Skip to main content
Erschienen in: Rare Metals 2/2021

20.07.2020 | Review

Nickel sulfide-based energy storage materials for high-performance electrochemical capacitors

verfasst von: Ramyakrishna Pothu, Ravi Bolagam, Qing-Hong Wang, Wei Ni, Jin-Feng Cai, Xiao-Xin Peng, Yue-Zhan Feng, Jian-Min Ma

Erschienen in: Rare Metals | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Supercapacitors are favorable energy storage devices in the field of emerging energy technologies with high power density, excellent cycle stability and environmental benignity. The performance of supercapacitors is definitively influenced by the electrode materials. Nickel sulfides have attracted extensive interest in recent years due to their specific merits for supercapacitor application. However, the distribution of electrochemically active sites critically limits their electrochemical performance. Notable improvements have been achieved through various strategies such as building synergetic structures with conductive substrates, enhancing the active sites by nanocrystallization and constructing nanohybrid architecture with other electrode materials. This article overviews the progress in the reasonable design and preparation of nickel sulfides and their composite electrodes combined with various bifunctional electric double-layer capacitor (EDLC)-based substances (e.g., graphene, hollow carbon) and pseudocapacitive materials (e.g., transition-metal oxides, sulfides, nitrides). Moreover, the corresponding electrochemical performances, reaction mechanisms, emerging challenges and future perspectives are briefly discussed and summarized.

Graphic abstract

This review presents the progress in the reasonable design and preparation of nickel sulfides and their applications in electrochemical capacitors. The corresponding electrochemical performances, reaction mechanisms, emerging challenges, and future perspectives are briefly discussed and summarized.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Xu BL, Qi SH, Jin MM, Cai XY, Lai LF, Sun ZT, Han XG, Lin ZF, Shao H, Peng P, Xiang ZH, Elshof JE, Tan R, Liu C, Zhang ZX, Duan XC, Ma JM. 2020 roadmap on two-dimensional materials for energy storage and conversion. Chin Chem Lett. 2019;30(12):2053. Xu BL, Qi SH, Jin MM, Cai XY, Lai LF, Sun ZT, Han XG, Lin ZF, Shao H, Peng P, Xiang ZH, Elshof JE, Tan R, Liu C, Zhang ZX, Duan XC, Ma JM. 2020 roadmap on two-dimensional materials for energy storage and conversion. Chin Chem Lett. 2019;30(12):2053.
[2]
Zurück zum Zitat Pham TN, Park D, Lee Y, Kim IT, Hur J, Oh Y-K, Lee Y-C. Combination-based nanomaterial designs in single and double dimensions for improved electrodes in lithium ion-batteries and faradaic supercapacitors. J Energy Chem. 2019;38:119. Pham TN, Park D, Lee Y, Kim IT, Hur J, Oh Y-K, Lee Y-C. Combination-based nanomaterial designs in single and double dimensions for improved electrodes in lithium ion-batteries and faradaic supercapacitors. J Energy Chem. 2019;38:119.
[3]
Zurück zum Zitat Zhou XL, Liu QR, Jiang CL, Ji BF, Ji XL, Tang YB, Cheng HM. Strategies towards low-cost dual-ion batteries with high performance. Angew Chem In Ed. 2019;58:2. Zhou XL, Liu QR, Jiang CL, Ji BF, Ji XL, Tang YB, Cheng HM. Strategies towards low-cost dual-ion batteries with high performance. Angew Chem In Ed. 2019;58:2.
[4]
Zurück zum Zitat Jamesh M-I. Recent advances on flexible electrodes for Na-ion batteries and Li–S batteries. J. Energy Chem. 2019;32:15. Jamesh M-I. Recent advances on flexible electrodes for Na-ion batteries and Li–S batteries. J. Energy Chem. 2019;32:15.
[5]
Zurück zum Zitat Yang CS, Gao KN, Zhang XP, Sun Z, Zhang T. Rechargeable solid-state Li-air batteries: a status report. Rare Met. 2018;37(6):459. Yang CS, Gao KN, Zhang XP, Sun Z, Zhang T. Rechargeable solid-state Li-air batteries: a status report. Rare Met. 2018;37(6):459.
[6]
Zurück zum Zitat Xiao L, Li EW, Yi JY, Meng W, Deng BH, Liu JP. Enhanced performance of solid-state Li-O2 battery using a novel integrated architecture of gel polymer electrolyte and nanoarray cathode. Rare Met. 2018;37(6):527. Xiao L, Li EW, Yi JY, Meng W, Deng BH, Liu JP. Enhanced performance of solid-state Li-O2 battery using a novel integrated architecture of gel polymer electrolyte and nanoarray cathode. Rare Met. 2018;37(6):527.
[7]
Zurück zum Zitat Liu Y, Yao MJ, Zhang LL, Niu ZQ. Large-scale fabrication of reduced graphene oxide-sulfur composite films for flexible lithium-sulfur batteries. J Energy Chem. 2019;38:199. Liu Y, Yao MJ, Zhang LL, Niu ZQ. Large-scale fabrication of reduced graphene oxide-sulfur composite films for flexible lithium-sulfur batteries. J Energy Chem. 2019;38:199.
[8]
Zurück zum Zitat Li F, Liu QH, Hu JW, Feng YZ, He PB, Ma JM. Recent advances in cathode materials for rechargeable lithium–sulfur batteries. Nanoscale. 2019;11(33):15418. Li F, Liu QH, Hu JW, Feng YZ, He PB, Ma JM. Recent advances in cathode materials for rechargeable lithium–sulfur batteries. Nanoscale. 2019;11(33):15418.
[9]
Zurück zum Zitat Ma W, Xu Q. Lithium cobaltate: a novel host material enables high-rate and stable lithium–sulfur batteries. Rare Met. 2018;37(11):929. Ma W, Xu Q. Lithium cobaltate: a novel host material enables high-rate and stable lithium–sulfur batteries. Rare Met. 2018;37(11):929.
[10]
Zurück zum Zitat Lu H, Chen Z, Du HL, Zhang K, Wang JL, Hou ZZ, Fang J. The enhanced performance of lithium sulfur battery with ionic liquid-based electrolyte mixed with fluorinated ether. Ionics (Kiel). 2019;25(6):2685. Lu H, Chen Z, Du HL, Zhang K, Wang JL, Hou ZZ, Fang J. The enhanced performance of lithium sulfur battery with ionic liquid-based electrolyte mixed with fluorinated ether. Ionics (Kiel). 2019;25(6):2685.
[11]
Zurück zum Zitat Shen X, Cheng XB, Shi P, Huang JQ, Zhang XQ, Yan C, Li T, Zhang Q. Lithium–matrix composite anode protected by a solid electrolyte layer for stable lithium metal batteries. J Energy Chem. 2019;37:29. Shen X, Cheng XB, Shi P, Huang JQ, Zhang XQ, Yan C, Li T, Zhang Q. Lithium–matrix composite anode protected by a solid electrolyte layer for stable lithium metal batteries. J Energy Chem. 2019;37:29.
[12]
Zurück zum Zitat Wu DX, Wang CY, Wu MG, Chao YF, He PB, Ma JM. Porous bowl-shaped VS2 nanosheets/graphene composite for high-rate lithium-ion storage. J Energy Chem. 2020;43:24. Wu DX, Wang CY, Wu MG, Chao YF, He PB, Ma JM. Porous bowl-shaped VS2 nanosheets/graphene composite for high-rate lithium-ion storage. J Energy Chem. 2020;43:24.
[13]
Zurück zum Zitat Yan ZH, Yang QW, Wang QH, Ma JM. Nitrogen doped porous carbon as excellent dual anodes for Li- and Na-ion batteries. Chin Chem Lett. 2020;31(2):583. Yan ZH, Yang QW, Wang QH, Ma JM. Nitrogen doped porous carbon as excellent dual anodes for Li- and Na-ion batteries. Chin Chem Lett. 2020;31(2):583.
[14]
Zurück zum Zitat Li HJ, Lu M, Han WJ, Li HB, Wu YC, Zhang W, Wang JC, Zhang BS. Employing MXene as a matrix for loading amorphous Si generated upon lithiation towards enhanced lithium-ion storage. J Energy Chem. 2019;32:15. Li HJ, Lu M, Han WJ, Li HB, Wu YC, Zhang W, Wang JC, Zhang BS. Employing MXene as a matrix for loading amorphous Si generated upon lithiation towards enhanced lithium-ion storage. J Energy Chem. 2019;32:15.
[15]
Zurück zum Zitat Dong Y, Feng YZ, Deng JW, He PB, Ma JM. Electrospun Sb2Se3@C nanofibers with excellent lithium storage properties. Chin Chem Lett. 2020;31(3):909. Dong Y, Feng YZ, Deng JW, He PB, Ma JM. Electrospun Sb2Se3@C nanofibers with excellent lithium storage properties. Chin Chem Lett. 2020;31(3):909.
[16]
Zurück zum Zitat Yuan CF, Wu C, Zhang Z, Hu GR. Evaluation of LiMn2O4-LiNi0.80Co0.15Al0.05O2 hybrid material as cathode in soft-packed lithium ion battery. Ionics (Kiel). 2017;23(3):567. Yuan CF, Wu C, Zhang Z, Hu GR. Evaluation of LiMn2O4-LiNi0.80Co0.15Al0.05O2 hybrid material as cathode in soft-packed lithium ion battery. Ionics (Kiel). 2017;23(3):567.
[17]
Zurück zum Zitat Qi SH, Xu BL, Tiong VT, Hu J, Ma JM. Progress on iron oxides and chalcogenides as anodes for sodium-ion batteries. Chem Eng J. 2020;379:122261. Qi SH, Xu BL, Tiong VT, Hu J, Ma JM. Progress on iron oxides and chalcogenides as anodes for sodium-ion batteries. Chem Eng J. 2020;379:122261.
[18]
Zurück zum Zitat Cheng DL, Yang LC, Zhu M. High-performance anode materials for Na-ion batteries. Rare Met. 2018;37(3):167. Cheng DL, Yang LC, Zhu M. High-performance anode materials for Na-ion batteries. Rare Met. 2018;37(3):167.
[19]
Zurück zum Zitat Xu BL, Qi SH, He PB, Ma JM. Antimony- and bismuth- based chalcogenides for sodium-ion batteries. Chem Asian J. 2019;14(17):2925. Xu BL, Qi SH, He PB, Ma JM. Antimony- and bismuth- based chalcogenides for sodium-ion batteries. Chem Asian J. 2019;14(17):2925.
[20]
Zurück zum Zitat Etman AS, Sun JL, Younesi R. V2O5·nH2O nanosheets and multi-walled carbon nanotube composite as a negative electrode for sodium-ion batteries. J Energy Chem. 2019;30:145. Etman AS, Sun JL, Younesi R. V2O5·nH2O nanosheets and multi-walled carbon nanotube composite as a negative electrode for sodium-ion batteries. J Energy Chem. 2019;30:145.
[21]
Zurück zum Zitat Hou HS, Banks CE, Jing MJ, Zhang Y, Ji XB. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv Mater. 2015;27(47):7861. Hou HS, Banks CE, Jing MJ, Zhang Y, Ji XB. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv Mater. 2015;27(47):7861.
[22]
Zurück zum Zitat Xie DH, Zhang M, Wu Y, Xiang L, Tang YB. A Flexible dual-ion battery based on sodium-ion quasi-solid-state electrolyte with long cycling life. Adv Funct Mater. 2020;30(5):1906770. Xie DH, Zhang M, Wu Y, Xiang L, Tang YB. A Flexible dual-ion battery based on sodium-ion quasi-solid-state electrolyte with long cycling life. Adv Funct Mater. 2020;30(5):1906770.
[23]
Zurück zum Zitat Cai YS, Fang GZ, Zhou J, Liu SN, Luo ZG, Pan AQ, Cao GZ, Liang SQ. Metal-organic framework-derived porous shuttle-like vanadium oxides for sodium-ion battery application. Nano Res. 2018;11(1):449. Cai YS, Fang GZ, Zhou J, Liu SN, Luo ZG, Pan AQ, Cao GZ, Liang SQ. Metal-organic framework-derived porous shuttle-like vanadium oxides for sodium-ion battery application. Nano Res. 2018;11(1):449.
[24]
Zurück zum Zitat Wu D, Zhang W, Feng Y, Ma J. Necklace-like carbon nanofibers encapsulating V3S4 microspheres for ultrafast and stable potassium-ion storage. J Mater Chem A. 2020;8:2618. Wu D, Zhang W, Feng Y, Ma J. Necklace-like carbon nanofibers encapsulating V3S4 microspheres for ultrafast and stable potassium-ion storage. J Mater Chem A. 2020;8:2618.
[25]
Zurück zum Zitat Xu BL, Qi SH, Li F, Peng XX, Cai JF, Liang JJ, Ma JM. Cotton-derived oxygen/sulfur co-doped hard carbon as advanced anode material for potassium-ion batteries. Chin Chem Lett. 2019;31(1):217. Xu BL, Qi SH, Li F, Peng XX, Cai JF, Liang JJ, Ma JM. Cotton-derived oxygen/sulfur co-doped hard carbon as advanced anode material for potassium-ion batteries. Chin Chem Lett. 2019;31(1):217.
[26]
Zurück zum Zitat Xie X, Qi SH, Wu DX, Wang HP, Li F, Peng XX, Cai JF, Liang JJ, Ma JM. Porous surfur-doped hard carbon for excellent potassium storage. Chin Chem Lett. 2020;31(1):223. Xie X, Qi SH, Wu DX, Wang HP, Li F, Peng XX, Cai JF, Liang JJ, Ma JM. Porous surfur-doped hard carbon for excellent potassium storage. Chin Chem Lett. 2020;31(1):223.
[27]
Zurück zum Zitat Qi SH, Xie X, Peng XW, Ng DHL, Wu MG, Liu QH, Yang JL, Ma JM. Mesoporous carbon-coated bismuth nanorods as anode for potassium-ion batteries. Phys Status Solidi RRL. 2019;13(10):1900209. Qi SH, Xie X, Peng XW, Ng DHL, Wu MG, Liu QH, Yang JL, Ma JM. Mesoporous carbon-coated bismuth nanorods as anode for potassium-ion batteries. Phys Status Solidi RRL. 2019;13(10):1900209.
[28]
Zurück zum Zitat Chang XQ, Zhou XL, Ou XW, Lee CS, Zhou JW, Tang YB. Ultrahigh nitrogen doping of carbon nanosheets for high capacity and long cycling potassium ion storage. Adv Energy Mater. 2019;9(47):1902672. Chang XQ, Zhou XL, Ou XW, Lee CS, Zhou JW, Tang YB. Ultrahigh nitrogen doping of carbon nanosheets for high capacity and long cycling potassium ion storage. Adv Energy Mater. 2019;9(47):1902672.
[29]
Zurück zum Zitat Xia C, Guo J, Lei YJ, Liang HF, Zhao C, Alshareef HN. Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode. Adv Mater. 2018;30(5):1705580. Xia C, Guo J, Lei YJ, Liang HF, Zhao C, Alshareef HN. Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode. Adv Mater. 2018;30(5):1705580.
[30]
Zurück zum Zitat Mo FN, Liang GJ, Meng QQ, Liu ZX, Li HF, Fan J, Zhi CY. A flexible rechargeable aqueous zinc manganese-dioxide battery working at − 20 °C. Energy Environ Sci. 2019;12(2):706. Mo FN, Liang GJ, Meng QQ, Liu ZX, Li HF, Fan J, Zhi CY. A flexible rechargeable aqueous zinc manganese-dioxide battery working at − 20 °C. Energy Environ Sci. 2019;12(2):706.
[31]
Zurück zum Zitat Su CY, Cheng H, Li W, Liu ZQ, Li N, Hou ZF, Bai FQ, Zhang HX, Ma TY. Atomic modulation of FeCo-nitrogen-carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc-air battery. Adv Energy Mater. 2017;7(13):1602420. Su CY, Cheng H, Li W, Liu ZQ, Li N, Hou ZF, Bai FQ, Zhang HX, Ma TY. Atomic modulation of FeCo-nitrogen-carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc-air battery. Adv Energy Mater. 2017;7(13):1602420.
[32]
Zurück zum Zitat Zhang ZJ, Zhou DB, Zhou L, Yu HZ, Huang BY. NiFe LDH-CoPc/CNTs as novel bifunctional electrocatalyst complex for zinc–air battery. Ionics (Kiel). 2018;24(6):1709. Zhang ZJ, Zhou DB, Zhou L, Yu HZ, Huang BY. NiFe LDH-CoPc/CNTs as novel bifunctional electrocatalyst complex for zinc–air battery. Ionics (Kiel). 2018;24(6):1709.
[33]
Zurück zum Zitat Wu MG, Xu BL, Zhang YF, Qi SH, Ni W, Hu J, Ma JM. Perspectives in emerging bismuth electrochemistry. Chem Eng J. 2020;381:122558. Wu MG, Xu BL, Zhang YF, Qi SH, Ni W, Hu J, Ma JM. Perspectives in emerging bismuth electrochemistry. Chem Eng J. 2020;381:122558.
[34]
Zurück zum Zitat Liao JQ, Ni W, Wang CY, Ma JM. Layer-structured niobium oxides and their analogues for advanced hybrid capacitors. Chem Eng J. 2020;391:123489. Liao JQ, Ni W, Wang CY, Ma JM. Layer-structured niobium oxides and their analogues for advanced hybrid capacitors. Chem Eng J. 2020;391:123489.
[35]
Zurück zum Zitat Zhang D, Wang H, Chen G, Wan H, Zhang N, Liu XH, Ma RZ. Post-synthesis isomorphous substitution of layered Co–Mn hydroxide nanocones with graphene oxide as high-performance supercapacitor electrodes. Nanoscale. 2019;11(13):6165. Zhang D, Wang H, Chen G, Wan H, Zhang N, Liu XH, Ma RZ. Post-synthesis isomorphous substitution of layered Co–Mn hydroxide nanocones with graphene oxide as high-performance supercapacitor electrodes. Nanoscale. 2019;11(13):6165.
[36]
Zurück zum Zitat Li HY, Guo H, Tong SC, Huang KQ, Zhang CJ, Wang XF, Zhang D, Chen XH, Yang JL. High-performance supercapacitor carbon electrode fabricated by large-scale roll-to-roll micro-gravure printing. J Phys D Appl Phys. 2019;52(11):115501. Li HY, Guo H, Tong SC, Huang KQ, Zhang CJ, Wang XF, Zhang D, Chen XH, Yang JL. High-performance supercapacitor carbon electrode fabricated by large-scale roll-to-roll micro-gravure printing. J Phys D Appl Phys. 2019;52(11):115501.
[37]
Zurück zum Zitat Winter M, Brodd RJ. What are batteries, fuel cells, and supercapacitors? Chem Rev. 2004;104(10):4245. Winter M, Brodd RJ. What are batteries, fuel cells, and supercapacitors? Chem Rev. 2004;104(10):4245.
[38]
Zurück zum Zitat Arbizzani C, Yu Y, Li J, Xiao J, Xia YY, Yang Y, Santato C, Raccichini R, Passerini S. Good practice guide for papers on supercapacitors and related hybrid capacitors for the Journal of Power Sources. J Power Sources. 2020;450:227636. Arbizzani C, Yu Y, Li J, Xiao J, Xia YY, Yang Y, Santato C, Raccichini R, Passerini S. Good practice guide for papers on supercapacitors and related hybrid capacitors for the Journal of Power Sources. J Power Sources. 2020;450:227636.
[39]
Zurück zum Zitat Chhowalla M, Shin HS, Eda G, Li L, Loh KP, Zhang H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem. 2013;5(4):263. Chhowalla M, Shin HS, Eda G, Li L, Loh KP, Zhang H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem. 2013;5(4):263.
[40]
Zurück zum Zitat Zhu YW, Murali S, Stoller MD, Ganesh KJ, Cai W, Paulo JF, Adam P, Robert MW, Katie AC, Matthias T, Dong S, Eric AS, Rodney SR. Carbon-based supercapacitors produced by activation of graphene. Science. 2011;332(6037):1537. Zhu YW, Murali S, Stoller MD, Ganesh KJ, Cai W, Paulo JF, Adam P, Robert MW, Katie AC, Matthias T, Dong S, Eric AS, Rodney SR. Carbon-based supercapacitors produced by activation of graphene. Science. 2011;332(6037):1537.
[41]
Zurück zum Zitat Tie D, Huang SF, Wang J, Ma J, Zhang JJ, Zhao YF. Hybrid energy storage devices: advanced electrode materials and matching principles. Energy Storage Mater. 2019;21:22. Tie D, Huang SF, Wang J, Ma J, Zhang JJ, Zhao YF. Hybrid energy storage devices: advanced electrode materials and matching principles. Energy Storage Mater. 2019;21:22.
[42]
Zurück zum Zitat Wu MG, Ni W, Hu J, Ma JM. NASICON-structured NaTi2(PO4)3 for sustainable energy storage. Nano-Micro Lett. 2019;11(1):44. Wu MG, Ni W, Hu J, Ma JM. NASICON-structured NaTi2(PO4)3 for sustainable energy storage. Nano-Micro Lett. 2019;11(1):44.
[43]
Zurück zum Zitat Wang L, Xie X, Dinh KN, Yan QY, Ma JM. Synthesis, characterizations, and utilization of oxygen-deficient metal oxides for lithium/sodium-ion batteries and supercapacitors. Coord Chem Rev. 2019;397:138. Wang L, Xie X, Dinh KN, Yan QY, Ma JM. Synthesis, characterizations, and utilization of oxygen-deficient metal oxides for lithium/sodium-ion batteries and supercapacitors. Coord Chem Rev. 2019;397:138.
[44]
Zurück zum Zitat Kang B, Ceder G. Battery materials for ultrafast charging and discharging. Nature. 2009;458(7235):190. Kang B, Ceder G. Battery materials for ultrafast charging and discharging. Nature. 2009;458(7235):190.
[45]
Zurück zum Zitat De Volder MFL, Tawfick SH, Baughman RH, Hart AJ. Carbon nanotubes: present and future commercial applications. Science. 2013;339(6119):535. De Volder MFL, Tawfick SH, Baughman RH, Hart AJ. Carbon nanotubes: present and future commercial applications. Science. 2013;339(6119):535.
[46]
Zurück zum Zitat Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin? Science. 2014;343(6176):1210. Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin? Science. 2014;343(6176):1210.
[47]
Zurück zum Zitat Yan J, Wang Q, Wei T, Fan ZG. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater. 2014;4(4):1300816. Yan J, Wang Q, Wei T, Fan ZG. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater. 2014;4(4):1300816.
[48]
Zurück zum Zitat Wang F, Wu X, Yuan X, Liu ZC, Zhang Y, Fu LJ, Zhu YS, Zhou QM, Wu YP, Huang W. Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem Soc Rev. 2017;46(22):6816. Wang F, Wu X, Yuan X, Liu ZC, Zhang Y, Fu LJ, Zhu YS, Zhou QM, Wu YP, Huang W. Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem Soc Rev. 2017;46(22):6816.
[49]
Zurück zum Zitat Li Q, Zheng SS, Xu YX, Xue HG, Pang H. Ruthenium based materials as electrode materials for supercapacitors. Chem Eng J. 2018;333:505. Li Q, Zheng SS, Xu YX, Xue HG, Pang H. Ruthenium based materials as electrode materials for supercapacitors. Chem Eng J. 2018;333:505.
[50]
Zurück zum Zitat Borenstein A, Hanna O, Attias R, Luski S, Brousse T, Aurbach D. Carbon-based composite materials for supercapacitor electrodes: a review. J Mater Chem A. 2017;5(25):12653. Borenstein A, Hanna O, Attias R, Luski S, Brousse T, Aurbach D. Carbon-based composite materials for supercapacitor electrodes: a review. J Mater Chem A. 2017;5(25):12653.
[51]
Zurück zum Zitat Feng DW, Lei T, Lukatskaya MR, Park JH, Huang ZH, Lee M, Shaw L, Chen SC, Yakovenko AA, Kulkarni A, Xiao JP, Fredrickson K, Tok JB, Zou XD, Bao ZN. Robust and conductive two-dimensional metal–organic frameworks with exceptionally high volumetric and areal capacitance. Nat Energy. 2018;3(1):30. Feng DW, Lei T, Lukatskaya MR, Park JH, Huang ZH, Lee M, Shaw L, Chen SC, Yakovenko AA, Kulkarni A, Xiao JP, Fredrickson K, Tok JB, Zou XD, Bao ZN. Robust and conductive two-dimensional metal–organic frameworks with exceptionally high volumetric and areal capacitance. Nat Energy. 2018;3(1):30.
[52]
Zurück zum Zitat Zuo WH, Li RZ, Zhou C, Li YY, Xia JL, Liu JP. Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv Sci. 2017;4(7):1600539. Zuo WH, Li RZ, Zhou C, Li YY, Xia JL, Liu JP. Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv Sci. 2017;4(7):1600539.
[53]
Zurück zum Zitat Tan CL, Cao XH, Wu XJ, He QY, Yang J, Zhang X, Chen JZ, Zhao W, Han SK, Nam GH, Sindoro M, Zhang H. Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev. 2017;117(9):6225. Tan CL, Cao XH, Wu XJ, He QY, Yang J, Zhang X, Chen JZ, Zhao W, Han SK, Nam GH, Sindoro M, Zhang H. Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev. 2017;117(9):6225.
[54]
Zurück zum Zitat Shao YL, El-Kady MF, Sun JY, Li YG, Zhang QH, Zhu MF, Wang HZ, Dunn B, Kaner RB. Design and mechanisms of asymmetric supercapacitors. Chem Rev. 2018;118(18):9233. Shao YL, El-Kady MF, Sun JY, Li YG, Zhang QH, Zhu MF, Wang HZ, Dunn B, Kaner RB. Design and mechanisms of asymmetric supercapacitors. Chem Rev. 2018;118(18):9233.
[55]
Zurück zum Zitat Yuan CZ, Wu HB, Xie Y, Lou XW. Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem In Ed. 2014;53(6):1488. Yuan CZ, Wu HB, Xie Y, Lou XW. Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem In Ed. 2014;53(6):1488.
[56]
Zurück zum Zitat Faraji S, Ani FN. Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors—a review. J Power Sources. 2014;263:338. Faraji S, Ani FN. Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors—a review. J Power Sources. 2014;263:338.
[57]
Zurück zum Zitat Cheng JP, Zhang J, Liu F. Recent development of metal hydroxides as electrode material of electrochemical capacitors. RSC Adv. 2014;4(73):38893. Cheng JP, Zhang J, Liu F. Recent development of metal hydroxides as electrode material of electrochemical capacitors. RSC Adv. 2014;4(73):38893.
[58]
Zurück zum Zitat Yu XY, Lou XW. Mixed metal sulfides for electrochemical energy storage and conversion. Adv Energy Mater. 2018;8(3):1701592. Yu XY, Lou XW. Mixed metal sulfides for electrochemical energy storage and conversion. Adv Energy Mater. 2018;8(3):1701592.
[59]
Zurück zum Zitat Chandrasekaran S, Yao LB, Deng LB, Bowen C, Zhang Y, Chen SM, Lin ZQ, Peng F, Zhang PX. Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chem Soc Rev. 2019;48(15):4178. Chandrasekaran S, Yao LB, Deng LB, Bowen C, Zhang Y, Chen SM, Lin ZQ, Peng F, Zhang PX. Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chem Soc Rev. 2019;48(15):4178.
[60]
Zurück zum Zitat Deng XL, Jiang YQ, Wei ZX, Mao ML, Pothu R, Wang HX, Wang CY, Liu JP, Ma JM. Flexible quasi-solid-state dual-ion asymmetric supercapacitor based on Ni(OH)2 and Nb2O5 nanosheet arrays. Green Energy Environ. 2019;4(4):382. Deng XL, Jiang YQ, Wei ZX, Mao ML, Pothu R, Wang HX, Wang CY, Liu JP, Ma JM. Flexible quasi-solid-state dual-ion asymmetric supercapacitor based on Ni(OH)2 and Nb2O5 nanosheet arrays. Green Energy Environ. 2019;4(4):382.
[61]
Zurück zum Zitat Fong KD, Wang T, Smoukov SK. Multidimensional performance optimization of conducting polymer-based supercapacitor electrodes. Sustain Energy Fuels. 2017;1(9):1857. Fong KD, Wang T, Smoukov SK. Multidimensional performance optimization of conducting polymer-based supercapacitor electrodes. Sustain Energy Fuels. 2017;1(9):1857.
[62]
Zurück zum Zitat Rajender B, Palaniappan S. Simultaneous oxidation and doping of aniline to polyaniline by oxidative template: electrochemical performance in supercapacitor. Int J Polym Mater Polym Biomater. 2015;64(18):939. Rajender B, Palaniappan S. Simultaneous oxidation and doping of aniline to polyaniline by oxidative template: electrochemical performance in supercapacitor. Int J Polym Mater Polym Biomater. 2015;64(18):939.
[63]
Zurück zum Zitat Boddula R, Srinivasan P. Role of dual dopants in highly ordered crystalline polyaniline nanospheres: electrode materials in supercapacitors. J Appl Polym Sci. 2015;132(36):42510. Boddula R, Srinivasan P. Role of dual dopants in highly ordered crystalline polyaniline nanospheres: electrode materials in supercapacitors. J Appl Polym Sci. 2015;132(36):42510.
[64]
Zurück zum Zitat Bolagam R, Boddula R, Srinivasan P. Synthesis of highly crystalline polyaniline with the use of (cyclohexylamino)-1-propanesulfonic acid for supercapacitor. J Appl Electrochem. 2015;45(1):51. Bolagam R, Boddula R, Srinivasan P. Synthesis of highly crystalline polyaniline with the use of (cyclohexylamino)-1-propanesulfonic acid for supercapacitor. J Appl Electrochem. 2015;45(1):51.
[65]
Zurück zum Zitat Rajender B, Palaniappan S. Organic solvent soluble methyltriphenylphosphonium peroxodisulfate: a novel oxidant for the synthesis of polyaniline and the thus prepared polyaniline in high performance supercapacitors. New J Chem. 2015;39(7):5382. Rajender B, Palaniappan S. Organic solvent soluble methyltriphenylphosphonium peroxodisulfate: a novel oxidant for the synthesis of polyaniline and the thus prepared polyaniline in high performance supercapacitors. New J Chem. 2015;39(7):5382.
[66]
Zurück zum Zitat He JP, Guo C, Zhou SW, Zhao YL, Wang QP, Yang S, Yang JQ, Wang QH. Dual carbon-modified nickel sulfide composites toward high-performance electrodes for supercapacitors. Inorg Chem Front. 2018;6(1):226. He JP, Guo C, Zhou SW, Zhao YL, Wang QP, Yang S, Yang JQ, Wang QH. Dual carbon-modified nickel sulfide composites toward high-performance electrodes for supercapacitors. Inorg Chem Front. 2018;6(1):226.
[67]
Zurück zum Zitat Wang QH, Zhu YX, Xue J, Zhao XS, Guo ZP, Wang C. General synthesis of porous mixed metal oxide hollow spheres with enhanced supercapacitive properties. ACS Appl Mater Interfaces. 2016;8(27):17226. Wang QH, Zhu YX, Xue J, Zhao XS, Guo ZP, Wang C. General synthesis of porous mixed metal oxide hollow spheres with enhanced supercapacitive properties. ACS Appl Mater Interfaces. 2016;8(27):17226.
[68]
Zurück zum Zitat Wang QH, Du JL, Zhu YX, Yang JQ, Chen J, Wang C, Li L, Jiao LF. Facile fabrication and supercapacitive properties of mesoporous zinc cobaltite microspheres. J Power Sources. 2015;284:138. Wang QH, Du JL, Zhu YX, Yang JQ, Chen J, Wang C, Li L, Jiao LF. Facile fabrication and supercapacitive properties of mesoporous zinc cobaltite microspheres. J Power Sources. 2015;284:138.
[69]
Zurück zum Zitat Wang QH, Zhu LX, Sun LQ, Liu YC, Jiao LF. Facile synthesis of hierarchical porous ZnCo2O4 microspheres for high-performance supercapacitors. J Mater Chem A. 2015;3(3):982. Wang QH, Zhu LX, Sun LQ, Liu YC, Jiao LF. Facile synthesis of hierarchical porous ZnCo2O4 microspheres for high-performance supercapacitors. J Mater Chem A. 2015;3(3):982.
[70]
Zurück zum Zitat Rui XH, Tan HT, Yan QY. Nanostructured metal sulfides for energy storage. Nanoscale. 2014;6(17):9889. Rui XH, Tan HT, Yan QY. Nanostructured metal sulfides for energy storage. Nanoscale. 2014;6(17):9889.
[71]
Zurück zum Zitat Kulkarni P, Nataraj SK, Balakrishna RG, Nagaraju DH, Reddy MV. Nanostructured binary and ternary metal sulfides: synthesis methods and their application in energy conversion and storage devices. J Mater Chem A. 2017;5(42):22040. Kulkarni P, Nataraj SK, Balakrishna RG, Nagaraju DH, Reddy MV. Nanostructured binary and ternary metal sulfides: synthesis methods and their application in energy conversion and storage devices. J Mater Chem A. 2017;5(42):22040.
[72]
Zurück zum Zitat Wang QH, Jiao LF, Du HM, Si YC, Wang YJ, Yuan HT. Co3S4 hollow nanospheres grown on graphene as advanced electrode materials for supercapacitors. J Mater Chem. 2012;22(40):21387. Wang QH, Jiao LF, Du HM, Si YC, Wang YJ, Yuan HT. Co3S4 hollow nanospheres grown on graphene as advanced electrode materials for supercapacitors. J Mater Chem. 2012;22(40):21387.
[73]
Zurück zum Zitat Wang QH, Jiao LF, Du HM, Si YC, Wang YJ, Yuan HT. Facile synthesis and superior supercapacitor performances of three-dimensional cobalt sulfide hierarchitectures. CrystEngComm. 2011;13(23):6960. Wang QH, Jiao LF, Du HM, Si YC, Wang YJ, Yuan HT. Facile synthesis and superior supercapacitor performances of three-dimensional cobalt sulfide hierarchitectures. CrystEngComm. 2011;13(23):6960.
[74]
Zurück zum Zitat Wen XR, Zhao MQ, Zhang M, Fan X, Zhang DS. Efficient capacitive deionization of saline water by an integrated tin disulfide nanosheet@graphite paper electrode via an in situ growth strategy. ACS Sustain Chem Eng. 2020;8(2):1268. Wen XR, Zhao MQ, Zhang M, Fan X, Zhang DS. Efficient capacitive deionization of saline water by an integrated tin disulfide nanosheet@graphite paper electrode via an in situ growth strategy. ACS Sustain Chem Eng. 2020;8(2):1268.
[75]
Zurück zum Zitat Han JL, Yan TT, Shen JJ, Shi LY, Zhang JP, Zhang DS. Capacitive deionization of saline water by using MoS2–graphene hybrid electrodes with high volumetric adsorption capacity. Environ Sci Technol. 2019;53(21):12668. Han JL, Yan TT, Shen JJ, Shi LY, Zhang JP, Zhang DS. Capacitive deionization of saline water by using MoS2–graphene hybrid electrodes with high volumetric adsorption capacity. Environ Sci Technol. 2019;53(21):12668.
[76]
Zurück zum Zitat Wang PT, Zhang X, Zhang J, Wan S, Guo SJ, Lu G, Yao JL, Huang XQ. Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis. Nat Commun. 2017;8:14580. Wang PT, Zhang X, Zhang J, Wan S, Guo SJ, Lu G, Yao JL, Huang XQ. Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis. Nat Commun. 2017;8:14580.
[77]
Zurück zum Zitat Ye C, Zhang L, Guo CX, Li DD, Vasileff A, Wang HH, Qiao SZ. A 3D Hybrid of chemically coupled nickel sulfide and hollow carbon spheres for high performance lithium-sulfur batteries. Adv Funct Mater. 2017;27(33):1702524. Ye C, Zhang L, Guo CX, Li DD, Vasileff A, Wang HH, Qiao SZ. A 3D Hybrid of chemically coupled nickel sulfide and hollow carbon spheres for high performance lithium-sulfur batteries. Adv Funct Mater. 2017;27(33):1702524.
[78]
Zurück zum Zitat Sun HC, Qin D, Huang SQ, Guo XZ, Li DM, Luo YH, Meng QB. Dye-sensitized solar cells with NiS counter electrodes electrodeposited by a potential reversal technique. Energy Environ Sci. 2011;4(8):2630. Sun HC, Qin D, Huang SQ, Guo XZ, Li DM, Luo YH, Meng QB. Dye-sensitized solar cells with NiS counter electrodes electrodeposited by a potential reversal technique. Energy Environ Sci. 2011;4(8):2630.
[79]
Zurück zum Zitat Zhao J, Li ZJ, Yuan XC, Shen T, Lin LG, Zhang M, Meng A, Li QD. Novel core-shell multi-dimensional hybrid nanoarchitectures consisting of Co(OH)2 nanoparticles/Ni3S2 nanosheets grown on SiC nanowire networks for high-performance asymmetric supercapacitors. Chem Eng J. 2019;357:21. Zhao J, Li ZJ, Yuan XC, Shen T, Lin LG, Zhang M, Meng A, Li QD. Novel core-shell multi-dimensional hybrid nanoarchitectures consisting of Co(OH)2 nanoparticles/Ni3S2 nanosheets grown on SiC nanowire networks for high-performance asymmetric supercapacitors. Chem Eng J. 2019;357:21.
[80]
Zurück zum Zitat Chen FS, Wang H, Ji S, Linkov V, Wang RF. Core-shell structured Ni3S2@Co(OH)2 nano-wires grown on Ni foam as binder-free electrode for asymmetric supercapacitors. Chem Eng J. 2018;345:48. Chen FS, Wang H, Ji S, Linkov V, Wang RF. Core-shell structured Ni3S2@Co(OH)2 nano-wires grown on Ni foam as binder-free electrode for asymmetric supercapacitors. Chem Eng J. 2018;345:48.
[81]
Zurück zum Zitat Lin JH, Zheng XH, Wang YH, Liang HY, Jia HN, Qi JL, Cao J, Fei WD, Feng JC. Rational construction of core-shell Ni3S2@Ni(OH)2 nanostructures as battery-like electrodes for supercapacitors. Inorg Chem Front. 2018;5(8):1985. Lin JH, Zheng XH, Wang YH, Liang HY, Jia HN, Qi JL, Cao J, Fei WD, Feng JC. Rational construction of core-shell Ni3S2@Ni(OH)2 nanostructures as battery-like electrodes for supercapacitors. Inorg Chem Front. 2018;5(8):1985.
[82]
Zurück zum Zitat Wang HY, Liang MM, Duan D, Shi WY, Song YY, Sun ZB. Rose-like Ni3S4 as battery-type electrode for hybrid supercapacitor with excellent charge storage performance. Chem Eng J. 2018;350:523. Wang HY, Liang MM, Duan D, Shi WY, Song YY, Sun ZB. Rose-like Ni3S4 as battery-type electrode for hybrid supercapacitor with excellent charge storage performance. Chem Eng J. 2018;350:523.
[83]
Zurück zum Zitat Dai SG, Zhao BT, Qu C, Chen DC, Dang D, Song B, deGlee BM, Fu JW, Hu CG, Wong CP, Liu ML. Controlled synthesis of three-phase NixSy/rGO nanoflake electrodes for hybrid supercapacitors with high energy and power density. Nano Energy. 2017;33:522. Dai SG, Zhao BT, Qu C, Chen DC, Dang D, Song B, deGlee BM, Fu JW, Hu CG, Wong CP, Liu ML. Controlled synthesis of three-phase NixSy/rGO nanoflake electrodes for hybrid supercapacitors with high energy and power density. Nano Energy. 2017;33:522.
[84]
Zurück zum Zitat Li YH, Cao LJ, Qiao LQ, Zhou M, Xiao P, Zhang YH. Ni-Co sulfide nanowires on nickel foam with ultrahigh capacitance for asymmetric supercapacitors. J Mater Chem A. 2014;2(18):6540. Li YH, Cao LJ, Qiao LQ, Zhou M, Xiao P, Zhang YH. Ni-Co sulfide nanowires on nickel foam with ultrahigh capacitance for asymmetric supercapacitors. J Mater Chem A. 2014;2(18):6540.
[85]
Zurück zum Zitat Naveenkumar P, Paruthimal Kalaignan G. Electrodeposited MnS on graphene wrapped Ni-Foam for enhanced supercapacitor applications. Electrochim Acta. 2018;289:437. Naveenkumar P, Paruthimal Kalaignan G. Electrodeposited MnS on graphene wrapped Ni-Foam for enhanced supercapacitor applications. Electrochim Acta. 2018;289:437.
[86]
Zurück zum Zitat Xing JL, Du J, Zhang X, Shao YB, Zhang T, Xu CL. A Ni-P@NiCo LDH core–shell nanorod-decorated nickel foam with enhanced areal specific capacitance for high-performance supercapacitors. Dalt Trans. 2017;46(30):10064. Xing JL, Du J, Zhang X, Shao YB, Zhang T, Xu CL. A Ni-P@NiCo LDH core–shell nanorod-decorated nickel foam with enhanced areal specific capacitance for high-performance supercapacitors. Dalt Trans. 2017;46(30):10064.
[87]
Zurück zum Zitat Sun HH, Ma Z, Qiu YF, Liu H, Gao GG. Ni@NiO nanowires on nickel foam prepared via “acid hungry” strategy: high supercapacitor performance and robust electrocatalysts for water splitting reaction. Small. 2018;14(31):1800294. Sun HH, Ma Z, Qiu YF, Liu H, Gao GG. Ni@NiO nanowires on nickel foam prepared via “acid hungry” strategy: high supercapacitor performance and robust electrocatalysts for water splitting reaction. Small. 2018;14(31):1800294.
[88]
Zurück zum Zitat He Y, Zhuang X, Lei C, Lei L, Hou Y, Mai Y, Feng X. Porous carbon nanosheets: synthetic strategies and electrochemical energy related applications. Nano Today. 2019;24:103. He Y, Zhuang X, Lei C, Lei L, Hou Y, Mai Y, Feng X. Porous carbon nanosheets: synthetic strategies and electrochemical energy related applications. Nano Today. 2019;24:103.
[89]
Zurück zum Zitat Huang JQ, Wang ZY, Xu ZL, Chong XW, Qin XY, Wang XY, Kim JK. Three-dimensional porous graphene aerogel cathode with high sulfur loading and embedded TiO2 nanoparticles for advanced lithium-sulfur batteries. ACS Appl Mater Interfaces. 2016;8(42):28663. Huang JQ, Wang ZY, Xu ZL, Chong XW, Qin XY, Wang XY, Kim JK. Three-dimensional porous graphene aerogel cathode with high sulfur loading and embedded TiO2 nanoparticles for advanced lithium-sulfur batteries. ACS Appl Mater Interfaces. 2016;8(42):28663.
[90]
Zurück zum Zitat Ding YB, Tang YH, Yang LM, Zeng YX, Yuan JL, Liu T, Zhang SQ, Liu CB, Luo SG. Porous nitrogen-rich carbon materials from carbon self-repairing g-C3N4 assembled with graphene for high-performance supercapacitor. J Mater Chem A. 2016;4(37):14307. Ding YB, Tang YH, Yang LM, Zeng YX, Yuan JL, Liu T, Zhang SQ, Liu CB, Luo SG. Porous nitrogen-rich carbon materials from carbon self-repairing g-C3N4 assembled with graphene for high-performance supercapacitor. J Mater Chem A. 2016;4(37):14307.
[91]
Zurück zum Zitat Zhang W, Jin XZ, Chai H, Diao GW, Piao YZ. 3D hybrids of interconnected porous carbon nanosheets/vertically aligned polyaniline nanowires for high-performance supercapacitors. Adv Mater Interfaces. 2018;5(11):1800106. Zhang W, Jin XZ, Chai H, Diao GW, Piao YZ. 3D hybrids of interconnected porous carbon nanosheets/vertically aligned polyaniline nanowires for high-performance supercapacitors. Adv Mater Interfaces. 2018;5(11):1800106.
[92]
Zurück zum Zitat Hooch Antink W, Choi Y, Seong KD, Kim JM, Piao Y. Recent progress in porous graphene and reduced graphene oxide-based nanomaterials for electrochemical energy storage devices. Adv Mater Interfaces. 2018;5(5):1701212. Hooch Antink W, Choi Y, Seong KD, Kim JM, Piao Y. Recent progress in porous graphene and reduced graphene oxide-based nanomaterials for electrochemical energy storage devices. Adv Mater Interfaces. 2018;5(5):1701212.
[93]
Zurück zum Zitat Chao YZ, Chen SB, Chen HQ, Hu XJ, Ma Y, Guo WS, Bai YX. Densely packed porous graphene film for high volumetric performance supercapacitor. Electrochim Acta. 2018;276:118. Chao YZ, Chen SB, Chen HQ, Hu XJ, Ma Y, Guo WS, Bai YX. Densely packed porous graphene film for high volumetric performance supercapacitor. Electrochim Acta. 2018;276:118.
[94]
Zurück zum Zitat Kang Z, Li Y, Yu YS, Liao QL, Zhang Z, Guo HJ, Zhang SC, Wu J, Si HN, Zhang XM, Zhang Y. Facile synthesis of NiCo2S4 nanowire arrays on 3D graphene foam for high-performance electrochemical capacitors application. J Mater Sci. 2018;53(14):10292. Kang Z, Li Y, Yu YS, Liao QL, Zhang Z, Guo HJ, Zhang SC, Wu J, Si HN, Zhang XM, Zhang Y. Facile synthesis of NiCo2S4 nanowire arrays on 3D graphene foam for high-performance electrochemical capacitors application. J Mater Sci. 2018;53(14):10292.
[95]
Zurück zum Zitat Wang HF, Tang C, Wang B, Li BQ, Cui X, Zhang Q. Defect-rich carbon fiber electrocatalysts with porous graphene skin for flexible solid-state zinc–air batteries. Energy Storage Mater. 2018;15:124. Wang HF, Tang C, Wang B, Li BQ, Cui X, Zhang Q. Defect-rich carbon fiber electrocatalysts with porous graphene skin for flexible solid-state zinc–air batteries. Energy Storage Mater. 2018;15:124.
[96]
Zurück zum Zitat Shen F, Pankratov D, Chi QJ. Graphene-conducting polymer nanocomposites for enhancing electrochemical capacitive energy storage. Curr Opin Electrochem. 2017;4(1):133. Shen F, Pankratov D, Chi QJ. Graphene-conducting polymer nanocomposites for enhancing electrochemical capacitive energy storage. Curr Opin Electrochem. 2017;4(1):133.
[97]
Zurück zum Zitat Liu SH, Gordiichuk P, Wu ZS, Liu ZY, Wei W, Wagner M, Mohamed-Noriega N, Wu DQ, Mai YY, Herrmann A, Mullen K, Feng XL. Patterning two-dimensional free-standing surfaces with mesoporous conducting polymers. Nat Commun. 2015;6:8817. Liu SH, Gordiichuk P, Wu ZS, Liu ZY, Wei W, Wagner M, Mohamed-Noriega N, Wu DQ, Mai YY, Herrmann A, Mullen K, Feng XL. Patterning two-dimensional free-standing surfaces with mesoporous conducting polymers. Nat Commun. 2015;6:8817.
[98]
Zurück zum Zitat Zhao DP, Liu HQ, Wu X. Bi-interface induced multi-active MCo2O4@MCo2S4@PPy (M = Ni, Zn) sandwich structure for energy storage and electrocatalysis. Nano Energy. 2019;57:363. Zhao DP, Liu HQ, Wu X. Bi-interface induced multi-active MCo2O4@MCo2S4@PPy (M = Ni, Zn) sandwich structure for energy storage and electrocatalysis. Nano Energy. 2019;57:363.
[99]
Zurück zum Zitat Fan ZM, Zhu JP, Sun XH, Cheng ZJ, Liu YY, Wang YS. High density of free-standing holey graphene/PPy films for superior volumetric capacitance of supercapacitors. ACS Appl Mater Interfaces. 2017;9(26):21763. Fan ZM, Zhu JP, Sun XH, Cheng ZJ, Liu YY, Wang YS. High density of free-standing holey graphene/PPy films for superior volumetric capacitance of supercapacitors. ACS Appl Mater Interfaces. 2017;9(26):21763.
[100]
Zurück zum Zitat Sajedi-Moghaddam A, Mayorga-Martinez CC, Sofer Z, Bouša D, Saievar-Iranizad E, Pumera M. Black phosphorus nanoflakes/polyaniline hybrid material for high-performance pseudocapacitors. J Phys Chem C. 2017;121(37):20532. Sajedi-Moghaddam A, Mayorga-Martinez CC, Sofer Z, Bouša D, Saievar-Iranizad E, Pumera M. Black phosphorus nanoflakes/polyaniline hybrid material for high-performance pseudocapacitors. J Phys Chem C. 2017;121(37):20532.
[101]
Zurück zum Zitat Yu HT, Xin GX, Ge X, Bulin C, Li RH, Xing RG, Zhang BW. Porous graphene-polyaniline nanoarrays composite with enhanced interface bonding and electrochemical performance. Compos Sci Technol. 2018;154:76. Yu HT, Xin GX, Ge X, Bulin C, Li RH, Xing RG, Zhang BW. Porous graphene-polyaniline nanoarrays composite with enhanced interface bonding and electrochemical performance. Compos Sci Technol. 2018;154:76.
[102]
Zurück zum Zitat Feng LD, Zhu YF, Ding HY, Ni CY. Recent progress in nickel based materials for high performance pseudocapacitor electrodes. J Power Sources. 2014;267:430. Feng LD, Zhu YF, Ding HY, Ni CY. Recent progress in nickel based materials for high performance pseudocapacitor electrodes. J Power Sources. 2014;267:430.
[103]
Zurück zum Zitat Ye L, Zhao LJ, Zhang H, Pan Z, Gen S, Shi WH, Han B, Sun HM, Yang XJ, Xu TH. Serpent-cactus-like Co-doped Ni(OH)2/Ni3S2 hierarchical structure composed of ultrathin nanosheets for use in efficient asymmetric supercapacitors. J Mater Chem A. 2017;5(4):1603. Ye L, Zhao LJ, Zhang H, Pan Z, Gen S, Shi WH, Han B, Sun HM, Yang XJ, Xu TH. Serpent-cactus-like Co-doped Ni(OH)2/Ni3S2 hierarchical structure composed of ultrathin nanosheets for use in efficient asymmetric supercapacitors. J Mater Chem A. 2017;5(4):1603.
[104]
Zurück zum Zitat Wen J, Li SZ, Chen T, Yue Y, Liu NS, Gao YH, Li B, Song ZC, Chen Z, Guo YX, Xiong R, Fang GJ. Three-dimensional hierarchical NiCo hydroxide@Ni3S2 nanorod hybrid structure as high performance positive material for asymmetric supercapacitor. Electrochim Acta. 2016;222:965. Wen J, Li SZ, Chen T, Yue Y, Liu NS, Gao YH, Li B, Song ZC, Chen Z, Guo YX, Xiong R, Fang GJ. Three-dimensional hierarchical NiCo hydroxide@Ni3S2 nanorod hybrid structure as high performance positive material for asymmetric supercapacitor. Electrochim Acta. 2016;222:965.
[105]
Zurück zum Zitat Yang X, Zhao L, Lian J. Arrays of hierarchical nickel sulfides/MoS2 nanosheets supported on carbon nanotubes backbone as advanced anode materials for asymmetric supercapacitor. J Power Sources. 2017;343:373. Yang X, Zhao L, Lian J. Arrays of hierarchical nickel sulfides/MoS2 nanosheets supported on carbon nanotubes backbone as advanced anode materials for asymmetric supercapacitor. J Power Sources. 2017;343:373.
[106]
Zurück zum Zitat Sun CC, Ma MZ, Yang J, Zhang YF, Chen P, Huang W, Dong XC. Phase-controlled synthesis of α-NiS nanoparticles confined in carbon nanorods for high performance supercapacitors. Sci Rep. 2015;4(1):7054. Sun CC, Ma MZ, Yang J, Zhang YF, Chen P, Huang W, Dong XC. Phase-controlled synthesis of α-NiS nanoparticles confined in carbon nanorods for high performance supercapacitors. Sci Rep. 2015;4(1):7054.
[107]
Zurück zum Zitat Harish S, Naveen AN, Abinaya R, Archana J, Ramesh R, Navaneethan M, Shimoura M, Hayakawa Y. Enhanced performance on capacity retention of hierarchical NiS hexagonal nanoplate for highly stable asymmetric supercapacitor. Electrochim Acta. 2018;283:1053. Harish S, Naveen AN, Abinaya R, Archana J, Ramesh R, Navaneethan M, Shimoura M, Hayakawa Y. Enhanced performance on capacity retention of hierarchical NiS hexagonal nanoplate for highly stable asymmetric supercapacitor. Electrochim Acta. 2018;283:1053.
[108]
Zurück zum Zitat Hou LR, Yuan CZ, Li DK, Yang L, Shen LF, Zhang F, Zhang XG. Electrochemically induced transformation of NiS nanoparticles into Ni(OH)2 in KOH aqueous solution toward electrochemical capacitors. Electrochim Acta. 2011;56(22):7454. Hou LR, Yuan CZ, Li DK, Yang L, Shen LF, Zhang F, Zhang XG. Electrochemically induced transformation of NiS nanoparticles into Ni(OH)2 in KOH aqueous solution toward electrochemical capacitors. Electrochim Acta. 2011;56(22):7454.
[109]
Zurück zum Zitat Qu C, Zhang L, Meng W, Liang ZB, Dang D, Dai SG, Zhao BT, Tabassum H, Gao S, Zhang H, Guo WH, Zhao R, Huang XY, Liu ML, Zou RQ. MOF-derived α-NiS nanorods on graphene as an electrode for high-energy-density supercapacitors. J Mater Chem A. 2018;6(9):4003. Qu C, Zhang L, Meng W, Liang ZB, Dang D, Dai SG, Zhao BT, Tabassum H, Gao S, Zhang H, Guo WH, Zhao R, Huang XY, Liu ML, Zou RQ. MOF-derived α-NiS nanorods on graphene as an electrode for high-energy-density supercapacitors. J Mater Chem A. 2018;6(9):4003.
[110]
Zurück zum Zitat Luo WH, Zhang GF, Cui YX, Sun Y, Zhang J, Zheng WJ. One-step extended strategy for the ionic liquid-assisted synthesis of Ni3S4–MoS2 heterojunction electrodes for supercapacitors. J Mater Chem A. 2017;5(22):11278. Luo WH, Zhang GF, Cui YX, Sun Y, Zhang J, Zheng WJ. One-step extended strategy for the ionic liquid-assisted synthesis of Ni3S4–MoS2 heterojunction electrodes for supercapacitors. J Mater Chem A. 2017;5(22):11278.
[111]
Zurück zum Zitat Xu YL, Du WM, Du LL, Zhu WJ, Guo W, Chang JJ, Zhang B, Deng DH. Monocrystalline NiS nanowire arrays supported by Ni foam as binder-free electrodes with outstanding performances. RSC Adv. 2017;7(36):22553. Xu YL, Du WM, Du LL, Zhu WJ, Guo W, Chang JJ, Zhang B, Deng DH. Monocrystalline NiS nanowire arrays supported by Ni foam as binder-free electrodes with outstanding performances. RSC Adv. 2017;7(36):22553.
[112]
Zurück zum Zitat Chen ZH, Zhao MG, Lv X, Zhou K, Jiang XQ, Ren XL, Mei XF. Fast ion transport through ultrathin shells of metal sulfide hollow nanocolloids used for high-performance energy storage. Sci Rep. 2018;8(1):30. Chen ZH, Zhao MG, Lv X, Zhou K, Jiang XQ, Ren XL, Mei XF. Fast ion transport through ultrathin shells of metal sulfide hollow nanocolloids used for high-performance energy storage. Sci Rep. 2018;8(1):30.
[113]
Zurück zum Zitat Wang J, Ma KY, Zhang J, Liu F, Cheng JP. Template-free synthesis of hierarchical hollow NiSx microspheres for supercapacitor. J Colloid Interface Sci. 2017;507:290. Wang J, Ma KY, Zhang J, Liu F, Cheng JP. Template-free synthesis of hierarchical hollow NiSx microspheres for supercapacitor. J Colloid Interface Sci. 2017;507:290.
[114]
Zurück zum Zitat Patil AM, Lokhande AC, Chodankar NR, Kumbhar VS, Lokhande CD. Engineered morphologies of β-NiS thin films via anionic exchange process and their supercapacitive performance. Mater Des. 2016;97:407. Patil AM, Lokhande AC, Chodankar NR, Kumbhar VS, Lokhande CD. Engineered morphologies of β-NiS thin films via anionic exchange process and their supercapacitive performance. Mater Des. 2016;97:407.
[115]
Zurück zum Zitat Yu XY, Yu L, Wu HB, Lou XW. Formation of nickel sulfide nanoframes from metal-organic frameworks with enhanced pseudocapacitive and electrocatalytic properties. Angew Chem In Ed. 2015;54(18):5331. Yu XY, Yu L, Wu HB, Lou XW. Formation of nickel sulfide nanoframes from metal-organic frameworks with enhanced pseudocapacitive and electrocatalytic properties. Angew Chem In Ed. 2015;54(18):5331.
[116]
Zurück zum Zitat You B, Sun YJ. Hierarchically porous nickel sulfide multifunctional superstructures. Adv Energy Mater. 2016;6(7):1502333. You B, Sun YJ. Hierarchically porous nickel sulfide multifunctional superstructures. Adv Energy Mater. 2016;6(7):1502333.
[117]
Zurück zum Zitat Guan B, Li Y, Yin BY, Wang DW, Zhang HH, Cheng CJ. Synthesis of hierarchical NiS microflowers for high performance asymmetric supercapacitor. Chem Eng J. 2017;308:1165. Guan B, Li Y, Yin BY, Wang DW, Zhang HH, Cheng CJ. Synthesis of hierarchical NiS microflowers for high performance asymmetric supercapacitor. Chem Eng J. 2017;308:1165.
[118]
Zurück zum Zitat Surendran S, Selvan RK. Growth and characterization of 3D flower-like β-NiS on carbon cloth: a dexterous and flexible multifunctional electrode for supercapattery and water-splitting applications. Adv Mater Interfaces. 2018;5(4):1701056. Surendran S, Selvan RK. Growth and characterization of 3D flower-like β-NiS on carbon cloth: a dexterous and flexible multifunctional electrode for supercapattery and water-splitting applications. Adv Mater Interfaces. 2018;5(4):1701056.
[119]
Zurück zum Zitat Du NX, Zheng WJ, Li XC, He HG, Wang L, Shi JH. Nanosheet-assembled NiS hollow structures with double shells and controlled shapes for high-performance supercapacitors. Chem Eng J. 2017;323:415. Du NX, Zheng WJ, Li XC, He HG, Wang L, Shi JH. Nanosheet-assembled NiS hollow structures with double shells and controlled shapes for high-performance supercapacitors. Chem Eng J. 2017;323:415.
[120]
Zurück zum Zitat Yang JQ, Guo W, Li D, Wei HM, Wu LY, Zheng WJ. Synthesis and electrochemical performances of novel hierarchical flower-like nickel sulfide with tunable number of composed nanoplates. J Power Sources. 2014;268:113. Yang JQ, Guo W, Li D, Wei HM, Wu LY, Zheng WJ. Synthesis and electrochemical performances of novel hierarchical flower-like nickel sulfide with tunable number of composed nanoplates. J Power Sources. 2014;268:113.
[121]
Zurück zum Zitat Wang XH, Xia HY, Wang XQ, Shi B, Fang Y. A super high performance asymmetric supercapacitor based on Co3S4/NiS nanoplates electrodes. RSC Adv. 2016;6(100):97482. Wang XH, Xia HY, Wang XQ, Shi B, Fang Y. A super high performance asymmetric supercapacitor based on Co3S4/NiS nanoplates electrodes. RSC Adv. 2016;6(100):97482.
[122]
Zurück zum Zitat Theerthagiri J, Karuppasamy K, Durai G, Arunachalam P, Sangeetha K, Kuppusami P, Kim HS. Recent advances in metal chalcogenides (MX; X = S, Se) nanostructures for electrochemical supercapacitor applications: a brief review. Nanomaterials. 2018;8(4):256. Theerthagiri J, Karuppasamy K, Durai G, Arunachalam P, Sangeetha K, Kuppusami P, Kim HS. Recent advances in metal chalcogenides (MX; X = S, Se) nanostructures for electrochemical supercapacitor applications: a brief review. Nanomaterials. 2018;8(4):256.
[123]
Zurück zum Zitat AbdelHamid AA, Yang X, Yang J, Chen X, Ying JY. Graphene-wrapped nickel sulfide nanoprisms with improved performance for Li-ion battery anodes and supercapacitors. Nano Energy. 2016;26:425. AbdelHamid AA, Yang X, Yang J, Chen X, Ying JY. Graphene-wrapped nickel sulfide nanoprisms with improved performance for Li-ion battery anodes and supercapacitors. Nano Energy. 2016;26:425.
[124]
Zurück zum Zitat Singh A, Roberts AJ, Slade RCT, Chandra A. High electrochemical performance in asymmetric supercapacitors using MWCNT/nickel sulfide composite and graphene nanoplatelets as electrodes. J Mater Chem A. 2014;2(39):16723. Singh A, Roberts AJ, Slade RCT, Chandra A. High electrochemical performance in asymmetric supercapacitors using MWCNT/nickel sulfide composite and graphene nanoplatelets as electrodes. J Mater Chem A. 2014;2(39):16723.
[125]
Zurück zum Zitat Liu T, Jiang CJ, Cheng B, You W, Yu JG. Hierarchical NiS/N-doped carbon composite hollow spheres with excellent supercapacitor performance. J Mater Chem A. 2017;5(40):21257. Liu T, Jiang CJ, Cheng B, You W, Yu JG. Hierarchical NiS/N-doped carbon composite hollow spheres with excellent supercapacitor performance. J Mater Chem A. 2017;5(40):21257.
[126]
Zurück zum Zitat Xia W, Qu C, Liang ZB, Zhao BT, Dai SG, Qiu B, Jiao Y, Zhang QB, Huang XY, Guo WH, Dang D, Zou RQ, Xia DG, Liu ML. High-performance energy storage and conversion materials derived from a single metal-organic framework/graphene aerogel composite. Nano Lett. 2017;17(5):2788. Xia W, Qu C, Liang ZB, Zhao BT, Dai SG, Qiu B, Jiao Y, Zhang QB, Huang XY, Guo WH, Dang D, Zou RQ, Xia DG, Liu ML. High-performance energy storage and conversion materials derived from a single metal-organic framework/graphene aerogel composite. Nano Lett. 2017;17(5):2788.
[127]
Zurück zum Zitat Bendi R, Kumar V, Bhavanasi V, Parida K, Lee PS. Metal organic framework-derived metal phosphates as electrode materials for supercapacitors. Adv Energy Mater. 2016;6(3):1501833. Bendi R, Kumar V, Bhavanasi V, Parida K, Lee PS. Metal organic framework-derived metal phosphates as electrode materials for supercapacitors. Adv Energy Mater. 2016;6(3):1501833.
[128]
Zurück zum Zitat Li Y, Ye K, Cheng K, Yin JL, Cao DX, Wang GL. Electrodeposition of nickel sulfide on graphene-covered make-up cotton as a flexible electrode material for high-performance supercapacitors. J Power Sources. 2015;274:943. Li Y, Ye K, Cheng K, Yin JL, Cao DX, Wang GL. Electrodeposition of nickel sulfide on graphene-covered make-up cotton as a flexible electrode material for high-performance supercapacitors. J Power Sources. 2015;274:943.
[129]
Zurück zum Zitat Zhang YF, Zuo LZ, Zhang LS, Yan JL, Lu HY, Fan W, Liu TX. Immobilization of NiS nanoparticles on N-doped carbon fiber aerogels as advanced electrode materials for supercapacitors. Nano Res. 2016;9(9):2747. Zhang YF, Zuo LZ, Zhang LS, Yan JL, Lu HY, Fan W, Liu TX. Immobilization of NiS nanoparticles on N-doped carbon fiber aerogels as advanced electrode materials for supercapacitors. Nano Res. 2016;9(9):2747.
[130]
Zurück zum Zitat Lu M, Yuan XP, Guan XH, Wang GS. Synthesis of nickel chalcogenide hollow spheres using an l-cysteine-assisted hydrothermal process for efficient supercapacitor electrodes. J Mater Chem A. 2017;5(7):3621. Lu M, Yuan XP, Guan XH, Wang GS. Synthesis of nickel chalcogenide hollow spheres using an l-cysteine-assisted hydrothermal process for efficient supercapacitor electrodes. J Mater Chem A. 2017;5(7):3621.
[131]
Zurück zum Zitat Pi WB, Mei T, Li J, Wang JY, Li JH, Wang XB. Durian-like NiS2@rGO nanocomposites and their enhanced rate performance. Chem Eng J. 2018;335:275. Pi WB, Mei T, Li J, Wang JY, Li JH, Wang XB. Durian-like NiS2@rGO nanocomposites and their enhanced rate performance. Chem Eng J. 2018;335:275.
[132]
Zurück zum Zitat Xie SL, Gou JX, Liu B, Liu CG. Synthesis of cobalt-doped nickel sulfide nanomaterials with rich edge sites as high-performance supercapacitor electrode materials. Inorg Chem Front. 2018;5(5):1218. Xie SL, Gou JX, Liu B, Liu CG. Synthesis of cobalt-doped nickel sulfide nanomaterials with rich edge sites as high-performance supercapacitor electrode materials. Inorg Chem Front. 2018;5(5):1218.
[133]
Zurück zum Zitat Sun HH, Wang JG, Zhang XZ, Li CJ, Liu F, Zhu WJ, Li YY, Shao MH. Nanoconfined construction of MoS2@C/MoS2 core–sheath nanowires for superior rate and durable Li-ion energy storage. ACS Sustain Chem Eng. 2019;7(5):5346. Sun HH, Wang JG, Zhang XZ, Li CJ, Liu F, Zhu WJ, Li YY, Shao MH. Nanoconfined construction of MoS2@C/MoS2 core–sheath nanowires for superior rate and durable Li-ion energy storage. ACS Sustain Chem Eng. 2019;7(5):5346.
[134]
Zurück zum Zitat Ruan YJ, Jiang JJ, Wan HZ, Ji X, Miao L, Peng L, Zhang B, Lv L, Liu J. Rapid self-assembly of porous square rod-like nickel persulfide via a facile solution method for high-performance supercapacitors. J Power Sources. 2016;301:122. Ruan YJ, Jiang JJ, Wan HZ, Ji X, Miao L, Peng L, Zhang B, Lv L, Liu J. Rapid self-assembly of porous square rod-like nickel persulfide via a facile solution method for high-performance supercapacitors. J Power Sources. 2016;301:122.
[135]
Zurück zum Zitat Ni W, Wang B, Cheng JL, Li XD, Guan Q, Gu GF, Huang L. Hierarchical foam of exposed ultrathin nickel nanosheets supported on chainlike Ni-nanowires and the derivative chalcogenide for enhanced pseudocapacitance. Nanoscale. 2014;6(5):2618. Ni W, Wang B, Cheng JL, Li XD, Guan Q, Gu GF, Huang L. Hierarchical foam of exposed ultrathin nickel nanosheets supported on chainlike Ni-nanowires and the derivative chalcogenide for enhanced pseudocapacitance. Nanoscale. 2014;6(5):2618.
[136]
Zurück zum Zitat Huang F, Yan AH, Sui YW, Qi JQ, Meng QK, He YZ. One-step hydrothermal synthesis of Ni3S4@MoS2 nanosheet on carbon fiber paper as a binder-free anode for supercapacitor. J Mater Sci: Mater Electron. 2017;28(17):12747. Huang F, Yan AH, Sui YW, Qi JQ, Meng QK, He YZ. One-step hydrothermal synthesis of Ni3S4@MoS2 nanosheet on carbon fiber paper as a binder-free anode for supercapacitor. J Mater Sci: Mater Electron. 2017;28(17):12747.
[137]
Zurück zum Zitat Qin SC, Yao TH, Guo X, Chen Q, Liu DQ, Liu QM, Li YL, Li JS, He DY. MoS2/Ni3S4 composite nanosheets on interconnected carbon shells as an excellent supercapacitor electrode architecture for long term cycling at high current densities. Appl Surf Sci. 2018;440:741. Qin SC, Yao TH, Guo X, Chen Q, Liu DQ, Liu QM, Li YL, Li JS, He DY. MoS2/Ni3S4 composite nanosheets on interconnected carbon shells as an excellent supercapacitor electrode architecture for long term cycling at high current densities. Appl Surf Sci. 2018;440:741.
[138]
Zurück zum Zitat Gou J. Ni2P/NiS2 composite with phase boundaries as high-performance electrode material for supercapacitor. J Electrochem Soc. 2017;164(13):A2956. Gou J. Ni2P/NiS2 composite with phase boundaries as high-performance electrode material for supercapacitor. J Electrochem Soc. 2017;164(13):A2956.
[139]
Zurück zum Zitat Li XF, Shen JF, Li N, Ye MX. Template-free solvothermal synthesis of NiS2 microspheres on graphene sheets for high-performance supercapacitors. Mater Lett. 2015;139:81. Li XF, Shen JF, Li N, Ye MX. Template-free solvothermal synthesis of NiS2 microspheres on graphene sheets for high-performance supercapacitors. Mater Lett. 2015;139:81.
[140]
Zurück zum Zitat Ji Y, Liu W, Zhang ZQ, Wang XD, Li BX, Wang XF, Liu XY, Liu BB, Feng SH. Heterostructural MnO2@NiS2/Ni(OH)2 materials for high-performance pseudocapacitor electrodes. RSC Adv. 2017;7(70):44289. Ji Y, Liu W, Zhang ZQ, Wang XD, Li BX, Wang XF, Liu XY, Liu BB, Feng SH. Heterostructural MnO2@NiS2/Ni(OH)2 materials for high-performance pseudocapacitor electrodes. RSC Adv. 2017;7(70):44289.
[141]
Zurück zum Zitat Wang M, Wang Y, Dou H, Wei G, Wang X. Enhanced rate capability of nanostructured three-dimensional graphene/Ni3S2 composite for supercapacitor electrode. Ceram Int. 2016;42(8):9858. Wang M, Wang Y, Dou H, Wei G, Wang X. Enhanced rate capability of nanostructured three-dimensional graphene/Ni3S2 composite for supercapacitor electrode. Ceram Int. 2016;42(8):9858.
[142]
Zurück zum Zitat Zou X, Sun Q, Zhang YX, Li GD, Liu YP, Wu YY, Lan Y, Zou XX. Ultrafast surface modification of Ni3S2 nanosheet arrays with Ni-Mn bimetallic hydroxides for high-performance supercapacitors. Sci Rep. 2018;8(1):4478. Zou X, Sun Q, Zhang YX, Li GD, Liu YP, Wu YY, Lan Y, Zou XX. Ultrafast surface modification of Ni3S2 nanosheet arrays with Ni-Mn bimetallic hydroxides for high-performance supercapacitors. Sci Rep. 2018;8(1):4478.
[143]
Zurück zum Zitat Li YH, Shi M, Wang L, Wang MR, Li J, Cui HT. Tailoring synthesis of Ni3S2 nanosheets with high electrochemical performance by electrodeposition. Adv Powder Technol. 2018;29(5):1092. Li YH, Shi M, Wang L, Wang MR, Li J, Cui HT. Tailoring synthesis of Ni3S2 nanosheets with high electrochemical performance by electrodeposition. Adv Powder Technol. 2018;29(5):1092.
[144]
Zurück zum Zitat Chen C, Zhou JJ, Li YL, Li Q, Chen HM, Tao K, Han L. NiCo2S4@Ni3S2 hybrid nanoarray on Ni foam for high-performance supercapacitors. New J Chem. 2019;43(19):7344. Chen C, Zhou JJ, Li YL, Li Q, Chen HM, Tao K, Han L. NiCo2S4@Ni3S2 hybrid nanoarray on Ni foam for high-performance supercapacitors. New J Chem. 2019;43(19):7344.
[145]
Zurück zum Zitat Wen J, Li SZ, Zhou K, Song ZC, Li B, Chen Z, Chen T, Guo YX, Fang GJ. Flexible coaxial-type fiber solid-state asymmetrical supercapacitor based on Ni3S2 nanorod array and pen ink electrodes. J Power Sources. 2016;324:325. Wen J, Li SZ, Zhou K, Song ZC, Li B, Chen Z, Chen T, Guo YX, Fang GJ. Flexible coaxial-type fiber solid-state asymmetrical supercapacitor based on Ni3S2 nanorod array and pen ink electrodes. J Power Sources. 2016;324:325.
[146]
Zurück zum Zitat Xiong X, Zhao B, Ding D, Chen DC, Yang CH, Lei Y, Liu ML. One-step synthesis of architectural Ni3S2 nanosheet-on-nanorods array for use as high-performance electrodes for supercapacitors. NPG Asia Mater. 2016;8(8):e300. Xiong X, Zhao B, Ding D, Chen DC, Yang CH, Lei Y, Liu ML. One-step synthesis of architectural Ni3S2 nanosheet-on-nanorods array for use as high-performance electrodes for supercapacitors. NPG Asia Mater. 2016;8(8):e300.
[147]
Zurück zum Zitat Krishnamoorthy K, Veerasubramani GK, Radhakrishnan S, Kim SJ. One pot hydrothermal growth of hierarchical nanostructured Ni3S2 on Ni foam for supercapacitor application. Chem Eng J. 2014;251:116. Krishnamoorthy K, Veerasubramani GK, Radhakrishnan S, Kim SJ. One pot hydrothermal growth of hierarchical nanostructured Ni3S2 on Ni foam for supercapacitor application. Chem Eng J. 2014;251:116.
[148]
Zurück zum Zitat Chou SW, Lin JY. Cathodic deposition of flaky nickel sulfide nanostructure as an electroactive material for high-performance supercapacitors. J Electrochem Soc. 2013;160(4):D178. Chou SW, Lin JY. Cathodic deposition of flaky nickel sulfide nanostructure as an electroactive material for high-performance supercapacitors. J Electrochem Soc. 2013;160(4):D178.
[149]
Zurück zum Zitat Huo HH, Zhao YQ, Xu CL. 3D Ni3S2 nanosheet arrays supported on Ni foam for high-performance supercapacitor and non-enzymatic glucose detection. J Mater Chem A. 2014;2(36):15111. Huo HH, Zhao YQ, Xu CL. 3D Ni3S2 nanosheet arrays supported on Ni foam for high-performance supercapacitor and non-enzymatic glucose detection. J Mater Chem A. 2014;2(36):15111.
[150]
Zurück zum Zitat Chou SW, Lin JY. Pulse-reversal deposition of nickel sulfide thin film as an efficient cathode material for hybrid supercapacitors. J Electrochem Soc. 2015;162(14):A2762. Chou SW, Lin JY. Pulse-reversal deposition of nickel sulfide thin film as an efficient cathode material for hybrid supercapacitors. J Electrochem Soc. 2015;162(14):A2762.
[151]
Zurück zum Zitat Li TT, Zuo YP, Lei XM, Li N, Liu J, Han HY. Regulating the oxidation degree of nickel foam: a smart strategy to controllably synthesize active Ni3S2 nanorod/nanowire arrays for high-performance supercapacitors. J Mater Chem A. 2016;4(21):8029. Li TT, Zuo YP, Lei XM, Li N, Liu J, Han HY. Regulating the oxidation degree of nickel foam: a smart strategy to controllably synthesize active Ni3S2 nanorod/nanowire arrays for high-performance supercapacitors. J Mater Chem A. 2016;4(21):8029.
[152]
Zurück zum Zitat Dhaiveegan P, Hsu YK, Tsai YH, Hsieh CK, Lin JY. Pulse-reversal deposition of Ni3S2 thin films on carbon fiber cloths for supercapacitors. Surf Coat Technol. 2018;350:1003. Dhaiveegan P, Hsu YK, Tsai YH, Hsieh CK, Lin JY. Pulse-reversal deposition of Ni3S2 thin films on carbon fiber cloths for supercapacitors. Surf Coat Technol. 2018;350:1003.
[153]
Zurück zum Zitat Niu SF, Zheng JH. Mo2S3@Ni3S2 nanowries on nickel foam as a highly-stable supercapacitor material. J Alloys Compd. 2018;737:809. Niu SF, Zheng JH. Mo2S3@Ni3S2 nanowries on nickel foam as a highly-stable supercapacitor material. J Alloys Compd. 2018;737:809.
[154]
Zurück zum Zitat Zhong XW, Zhang LF, Tang J, Chai JW, Xu JC, Cao LJ, Yang MY, Yang M, Kong WG, Wang SJ, Cheng H, Lu ZG, Cheng C, Xu BM, Pan H. Efficient coupling of a hierarchical V2O5@Ni3S2 hybrid nanoarray for pseudocapacitors and hydrogen production. J Mater Chem A. 2017;5(34):17954. Zhong XW, Zhang LF, Tang J, Chai JW, Xu JC, Cao LJ, Yang MY, Yang M, Kong WG, Wang SJ, Cheng H, Lu ZG, Cheng C, Xu BM, Pan H. Efficient coupling of a hierarchical V2O5@Ni3S2 hybrid nanoarray for pseudocapacitors and hydrogen production. J Mater Chem A. 2017;5(34):17954.
[155]
Zurück zum Zitat Han T, Jiang LY, Jiu HF, Chang JX. Hydrothermal synthesis of the clustered network-like Ni3S2-Co9S8 with enhanced electrochemical behavior for supercapacitor electrode. J Phys Chem Solids. 2017;110:1. Han T, Jiang LY, Jiu HF, Chang JX. Hydrothermal synthesis of the clustered network-like Ni3S2-Co9S8 with enhanced electrochemical behavior for supercapacitor electrode. J Phys Chem Solids. 2017;110:1.
[156]
Zurück zum Zitat Zhang JF, Lin JM, Wu JH, Xu R, Lai M, Gong C, Chen X, Zhou P. Excellent electrochemical performance hierarchical Co3O4@Ni3S2 core/shell nanowire arrays for asymmetric supercapacitors. Electrochim Acta. 2016;207:87. Zhang JF, Lin JM, Wu JH, Xu R, Lai M, Gong C, Chen X, Zhou P. Excellent electrochemical performance hierarchical Co3O4@Ni3S2 core/shell nanowire arrays for asymmetric supercapacitors. Electrochim Acta. 2016;207:87.
[157]
Zurück zum Zitat He WD, Wang CG, Li HQ, Deng XL, Xu XJ, Zhai TY. Ultrathin and porous Ni3S2/CoNi2S4 3D-network structure for superhigh energy density asymmetric supercapacitors. Adv Energy Mater. 2017;7(21):1700983. He WD, Wang CG, Li HQ, Deng XL, Xu XJ, Zhai TY. Ultrathin and porous Ni3S2/CoNi2S4 3D-network structure for superhigh energy density asymmetric supercapacitors. Adv Energy Mater. 2017;7(21):1700983.
[158]
Zurück zum Zitat Liu B, Kong DZ, Huang ZX, Mo RW, Wang Y, Han ZJ, Cheng CW, Yang HY. Three-dimensional hierarchical NiCo2O4 nanowire@Ni3S2 nanosheet core/shell arrays for flexible asymmetric supercapacitors. Nanoscale. 2016;8(20):10686. Liu B, Kong DZ, Huang ZX, Mo RW, Wang Y, Han ZJ, Cheng CW, Yang HY. Three-dimensional hierarchical NiCo2O4 nanowire@Ni3S2 nanosheet core/shell arrays for flexible asymmetric supercapacitors. Nanoscale. 2016;8(20):10686.
[159]
Zurück zum Zitat Long B, Balogun MS, Luo L, Qiu WT, Luo Y, Song SQ, Tong YX. Phase boundary derived pseudocapacitance enhanced nickel-based composites for electrochemical energy storage devices. Adv Energy Mater. 2018;8(5):1701681. Long B, Balogun MS, Luo L, Qiu WT, Luo Y, Song SQ, Tong YX. Phase boundary derived pseudocapacitance enhanced nickel-based composites for electrochemical energy storage devices. Adv Energy Mater. 2018;8(5):1701681.
[160]
Zurück zum Zitat Li LQ, Yang HB, Yang J, Zhang LP, Miao JW, Zhang YF, Sun CC, Huang W, Dong XC, Liu B. Hierarchical carbon@Ni3S2@MoS2 double core-shell nanorods for high-performance supercapacitors. J Mater Chem A. 2016;4(4):1319. Li LQ, Yang HB, Yang J, Zhang LP, Miao JW, Zhang YF, Sun CC, Huang W, Dong XC, Liu B. Hierarchical carbon@Ni3S2@MoS2 double core-shell nanorods for high-performance supercapacitors. J Mater Chem A. 2016;4(4):1319.
[161]
Zurück zum Zitat Zhou WJ, Cao XH, Zeng ZY, Shi WH, Zhu YY, Yan QY, Liu H, Wang JY, Zhang H. One-step synthesis of Ni3S2 nanorod@Ni(OH)2 nanosheet core–shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors. Energy Environ Sci. 2013;6(7):2216. Zhou WJ, Cao XH, Zeng ZY, Shi WH, Zhu YY, Yan QY, Liu H, Wang JY, Zhang H. One-step synthesis of Ni3S2 nanorod@Ni(OH)2 nanosheet core–shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors. Energy Environ Sci. 2013;6(7):2216.
[162]
Zurück zum Zitat Ji FZ, Jiang D, Chen XM, Pan XX, Kuang LP, Zhang Y, Alameh K, Ding BF. Simple in situ growth of layered Ni3S2 thin film electrode for the development of high-performance supercapacitors. Appl Surf Sci. 2017;399:432. Ji FZ, Jiang D, Chen XM, Pan XX, Kuang LP, Zhang Y, Alameh K, Ding BF. Simple in situ growth of layered Ni3S2 thin film electrode for the development of high-performance supercapacitors. Appl Surf Sci. 2017;399:432.
[163]
Zurück zum Zitat Cheng LL, Hu YY, Ling L, Qiao DD, Cui SC, Jiao Z. One-step controlled synthesis of hierarchical hollow Ni3S2/NiS@Ni3S4 core/shell submicrospheres for high-performance supercapacitors. Electrochim Acta. 2018;283:664. Cheng LL, Hu YY, Ling L, Qiao DD, Cui SC, Jiao Z. One-step controlled synthesis of hierarchical hollow Ni3S2/NiS@Ni3S4 core/shell submicrospheres for high-performance supercapacitors. Electrochim Acta. 2018;283:664.
[164]
Zurück zum Zitat Zhang Y, Sun WP, Rui XH, Li HT, Guo GL, Madhavi S, Zong Y, Yan QY. One-pot synthesis of tunable crystalline Ni3S4@amorphous MoS2 core/shell nanospheres for high-performance supercapacitors. Small. 2015;11(30):3694. Zhang Y, Sun WP, Rui XH, Li HT, Guo GL, Madhavi S, Zong Y, Yan QY. One-pot synthesis of tunable crystalline Ni3S4@amorphous MoS2 core/shell nanospheres for high-performance supercapacitors. Small. 2015;11(30):3694.
[165]
Zurück zum Zitat Wang LN, Liu JJ, Zhang LL, Dai BS, Xu M, Ji MW, Zhao XS, Cao CH, Zhang JT, Zhu H. Rigid three-dimensional Ni3S4 nanosheet frames: controlled synthesis and their enhanced electrochemical performance. RSC Adv. 2015;5(11):8422. Wang LN, Liu JJ, Zhang LL, Dai BS, Xu M, Ji MW, Zhao XS, Cao CH, Zhang JT, Zhu H. Rigid three-dimensional Ni3S4 nanosheet frames: controlled synthesis and their enhanced electrochemical performance. RSC Adv. 2015;5(11):8422.
[166]
Zurück zum Zitat Huang F, Sui YW, Wei FX, Qi JQ, Meng QK, He YZ. Ni3S4 supported on carbon cloth for high-performance flexible all-solid-state asymmetric supercapacitors. J Mater Sci: Mater Electron. 2018;29(3):2525. Huang F, Sui YW, Wei FX, Qi JQ, Meng QK, He YZ. Ni3S4 supported on carbon cloth for high-performance flexible all-solid-state asymmetric supercapacitors. J Mater Sci: Mater Electron. 2018;29(3):2525.
[167]
Zurück zum Zitat Duan XC, Xu JT, Wei ZX, Ma JM, Guo SJ, Liu HK, Dou SX. Atomically thin transition-metal dichalcogenides for electrocatalysis and energy storage. Small Methods. 2017;1(11):1700156. Duan XC, Xu JT, Wei ZX, Ma JM, Guo SJ, Liu HK, Dou SX. Atomically thin transition-metal dichalcogenides for electrocatalysis and energy storage. Small Methods. 2017;1(11):1700156.
[168]
Zurück zum Zitat Huang JD, Wei ZX, Liao JJ, Ni W, Wang CY, Ma JM. Molybdenum and tungsten chalcogenides for lithium/sodium-ion batteries: beyond MoS2. J Energy Chem. 2019;33:100. Huang JD, Wei ZX, Liao JJ, Ni W, Wang CY, Ma JM. Molybdenum and tungsten chalcogenides for lithium/sodium-ion batteries: beyond MoS2. J Energy Chem. 2019;33:100.
[169]
Zurück zum Zitat Wei ZX, Wang L, Zhuo M, Ni W, Wang HX, Ma JM. Layered tin sulfide and selenide anode materials for Li- and Na-ion batteries. J Mater Chem A. 2018;6(26):12185. Wei ZX, Wang L, Zhuo M, Ni W, Wang HX, Ma JM. Layered tin sulfide and selenide anode materials for Li- and Na-ion batteries. J Mater Chem A. 2018;6(26):12185.
[170]
Zurück zum Zitat Xue XG, Penn RL, Leite ER, Huang F, Lin Z. Crystal growth by oriented attachment: kinetic models and control factors. CrystEngComm. 2014;16(8):1419. Xue XG, Penn RL, Leite ER, Huang F, Lin Z. Crystal growth by oriented attachment: kinetic models and control factors. CrystEngComm. 2014;16(8):1419.
[171]
Zurück zum Zitat Gou JX, Xie SL, Yang ZC, Liu YQ, Chen YJ, Liu YR, Liu CG. A high-performance supercapacitor electrode material based on NiS/Ni3S4 composite. Electrochim Acta. 2017;229:299. Gou JX, Xie SL, Yang ZC, Liu YQ, Chen YJ, Liu YR, Liu CG. A high-performance supercapacitor electrode material based on NiS/Ni3S4 composite. Electrochim Acta. 2017;229:299.
[172]
Zurück zum Zitat Zhang Q, Peng G, Mwizerwa JP, Wan HL, Cai LT, Xu XX, Yao XY. Nickel sulfide anchored carbon nanotubes for all-solid-state lithium batteries with enhanced rate capability and cycling stability. J Mater Chem A. 2018;6(25):12098. Zhang Q, Peng G, Mwizerwa JP, Wan HL, Cai LT, Xu XX, Yao XY. Nickel sulfide anchored carbon nanotubes for all-solid-state lithium batteries with enhanced rate capability and cycling stability. J Mater Chem A. 2018;6(25):12098.
[173]
Zurück zum Zitat Tomiyasu H, Shikata H, Takao K, Asanuma N, Taruta S, Park YY. An aqueous electrolyte of the widest potential window and its superior capability for capacitors. Sci Rep. 2017;7(1):45048. Tomiyasu H, Shikata H, Takao K, Asanuma N, Taruta S, Park YY. An aqueous electrolyte of the widest potential window and its superior capability for capacitors. Sci Rep. 2017;7(1):45048.
[174]
Zurück zum Zitat Baptista JM, Sagu JS, Kg UW, Lobato K. State-of-the-art materials for high power and high energy supercapacitors: performance metrics and obstacles for the transition from lab to industrial scale—a critical approach. Chem Eng J. 2019;374:1153. Baptista JM, Sagu JS, Kg UW, Lobato K. State-of-the-art materials for high power and high energy supercapacitors: performance metrics and obstacles for the transition from lab to industrial scale—a critical approach. Chem Eng J. 2019;374:1153.
Metadaten
Titel
Nickel sulfide-based energy storage materials for high-performance electrochemical capacitors
verfasst von
Ramyakrishna Pothu
Ravi Bolagam
Qing-Hong Wang
Wei Ni
Jin-Feng Cai
Xiao-Xin Peng
Yue-Zhan Feng
Jian-Min Ma
Publikationsdatum
20.07.2020
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 2/2021
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01470-w

Weitere Artikel der Ausgabe 2/2021

Rare Metals 2/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.