Skip to main content
Erschienen in: Rare Metals 2/2021

07.09.2020 | Original Article

Preparation of mulberry-like RuO2 electrode material for supercapacitors

verfasst von: Feng Yu, Le Pang, Hong-Xia Wang

Erschienen in: Rare Metals | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As a newly emerging excellent energy storage device, supercapacitors have been widely studied due to their unique advantages. Electrode material is one of the key components that determine the performance of a supercapacitor. Among the various electrode materials of supercapacitors, RuO2 has attracted great attention in the scientific community due to its high theoretical energy storage capability and excellent stability. However, most RuO2 materials suffer the problem of low specific surface area, causing a much lower actual capacitance value compared to the theoretical performance of the material. In this work, a mulberry-like RuO2 electrode material with large specific surface area (159.4 m2·g−1) was successfully synthesized by a facial hydrothermal method. The electrochemical characterization has shown that the RuO2 possesses a high specific capacitance of 400 F·g−1 at a current density of 0.2 A·g−1 and good capacitance retention rate of 84.7% after 6000 charge/discharge cycles under a current density of 10 A·g−1. The energy densities and power densities of the RuO2-AC supercapacitor vary from 25.0 to 11.7 Wh·kg−1 and 160 to 10,560 W·kg−1 at current density ranging from 0.2 to 10.0 A·g−1, respectively.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Yan L, Li D, Yan T, Chen G, Shi L, An Z, Zhang D. Confining redox electrolytes in functionalized porous carbon with improved energy density for supercapacitors. ACS Appl Mater Interfaces. 2018;10(49):42494. Yan L, Li D, Yan T, Chen G, Shi L, An Z, Zhang D. Confining redox electrolytes in functionalized porous carbon with improved energy density for supercapacitors. ACS Appl Mater Interfaces. 2018;10(49):42494.
[2]
Zurück zum Zitat Yu F, Zhou L, You T, Zhu L, Liu X, Wen Z. Preparation of Zn0.65Ni0.35O composite from metal-organic framework as electrode material for supercapacitor. Mater Lett. 2017;194:185. Yu F, Zhou L, You T, Zhu L, Liu X, Wen Z. Preparation of Zn0.65Ni0.35O composite from metal-organic framework as electrode material for supercapacitor. Mater Lett. 2017;194:185.
[3]
Zurück zum Zitat Wang F, Yang H, Zhang J, Zhang P, Wang G, Zhuang X, Cuniberti G, Feng X. A dual-stimuli-responsive sodium-bromine battery with ultrahigh energy density. Adv Mater. 2018;30:1800028. Wang F, Yang H, Zhang J, Zhang P, Wang G, Zhuang X, Cuniberti G, Feng X. A dual-stimuli-responsive sodium-bromine battery with ultrahigh energy density. Adv Mater. 2018;30:1800028.
[4]
Zurück zum Zitat Yu F, Huang T, Zhang PP, Tao Y, Cui FZ, Xie Q, Yao S, Wang F. Design and synthesis of electrode materials with both battery-type and capacitive charge storage. Energy Storage Mater. 2019;22:235. Yu F, Huang T, Zhang PP, Tao Y, Cui FZ, Xie Q, Yao S, Wang F. Design and synthesis of electrode materials with both battery-type and capacitive charge storage. Energy Storage Mater. 2019;22:235.
[5]
Zurück zum Zitat Sengupta AS, Satpathy S, Mohanty SP, Baral D, Bhattacharyya BK. Supercapacitors outperform conventional batteries [energy and security]. IEEE Consum Electron Mag. 2018;7(5):50. Sengupta AS, Satpathy S, Mohanty SP, Baral D, Bhattacharyya BK. Supercapacitors outperform conventional batteries [energy and security]. IEEE Consum Electron Mag. 2018;7(5):50.
[6]
Zurück zum Zitat Zhang QZ, Zhang D, Miao ZC, Zhang XL, Chou SL. Research progress in MnO2–carbon based supercapacitor electrode materials. Small. 2018;14:1702883. Zhang QZ, Zhang D, Miao ZC, Zhang XL, Chou SL. Research progress in MnO2–carbon based supercapacitor electrode materials. Small. 2018;14:1702883.
[7]
Zurück zum Zitat González A, Goikolea E, Barrena JA, Mysyk R. Review on supercapacitors: technologies and materials. Renew Sust Energy Rev. 2016;58:1189. González A, Goikolea E, Barrena JA, Mysyk R. Review on supercapacitors: technologies and materials. Renew Sust Energy Rev. 2016;58:1189.
[8]
Zurück zum Zitat Wang X, Wang T, Su L, Tesfamichael T, Yu F, Shi Z, Wang H. Synthesis of CoxNi1-xS2 electrode material with a greatly enhanced electrochemical performance for supercapacitors by in situ solid-state transformation. J Alloys Compd. 2019;803:950. Wang X, Wang T, Su L, Tesfamichael T, Yu F, Shi Z, Wang H. Synthesis of CoxNi1-xS2 electrode material with a greatly enhanced electrochemical performance for supercapacitors by in situ solid-state transformation. J Alloys Compd. 2019;803:950.
[9]
Zurück zum Zitat Yu F, Tiong VT, Pang L, Zhou R, Wang X, Waclawik ER, Ostrikov K, Wang HX. Flower-like Cu5Sn2S7/ZnS nanocomposite for high performance supercapacitor. Chin Chem Lett. 2019;30(5):1115. Yu F, Tiong VT, Pang L, Zhou R, Wang X, Waclawik ER, Ostrikov K, Wang HX. Flower-like Cu5Sn2S7/ZnS nanocomposite for high performance supercapacitor. Chin Chem Lett. 2019;30(5):1115.
[10]
Zurück zum Zitat Shin WK, Yoo JH, Kim DW. Surface-modified separators prepared with conductive polymer and aluminum fluoride for lithium-ion batteries. J Power Sources. 2015;279:737. Shin WK, Yoo JH, Kim DW. Surface-modified separators prepared with conductive polymer and aluminum fluoride for lithium-ion batteries. J Power Sources. 2015;279:737.
[11]
Zurück zum Zitat Yan L, Li D, Yan T, Chen G, Shi L, An Z, Zhang D. N, P, S-codoped hierarchically porous carbon spheres with well-Balanced gravimetric/volumetric capacitance for supercapacitors. ACS Sustain Chem Eng. 2018;6(4):5265. Yan L, Li D, Yan T, Chen G, Shi L, An Z, Zhang D. N, P, S-codoped hierarchically porous carbon spheres with well-Balanced gravimetric/volumetric capacitance for supercapacitors. ACS Sustain Chem Eng. 2018;6(4):5265.
[12]
Zurück zum Zitat Zhi M, Xiang C, Li J, Li M, Wu N. Nanostructured carbonmetal oxide composite electrodes for supercapacitors: a review. Nanoscale. 2012;5(1):72. Zhi M, Xiang C, Li J, Li M, Wu N. Nanostructured carbonmetal oxide composite electrodes for supercapacitors: a review. Nanoscale. 2012;5(1):72.
[13]
Zurück zum Zitat Jian X, Liu SY, Gao YQ, Tian W, Jiang ZC, Xiao X, Tang H, Yi L. Carbon-based electrode materials for supercapacitor: progress, challenges and prospective solutions. J Electr Eng. 2016;4:75. Jian X, Liu SY, Gao YQ, Tian W, Jiang ZC, Xiao X, Tang H, Yi L. Carbon-based electrode materials for supercapacitor: progress, challenges and prospective solutions. J Electr Eng. 2016;4:75.
[14]
Zurück zum Zitat Muthusankar E, Ragupathy D. Supercapacitive retention of electrochemically active phosphotungstic acid supported poly(diphenylamine)/MnO2 hybrid electrode. Mater Lett. 2019;241:144. Muthusankar E, Ragupathy D. Supercapacitive retention of electrochemically active phosphotungstic acid supported poly(diphenylamine)/MnO2 hybrid electrode. Mater Lett. 2019;241:144.
[15]
Zurück zum Zitat Bahloul A, Nessark B, Briot E, Groult H, Mauge A, Zaghib K, Julien C. Polypyrrole-covered MnO2 as electrode material for supercapacitor. J Power Sources. 2013;240:267. Bahloul A, Nessark B, Briot E, Groult H, Mauge A, Zaghib K, Julien C. Polypyrrole-covered MnO2 as electrode material for supercapacitor. J Power Sources. 2013;240:267.
[18]
Zurück zum Zitat Song ZX, Liu W, Xiao P, Zhao ZF, Liu GH, Qiu JH. Nano-iron oxide (Fe2O3)/three-dimensional graphene aerogel composite as supercapacitor electrode materials with extremely wide working potential window. Mater Lett. 2015;157:44. Song ZX, Liu W, Xiao P, Zhao ZF, Liu GH, Qiu JH. Nano-iron oxide (Fe2O3)/three-dimensional graphene aerogel composite as supercapacitor electrode materials with extremely wide working potential window. Mater Lett. 2015;157:44.
[20]
Zurück zum Zitat Yao MM, Hu ZH, Xu ZJ, Liu YF, Liu PP, Zhang Q. High-performance electrode materials of hierarchical mesoporous nickel oxide ultrathin nanosheets derived from self-assembled scroll-like alpha-nickel hydroxide. J Power Sources. 2015;273:914. Yao MM, Hu ZH, Xu ZJ, Liu YF, Liu PP, Zhang Q. High-performance electrode materials of hierarchical mesoporous nickel oxide ultrathin nanosheets derived from self-assembled scroll-like alpha-nickel hydroxide. J Power Sources. 2015;273:914.
[21]
Zurück zum Zitat Chan PY, Majid SR. Synthesis and electrochemical characterization of amorphous manganese-nickel oxide as supercapacitor electrode material Ionics. 2018;24(2):539. Chan PY, Majid SR. Synthesis and electrochemical characterization of amorphous manganese-nickel oxide as supercapacitor electrode material Ionics. 2018;24(2):539.
[22]
Zurück zum Zitat Leng X, Liu R, Zou J, Xiong X, He H. One-pot hydrothermal synthesis of graphene–RuO2–TiO2 nanocomposites. Mater Lett. 2016;166:175. Leng X, Liu R, Zou J, Xiong X, He H. One-pot hydrothermal synthesis of graphene–RuO2–TiO2 nanocomposites. Mater Lett. 2016;166:175.
[23]
Zurück zum Zitat Wang T, Chen HC, Yu F, Zhao XS, Wang H. Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Storage Mater. 2019;16:545. Wang T, Chen HC, Yu F, Zhao XS, Wang H. Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Storage Mater. 2019;16:545.
[24]
Zurück zum Zitat Majumdar D, Maiyalagan T, Jiang ZQ. Recent progress in ruthenium oxide-based composites for supercapacitor applications. Chem Electro Chem. 2019;6(17):4343. Majumdar D, Maiyalagan T, Jiang ZQ. Recent progress in ruthenium oxide-based composites for supercapacitor applications. Chem Electro Chem. 2019;6(17):4343.
[25]
Zurück zum Zitat Li Z, Chen G, Deng J, Li D, Yan T, An Z, Shi L, Zhang D. Creating sandwich-like Ti3C2/TiO2/rGO as anode materials with high energy and power density for Li-ion hybrid capacitors. ACS Sustain Chem Eng. 2019;7(18):15394. Li Z, Chen G, Deng J, Li D, Yan T, An Z, Shi L, Zhang D. Creating sandwich-like Ti3C2/TiO2/rGO as anode materials with high energy and power density for Li-ion hybrid capacitors. ACS Sustain Chem Eng. 2019;7(18):15394.
[26]
Zurück zum Zitat Liao K, Wang X, Sun Y, Tang D, Han M, He P, Jiang X, Zhang T, Zhou H. An oxygen cathode with stable full discharge/charge capability based on 2D conducting oxide. Energy Environ Sci. 2015;8(7):1992. Liao K, Wang X, Sun Y, Tang D, Han M, He P, Jiang X, Zhang T, Zhou H. An oxygen cathode with stable full discharge/charge capability based on 2D conducting oxide. Energy Environ Sci. 2015;8(7):1992.
[27]
Zurück zum Zitat Kuratani K, Kiyobayashi T, Kuriyama N. Influence of the mesoporous structure on capacitance of the RuO2 electrode. J Power Sources. 2009;189(2):1284. Kuratani K, Kiyobayashi T, Kuriyama N. Influence of the mesoporous structure on capacitance of the RuO2 electrode. J Power Sources. 2009;189(2):1284.
[28]
Zurück zum Zitat Wang H, Zhu E, Yang J, Zhou P, Sun D, Tang W. Bacterial cellulose nanofiber-supported polyaniline nanocomposites with flake-shaped morphology as supercapacitor electrodes. J Phys Chem C. 2012;116(24):13013. Wang H, Zhu E, Yang J, Zhou P, Sun D, Tang W. Bacterial cellulose nanofiber-supported polyaniline nanocomposites with flake-shaped morphology as supercapacitor electrodes. J Phys Chem C. 2012;116(24):13013.
[29]
Zurück zum Zitat Kolyagin G, Kornienko V. Impregnation of acetylene black electrodes with a polytetrafluoroethylene binder with an aqueous solution and evaluation of its specific double layer capacity. Russ J Electrochem. 2018;54(1):96. Kolyagin G, Kornienko V. Impregnation of acetylene black electrodes with a polytetrafluoroethylene binder with an aqueous solution and evaluation of its specific double layer capacity. Russ J Electrochem. 2018;54(1):96.
[30]
Zurück zum Zitat Gao S, Su Y, Bao L, Li N, Chen L, Zheng Y, Tian J, Li J, Chen S, Wu F. High-performance LiFePO4/C electrode with polytetrafluoroethylene as an aqueous-based binder. J Power Sources. 2015;298:292. Gao S, Su Y, Bao L, Li N, Chen L, Zheng Y, Tian J, Li J, Chen S, Wu F. High-performance LiFePO4/C electrode with polytetrafluoroethylene as an aqueous-based binder. J Power Sources. 2015;298:292.
[31]
Zurück zum Zitat Yan T, Li RY, Zhou L, Ma CY, Li ZJ. Three-dimensional electrode of Ni/Co layered double hydroxides@NiCo2S4@graphene@Ni foam for supercapacitors with outstanding electrochemical performance. Electrochim Acta. 2015;176:1153. Yan T, Li RY, Zhou L, Ma CY, Li ZJ. Three-dimensional electrode of Ni/Co layered double hydroxides@NiCo2S4@graphene@Ni foam for supercapacitors with outstanding electrochemical performance. Electrochim Acta. 2015;176:1153.
[32]
Zurück zum Zitat Dhibar S, Bhattacharya P, Hatui G, Das CK. Transition metal doped poly(aniline-co-pyrrole)/multi-walled carbon nanotubes nanocomposite for high performance supercapacitor electrode materials. J Alloys Compd. 2015;625:64. Dhibar S, Bhattacharya P, Hatui G, Das CK. Transition metal doped poly(aniline-co-pyrrole)/multi-walled carbon nanotubes nanocomposite for high performance supercapacitor electrode materials. J Alloys Compd. 2015;625:64.
[33]
Zurück zum Zitat Bao Q, Hui KN, Hui KS, Wang Y, Hong X. Hydrothermal self-assembly and supercapacitive behaviors of Co(II) ion-modified graphene aerogels in H2SO4 electrolyte. Mater Res Bull. 2014;56:92. Bao Q, Hui KN, Hui KS, Wang Y, Hong X. Hydrothermal self-assembly and supercapacitive behaviors of Co(II) ion-modified graphene aerogels in H2SO4 electrolyte. Mater Res Bull. 2014;56:92.
[34]
Zurück zum Zitat El-Khodary SA, El-Enany GM, El-Okr M, Ibrahim M. Preparation and characterization of microwave reduced graphite oxide for high-performance supercapacitors. Electrochim Acta. 2014;150:269. El-Khodary SA, El-Enany GM, El-Okr M, Ibrahim M. Preparation and characterization of microwave reduced graphite oxide for high-performance supercapacitors. Electrochim Acta. 2014;150:269.
[35]
Zurück zum Zitat Dhilip Kumar R, Karuppuchamy S. Microwave mediated synthesis of nanostructured Co-WO3 and CoWO4 for supercapacitor applications. J Alloys Compd. 2016;674:384. Dhilip Kumar R, Karuppuchamy S. Microwave mediated synthesis of nanostructured Co-WO3 and CoWO4 for supercapacitor applications. J Alloys Compd. 2016;674:384.
[36]
Zurück zum Zitat Kim JH, Choi HJ, Kim HK, Lee SH, Lee YH. A hybrid supercapacitor fabricated with an activated carbon as cathode and an urchin-like TiO2 as anode. Int J Hydrog Energy. 2016;41(31):13549. Kim JH, Choi HJ, Kim HK, Lee SH, Lee YH. A hybrid supercapacitor fabricated with an activated carbon as cathode and an urchin-like TiO2 as anode. Int J Hydrog Energy. 2016;41(31):13549.
[37]
Zurück zum Zitat Choi HJ, Lee SH, Kim JH, Kim HK, Kim JM. Zinc doped H2Ti12O25 anode and activated carbon cathode for hybrid supercapacitor with superior performance. Electrochim Acta. 2017;251:613. Choi HJ, Lee SH, Kim JH, Kim HK, Kim JM. Zinc doped H2Ti12O25 anode and activated carbon cathode for hybrid supercapacitor with superior performance. Electrochim Acta. 2017;251:613.
[38]
Zurück zum Zitat Liu A, Zhang H, Wang G, Zhang J, Zhang S. Sandwich-like NiO/rGO nanoarchitectures for 4 V solid-state asymmetric-supercapacitors with high energy density. Electrochim Acta. 2018;283:1401. Liu A, Zhang H, Wang G, Zhang J, Zhang S. Sandwich-like NiO/rGO nanoarchitectures for 4 V solid-state asymmetric-supercapacitors with high energy density. Electrochim Acta. 2018;283:1401.
[39]
Zurück zum Zitat Naoi K, Ishimoto S, Miyamoto JI, Naoi W. Second generation nanohybrid supercapacitor: evolution of capacitive energy storage devices. Energy Environ Sci. 2012;5(11):9363. Naoi K, Ishimoto S, Miyamoto JI, Naoi W. Second generation nanohybrid supercapacitor: evolution of capacitive energy storage devices. Energy Environ Sci. 2012;5(11):9363.
[40]
Zurück zum Zitat Lee SH, Kim JM. Punched H2Ti12O25 anode and activated carbon cathode for high energy/high power hybrid supercapacitors. Energy. 2018;150:816. Lee SH, Kim JM. Punched H2Ti12O25 anode and activated carbon cathode for high energy/high power hybrid supercapacitors. Energy. 2018;150:816.
[41]
Zurück zum Zitat Que L, Zhang L, Wu C, Zhang Y, Pei C, Nie F. Pt-decorated graphene network materials for supercapacitors with enhanced power density. Carbon. 2019;145:281. Que L, Zhang L, Wu C, Zhang Y, Pei C, Nie F. Pt-decorated graphene network materials for supercapacitors with enhanced power density. Carbon. 2019;145:281.
[42]
Zurück zum Zitat Tian H, Lang X, Nan H, An P, Zhang W, Hu X, Zhang J. Nanosheet-assembled LaMnO3@NiCo2O4 nanoarchitecture growth on Ni foam for high power density supercapacitors. Electrochim Acta. 2019;318:651. Tian H, Lang X, Nan H, An P, Zhang W, Hu X, Zhang J. Nanosheet-assembled LaMnO3@NiCo2O4 nanoarchitecture growth on Ni foam for high power density supercapacitors. Electrochim Acta. 2019;318:651.
[43]
Zurück zum Zitat Lang J, Zhang X, Liu L, Yang B, Yang J, Yan X. Highly enhanced energy density of supercapacitors at extremely low temperatures. J Power Sources. 2019;423:271. Lang J, Zhang X, Liu L, Yang B, Yang J, Yan X. Highly enhanced energy density of supercapacitors at extremely low temperatures. J Power Sources. 2019;423:271.
[44]
Zurück zum Zitat Bharali P, Kuratani K, Takeuchi T, Kiyobayashi T, Kuriyama N. Capacitive behavior of amorphous and crystalline RuO2 composite electrode fabricated by spark plasma sintering technique. J Power Sources. 2011;196(18):7878. Bharali P, Kuratani K, Takeuchi T, Kiyobayashi T, Kuriyama N. Capacitive behavior of amorphous and crystalline RuO2 composite electrode fabricated by spark plasma sintering technique. J Power Sources. 2011;196(18):7878.
[46]
Zurück zum Zitat Xie K, Qin X, Wang X, Wang Y, Tao H, Wu Q, Yang L, Hu Z. Carbon nanocages as supercapacitor electrode materials. Adv Mater. 2012;24(3):347. Xie K, Qin X, Wang X, Wang Y, Tao H, Wu Q, Yang L, Hu Z. Carbon nanocages as supercapacitor electrode materials. Adv Mater. 2012;24(3):347.
[47]
Zurück zum Zitat Thangappan R, Arivanandhan M, Kumar RD, Jayavel R. Facile synthesis of RuO2 nanoparticles anchored on graphene nanosheets for high performance composite electrode for supercapacitor applications. J Phys Chem Solids. 2018;121:339. Thangappan R, Arivanandhan M, Kumar RD, Jayavel R. Facile synthesis of RuO2 nanoparticles anchored on graphene nanosheets for high performance composite electrode for supercapacitor applications. J Phys Chem Solids. 2018;121:339.
[48]
Zurück zum Zitat Han ZJ, Pineda S, Murdock AT, Seo DH, Ostrikov K, Bendavid A. RuO2-coated vertical graphene hybrid electrodes for high-performance solid-state supercapacitors. J Mater Chem A. 2017;5(33):17293. Han ZJ, Pineda S, Murdock AT, Seo DH, Ostrikov K, Bendavid A. RuO2-coated vertical graphene hybrid electrodes for high-performance solid-state supercapacitors. J Mater Chem A. 2017;5(33):17293.
[49]
Zurück zum Zitat Premlatha S, Chandrasekaran M, Bapu GNKR. Preparation of cobalt-RuO2 nanocomposite modified electrode for highly sensitive and selective determination of hydroxylamine. Sens Actuators B Chem. 2017;252:375. Premlatha S, Chandrasekaran M, Bapu GNKR. Preparation of cobalt-RuO2 nanocomposite modified electrode for highly sensitive and selective determination of hydroxylamine. Sens Actuators B Chem. 2017;252:375.
[50]
Zurück zum Zitat Rochefort D, Dabo P, Guay D, Sherwood P. XPS investigations of thermally prepared RuO2 electrodes in reductive conditions. Electrochim Acta. 2003;48(28):4245. Rochefort D, Dabo P, Guay D, Sherwood P. XPS investigations of thermally prepared RuO2 electrodes in reductive conditions. Electrochim Acta. 2003;48(28):4245.
[51]
Zurück zum Zitat Couly C, Alhabeb M, Van Aken KL, Kurra N, Gomes L, Navarro-Suárez AM, Anasori B, Alshareef HN, Gogotsi Y. Asymmetric flexible MXene-reduced graphene oxide micro-supercapacitor. Adv Electron Mater. 2018;4(1):1700339. Couly C, Alhabeb M, Van Aken KL, Kurra N, Gomes L, Navarro-Suárez AM, Anasori B, Alshareef HN, Gogotsi Y. Asymmetric flexible MXene-reduced graphene oxide micro-supercapacitor. Adv Electron Mater. 2018;4(1):1700339.
[52]
Zurück zum Zitat Yu F, Chang Z, Yuan XH, Wang FX, Zhu YS, Fu LJ, Chen YH, Wang HX, Wu YP, Li WS. Ultrathin NiCo2S4@graphene with a core–shell structure as a high performance positive electrode for hybrid supercapacitors. J Mater Chem A. 2018;6(14):5856. Yu F, Chang Z, Yuan XH, Wang FX, Zhu YS, Fu LJ, Chen YH, Wang HX, Wu YP, Li WS. Ultrathin NiCo2S4@graphene with a core–shell structure as a high performance positive electrode for hybrid supercapacitors. J Mater Chem A. 2018;6(14):5856.
[53]
Zurück zum Zitat Wang H, Pilon L. Physical interpretation of cyclic voltammetry for measuring electric double layer capacitances. Electrochim Acta. 2012;64:130. Wang H, Pilon L. Physical interpretation of cyclic voltammetry for measuring electric double layer capacitances. Electrochim Acta. 2012;64:130.
[54]
Zurück zum Zitat Shabeeba P, Thayyil M, Pillai M, Soufeena P, Niveditha C. Electrochemical investigation of activated carbon electrode supercapacitors. Russ J Electrochem. 2018;54(3):302. Shabeeba P, Thayyil M, Pillai M, Soufeena P, Niveditha C. Electrochemical investigation of activated carbon electrode supercapacitors. Russ J Electrochem. 2018;54(3):302.
[55]
Zurück zum Zitat Yu F, Pang L, Wang XX, Waclawik ER, Wang F, Ostrikov KK, Wang HX. Aqueous alkaline–acid hybrid electrolyte for zinc-bromine battery with 3 V voltage window. Energy Stor Mater. 2019;19:56. Yu F, Pang L, Wang XX, Waclawik ER, Wang F, Ostrikov KK, Wang HX. Aqueous alkaline–acid hybrid electrolyte for zinc-bromine battery with 3 V voltage window. Energy Stor Mater. 2019;19:56.
[56]
Zurück zum Zitat Yu F, Wang T, Wen Z, Wang HX. High performance all-solid-state symmetric supercapacitor based on porous carbon made from a metal-organic framework compound. J Power Sources. 2017;364:9. Yu F, Wang T, Wen Z, Wang HX. High performance all-solid-state symmetric supercapacitor based on porous carbon made from a metal-organic framework compound. J Power Sources. 2017;364:9.
[57]
Zurück zum Zitat Bai Y, Liu R, Li E, Li X, Liu Y, Yuan G. Graphene/carbon nanotube/bacterial cellulose assisted supporting for polypyrrole towards flexible supercapacitor applications. J Alloys Compd. 2019;777:524. Bai Y, Liu R, Li E, Li X, Liu Y, Yuan G. Graphene/carbon nanotube/bacterial cellulose assisted supporting for polypyrrole towards flexible supercapacitor applications. J Alloys Compd. 2019;777:524.
[58]
Zurück zum Zitat Sharma M, Sundriyal S, Panwar A, Gaur A. Enhanced supercapacitive performance of Ni0.5Mg0.5Co2O4 flowers and rods as an electrode material for high energy density supercapacitors: rod morphology holds the key. J Alloys Compd. 2018;766:859. Sharma M, Sundriyal S, Panwar A, Gaur A. Enhanced supercapacitive performance of Ni0.5Mg0.5Co2O4 flowers and rods as an electrode material for high energy density supercapacitors: rod morphology holds the key. J Alloys Compd. 2018;766:859.
[59]
Zurück zum Zitat Muniraj VKA, Kamaja CK, Shelke MV. RuO2·nH2O nanoparticles anchored on carbon nano-onions: an efficient electrode for solid state flexible electrochemical supercapacitor. ACS Sustain Chem Eng. 2016;4(5):2528. Muniraj VKA, Kamaja CK, Shelke MV. RuO2·nH2O nanoparticles anchored on carbon nano-onions: an efficient electrode for solid state flexible electrochemical supercapacitor. ACS Sustain Chem Eng. 2016;4(5):2528.
[60]
Zurück zum Zitat Shen BS, Zhang X, Guo RS, Lang JW, Chen JT, Yan XB. Carbon encapsulated RuO2 nano-dots anchoring on graphene as an electrode for asymmetric supercapacitors with ultralong cycle life in an ionic liquid electrolyte. J Mater Chem A. 2016;4(21):8180. Shen BS, Zhang X, Guo RS, Lang JW, Chen JT, Yan XB. Carbon encapsulated RuO2 nano-dots anchoring on graphene as an electrode for asymmetric supercapacitors with ultralong cycle life in an ionic liquid electrolyte. J Mater Chem A. 2016;4(21):8180.
Metadaten
Titel
Preparation of mulberry-like RuO2 electrode material for supercapacitors
verfasst von
Feng Yu
Le Pang
Hong-Xia Wang
Publikationsdatum
07.09.2020
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 2/2021
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01561-8

Weitere Artikel der Ausgabe 2/2021

Rare Metals 2/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.