):10376. Jiang L, Wu Z, Wang Y, Tian W, Yi Z, Cai C, Jiang Y, Hu L. Ultrafast zinc-ion diffusion ability observed in 6.0-nanometer spinel nanodots. ACS Nano. 2019;13(9):10376.
[106]
Zurück zum Zitat Li R, Yu X, Bian X, Hu F. Preparation and electrochemical performance of VO2(A) hollow spheres as a cathode for aqueous zinc ion batteries. Rsc Adv. 2019;9(60):35117. Li R, Yu X, Bian X, Hu F. Preparation and electrochemical performance of VO2(A) hollow spheres as a cathode for aqueous zinc ion batteries. Rsc Adv. 2019;9(60):35117.
[107]
Zurück zum Zitat Tang B, Zhou J, Fang G, Guo S, Guo X, Shan L, Tang Y, Liang S. Structural modification of V2O5 as high-performance aqueous zinc-ion battery cathode. J Electrochem Soc. 2019;166(4):A480–6. Tang B, Zhou J, Fang G, Guo S, Guo X, Shan L, Tang Y, Liang S. Structural modification of V2O5 as high-performance aqueous zinc-ion battery cathode. J Electrochem Soc. 2019;166(4):A480–6.
[108]
Zurück zum Zitat Park JS, Jo JH, Aniskevich Y, Bakavets A, Ragoisha G, Streltsov E, Kim J, Myung S-T. Open-structured vanadium dioxide as an intercalation host for Zn ions: investigation by first-principles calculation and experiments. Chem Mater. 2018;30(19):6777. Park JS, Jo JH, Aniskevich Y, Bakavets A, Ragoisha G, Streltsov E, Kim J, Myung S-T. Open-structured vanadium dioxide as an intercalation host for Zn ions: investigation by first-principles calculation and experiments. Chem Mater. 2018;30(19):6777.
[109]
Zurück zum Zitat Qin H, Chen L, Wang L, Chen X, Yang Z. V2O5 hollow spheres as high rate and long life cathode for aqueous rechargeable zinc ion batteries. Electrochim Acta. 2019;306:307. Qin H, Chen L, Wang L, Chen X, Yang Z. V2O5 hollow spheres as high rate and long life cathode for aqueous rechargeable zinc ion batteries. Electrochim Acta. 2019;306:307.
[110]
Zurück zum Zitat Hu P, Zhu T, Ma J, Cai C, Hu G, Wang X, Liu Z, Zhou L, Mai L. Porous V2O5 microspheres: a high-capacity cathode material for aqueous zinc-ion batteries. Chem Commun. 2019;55(58):8486. Hu P, Zhu T, Ma J, Cai C, Hu G, Wang X, Liu Z, Zhou L, Mai L. Porous V2O5 microspheres: a high-capacity cathode material for aqueous zinc-ion batteries. Chem Commun. 2019;55(58):8486.
[111]
Zurück zum Zitat Qin H, Yang Z, Chen L, Chen X, Wang L. A high-rate aqueous rechargeable zinc ion battery based on the VS4@rGO nanocomposite. J Mater Chem A. 2018;6(46):23757. Qin H, Yang Z, Chen L, Chen X, Wang L. A high-rate aqueous rechargeable zinc ion battery based on the VS4@rGO nanocomposite. J Mater Chem A. 2018;6(46):23757.
[112]
Zurück zum Zitat Zhou W, Chen J, He C, Chen M, Xu X, Tian Q, Xu J, Wong CP. Hybridizing δ-type NaxV2O5·nH2O with graphene towards high-performance aqueous zinc-ion batteries. Electrochim Acta. 2019;321:134689. Zhou W, Chen J, He C, Chen M, Xu X, Tian Q, Xu J, Wong CP. Hybridizing δ-type NaxV2O5·nH2O with graphene towards high-performance aqueous zinc-ion batteries. Electrochim Acta. 2019;321:134689.
[113]
Zurück zum Zitat Gou L, Xue D, Mou KL, Zhao SP, Wang Y, Fan XY, Li DL. α-MnO2@In2O3 nanotubes as cathode material for aqueous rechargeable Zn-ion battery with high electrochemical performance. J Electrochem Soc. 2019;166(14):A3362. Gou L, Xue D, Mou KL, Zhao SP, Wang Y, Fan XY, Li DL. α-MnO2@In2O3 nanotubes as cathode material for aqueous rechargeable Zn-ion battery with high electrochemical performance. J Electrochem Soc. 2019;166(14):A3362.
[114]
Zurück zum Zitat Chen L, Yang Z, Qin H, Zeng X, Meng J, Chen H. Graphene-wrapped hollow ZnMn2O4 microspheres for high-performance cathode materials of aqueous zinc ion batteries. Electrochim Acta. 2019;317:155. Chen L, Yang Z, Qin H, Zeng X, Meng J, Chen H. Graphene-wrapped hollow ZnMn2O4 microspheres for high-performance cathode materials of aqueous zinc ion batteries. Electrochim Acta. 2019;317:155.
[115]
Zurück zum Zitat Pang Q, Sun C, Yu Y, Zhao K, Zhang Z, Voyles PM, Chen G, Wei Y, Wang X. H2V3O8 nanowire/graphene electrodes for aqueous rechargeable zinc ion batteries with high rate capability and large capacity. Adv Energy Mater. 2018;8(19):1800144. Pang Q, Sun C, Yu Y, Zhao K, Zhang Z, Voyles PM, Chen G, Wei Y, Wang X. H2V3O8 nanowire/graphene electrodes for aqueous rechargeable zinc ion batteries with high rate capability and large capacity. Adv Energy Mater. 2018;8(19):1800144.
[116]
Zurück zum Zitat Wang C, Zeng Y, Xiao X, Wu S, Zhong G, Xu K, Wei Z, Su W, Lu X. γ-MnO2 nanorods/graphene composite as efficient cathode for advanced rechargeable aqueous zinc-ion battery. J Energy Chem. 2020;43:182. Wang C, Zeng Y, Xiao X, Wu S, Zhong G, Xu K, Wei Z, Su W, Lu X. γ-MnO2 nanorods/graphene composite as efficient cathode for advanced rechargeable aqueous zinc-ion battery. J Energy Chem. 2020;43:182.
[117]
Zurück zum Zitat Wan F, Huang S, Cao H, Niu Z. Freestanding potassium vanadate/carbon nanotube films for ultralong-life aqueous zinc-ion batteries. ACS Nano. 2020;14(6):6752. Wan F, Huang S, Cao H, Niu Z. Freestanding potassium vanadate/carbon nanotube films for ultralong-life aqueous zinc-ion batteries. ACS Nano. 2020;14(6):6752.
Metadaten
Titel
Challenges and strategies for ultrafast aqueous zinc-ion batteries
verfasst von
Qiao-Nan Zhu
Zhen-Ya Wang
Jia-Wei Wang
Xiao-Yu Liu
Dan Yang
Li-Wei Cheng
Meng-Yao Tang
Yu Qin
Hua Wang
Publikationsdatum
09.11.2020
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 2/2021
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01588-x

Weitere Artikel der Ausgabe 2/2021

Rare Metals 2/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.