Skip to main content
Erschienen in: Rare Metals 9/2020

30.06.2020

Hierarchical porous hard carbon enables integral solid electrolyte interphase as robust anode for sodium-ion batteries

verfasst von: Xu-Kun Wang, Juan Shi, Li-Wei Mi, Yun-Pu Zhai, Ji-Yu Zhang, Xiang-Ming Feng, Zi-Jie Wu, Wei-Hua Chen

Erschienen in: Rare Metals | Ausgabe 9/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hard carbon is the most promising anode for sodium-ion battery applications due to the wide availability and low work voltage. However, it often delivers worse electrochemical performance in ester-based electrolytes. Herein, a hierarchically porous loose sponge-like hard carbon with a highly disordered phase, prepared from the biomass of platanus bark, exhibits superior rate performance with a capacity of 165 mAh·g−1 at a high current of 1 A·g−1, and high retention of 71.5% after 2000 cycles in an ester-based electrolyte. The effect of the hierarchically porous loose sponge-like structure on the formation dynamics of solid electrolyte interphase (SEI), and related properties, was studied via cyclic voltammetry (CV), galvanostatic intermittent titration technique (GITT), X-ray photoelectron spectroscope (XPS), Fourier transform infrared spectroscopy (FTIR) and electrochemical impedance spectroscopy (EIS) analysis. These results reveal that the hierarchically porous structure can construct continued connecting channels and accelerate the electrolyte transport, which is beneficial to the reaction kinetics of SEI. Moreover, the mesoporous structure is conducive to good contact between electrolyte and materials and shortens the Na+ diffusion path, which in turn facilitates the charge transfer kinetics in the material.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
[1]
Zurück zum Zitat Vaalma C, Buchholz D, Weil M, Passerini S. A cost and resource analysis of sodium-ion batteries. Nat Rev Mater. 2018;3:18013. Vaalma C, Buchholz D, Weil M, Passerini S. A cost and resource analysis of sodium-ion batteries. Nat Rev Mater. 2018;3:18013.
[2]
Zurück zum Zitat Hwang JY, Myung ST, Sun YK. Sodium-ion batteries: present and future. Chem Soc Rev. 2017;46(12):3529. Hwang JY, Myung ST, Sun YK. Sodium-ion batteries: present and future. Chem Soc Rev. 2017;46(12):3529.
[3]
Zurück zum Zitat Meng QS, Lu YX, Ding FX, Zhang QQ, Chen LQ, Hu YS. Tuning the closed pore structure of hard carbons with the highest Na storage capacity. ACS Energy Lett. 2019;4:2608. Meng QS, Lu YX, Ding FX, Zhang QQ, Chen LQ, Hu YS. Tuning the closed pore structure of hard carbons with the highest Na storage capacity. ACS Energy Lett. 2019;4:2608.
[4]
Zurück zum Zitat Wang YX, Wang YX, Wang YX, Feng XM, Chen WH, Ai XP, Yang HX, Cao YL. Developments and perspectives on emerging high-energy-density sodium-metal batteries. Chem. 2019;5(10):2547. Wang YX, Wang YX, Wang YX, Feng XM, Chen WH, Ai XP, Yang HX, Cao YL. Developments and perspectives on emerging high-energy-density sodium-metal batteries. Chem. 2019;5(10):2547.
[5]
Zurück zum Zitat Chen WH, Zhang XX, Mi LW, Liu CT, Zhang JM, Cui SZ, Feng XM, Cao YL, Shen CY. High-performance flexible freestanding anode with hierarchical 3D carbon-networks/Fe7S8/graphene for applicable sodium-ion batteries. Adv Mater. 2019;31(8):1806664. Chen WH, Zhang XX, Mi LW, Liu CT, Zhang JM, Cui SZ, Feng XM, Cao YL, Shen CY. High-performance flexible freestanding anode with hierarchical 3D carbon-networks/Fe7S8/graphene for applicable sodium-ion batteries. Adv Mater. 2019;31(8):1806664.
[7]
Zurück zum Zitat Zhang JY, Song KM, Mi LW, Liu CT, Feng XM, Zhang JM, Chen WH, Shen CY. Bimetal synergistic effect induced high reversibility of conversion-type Ni@NiCo2S4 as freestanding anode for sodium-ion batteries. J Phys Chem Lett. 2020;11(4):1435. Zhang JY, Song KM, Mi LW, Liu CT, Feng XM, Zhang JM, Chen WH, Shen CY. Bimetal synergistic effect induced high reversibility of conversion-type Ni@NiCo2S4 as freestanding anode for sodium-ion batteries. J Phys Chem Lett. 2020;11(4):1435.
[8]
Zurück zum Zitat Hu YS, Lu YX. 2019 Nobel Prize for the Li-ion batteries and new opportunities and challenges in Na-ion batteries. ACS Energy Lett. 2019;4(11):2689. Hu YS, Lu YX. 2019 Nobel Prize for the Li-ion batteries and new opportunities and challenges in Na-ion batteries. ACS Energy Lett. 2019;4(11):2689.
[9]
Zurück zum Zitat Liu GQ, Li Y, Du YL, Wen L. Synthesis and properties of Na0.8Ni0.4Mn0.6O2 oxide used as cathode material for sodium ion batteries. Rare Met. 2016;36(12):977. Liu GQ, Li Y, Du YL, Wen L. Synthesis and properties of Na0.8Ni0.4Mn0.6O2 oxide used as cathode material for sodium ion batteries. Rare Met. 2016;36(12):977.
[10]
Zurück zum Zitat Luo W, Gaumet JJ, Mai LQ. Antimony-based intermetallic compounds for lithium-ion and sodium-ion batteries: synthesis, construction and application. Rare Met. 2017;36(5):321. Luo W, Gaumet JJ, Mai LQ. Antimony-based intermetallic compounds for lithium-ion and sodium-ion batteries: synthesis, construction and application. Rare Met. 2017;36(5):321.
[11]
Zurück zum Zitat Xie DH, Zhang M, Wu Y, Xiang L, Tang YB. A flexible dual-ion battery based on sodium-ion quasi-solid-state electrolyte with long cycling life. Adv Funct Mater. 2019;30(5):1906770. Xie DH, Zhang M, Wu Y, Xiang L, Tang YB. A flexible dual-ion battery based on sodium-ion quasi-solid-state electrolyte with long cycling life. Adv Funct Mater. 2019;30(5):1906770.
[12]
Zurück zum Zitat Qiu S, Xiao LF, Sushko ML, Han KS, Shao YY, Yan MY, Liang XM, Mai LQ, Feng JW, Cao YL, Ai XP, Yang HX, Liu J. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv Energy Mater. 2017;7(17):1700403. Qiu S, Xiao LF, Sushko ML, Han KS, Shao YY, Yan MY, Liang XM, Mai LQ, Feng JW, Cao YL, Ai XP, Yang HX, Liu J. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv Energy Mater. 2017;7(17):1700403.
[13]
Zurück zum Zitat Bai PX, He YW, Zou XX, Zhao XX, Xiong PX, Xu YH. Elucidation of the sodium-storage mechanism in hard carbons. Adv Energy Mater. 2018;8(15):1703217. Bai PX, He YW, Zou XX, Zhao XX, Xiong PX, Xu YH. Elucidation of the sodium-storage mechanism in hard carbons. Adv Energy Mater. 2018;8(15):1703217.
[14]
Zurück zum Zitat Bommier C, Surta TW, Dolgos M, Ji XL. New mechanistic insights on Na-ion storage in nongraphitizable carbon. Nano Lett. 2015;15(9):5888. Bommier C, Surta TW, Dolgos M, Ji XL. New mechanistic insights on Na-ion storage in nongraphitizable carbon. Nano Lett. 2015;15(9):5888.
[15]
Zurück zum Zitat Bai PX, He YW, Xiong PX, Zhao XX, Xu K, Xu YH. Long cycle life and high rate sodium-ion chemistry for hard carbon anodes. Energy Storage Mater. 2018;13:274. Bai PX, He YW, Xiong PX, Zhao XX, Xu K, Xu YH. Long cycle life and high rate sodium-ion chemistry for hard carbon anodes. Energy Storage Mater. 2018;13:274.
[16]
Zurück zum Zitat Li YQ, Lu YX, Meng QS, Jensen ACS, Zhang QQ, Zhang QH, Tong YX, Qi YR, Gu L, Titirici MM, Hu YS. Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance. Adv Energy Mater. 2019;9(48):1902852. Li YQ, Lu YX, Meng QS, Jensen ACS, Zhang QQ, Zhang QH, Tong YX, Qi YR, Gu L, Titirici MM, Hu YS. Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance. Adv Energy Mater. 2019;9(48):1902852.
[17]
Zurück zum Zitat Cheng DL, Yang LC, Zhu M. High-performance anode materials for Na-ion batteries. Rare Met. 2018;37(3):167. Cheng DL, Yang LC, Zhu M. High-performance anode materials for Na-ion batteries. Rare Met. 2018;37(3):167.
[18]
Zurück zum Zitat Huang YX, Zhao LZ, Li L, Xie M, Wu F, Chen RJ. Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: from scientific research to practical application. Adv Mater. 2019;31(21):1808393. Huang YX, Zhao LZ, Li L, Xie M, Wu F, Chen RJ. Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: from scientific research to practical application. Adv Mater. 2019;31(21):1808393.
[19]
Zurück zum Zitat Soto FA, Yan P, Engelhard MH, Marzouk A, Wang CM, Xu GL, Chen ZH, Amine K, Liu J, Sprenkle VL, El-Mellouhi F, Balbuena PB, Li XL. Tuning the solid electrolyte interphase for selective Li- and Na-ion storage in hard carbon. Adv Mater. 2017;29(18):1606860. Soto FA, Yan P, Engelhard MH, Marzouk A, Wang CM, Xu GL, Chen ZH, Amine K, Liu J, Sprenkle VL, El-Mellouhi F, Balbuena PB, Li XL. Tuning the solid electrolyte interphase for selective Li- and Na-ion storage in hard carbon. Adv Mater. 2017;29(18):1606860.
[20]
Zurück zum Zitat Bommier C, Leonard D, Jian ZL, Stickle WF, Greaney PA, Ji XL. New paradigms on the nature of solid electrolyte interphase formation and capacity fading of hard carbon anodes in Na-ion batteries. Adv Energy Mater. 2016;3(19):1600449. Bommier C, Leonard D, Jian ZL, Stickle WF, Greaney PA, Ji XL. New paradigms on the nature of solid electrolyte interphase formation and capacity fading of hard carbon anodes in Na-ion batteries. Adv Energy Mater. 2016;3(19):1600449.
[21]
Zurück zum Zitat Wang TT, Yang KW, Shi J, Zhou SR, Mi LW, Li HP, Chen WH. Simple synthesis of sandwich-like SnSe2/rGO as high initial coulombic efficiency and high stability anode for sodium-ion batteries. J Energy Chem. 2020;46:71. Wang TT, Yang KW, Shi J, Zhou SR, Mi LW, Li HP, Chen WH. Simple synthesis of sandwich-like SnSe2/rGO as high initial coulombic efficiency and high stability anode for sodium-ion batteries. J Energy Chem. 2020;46:71.
[22]
Zurück zum Zitat Zhang J, Wang DW, Lv W, Qin L, Niu SZ, Zhang SW, Cao TF, Kang FY, Yang QH. Ethers illume sodium-based battery chemistry: uniqueness, surprise, and challenges. Adv Energy Mater. 2018;8(26):1801361. Zhang J, Wang DW, Lv W, Qin L, Niu SZ, Zhang SW, Cao TF, Kang FY, Yang QH. Ethers illume sodium-based battery chemistry: uniqueness, surprise, and challenges. Adv Energy Mater. 2018;8(26):1801361.
[23]
Zurück zum Zitat Li KK, Zhang J, Lin DM, Wang DW, Li BH, Lv W, Sun S, He YB, Kang FY, Yang QH, Zhou LM, Zhang TY. Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes. Nat Commun. 2019;10(1):725. Li KK, Zhang J, Lin DM, Wang DW, Li BH, Lv W, Sun S, He YB, Kang FY, Yang QH, Zhou LM, Zhang TY. Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes. Nat Commun. 2019;10(1):725.
[24]
Zurück zum Zitat Zhang J, Wang DW, Lv W, Zhang SW, Liang QH, Zheng DQ, Kang FY, Yang QH. Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase. Energy Environ Sci. 2017;10(1):370. Zhang J, Wang DW, Lv W, Zhang SW, Liang QH, Zheng DQ, Kang FY, Yang QH. Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase. Energy Environ Sci. 2017;10(1):370.
[25]
Zurück zum Zitat Patra J, Huang HT, Xue WJ, Wang C, Helal AS, Li J, Chang JK. Moderately concentrated electrolyte improves solid-electrolyte interphase and sodium storage performance of hard carbon. Energy Storage Mater. 2019;16:146. Patra J, Huang HT, Xue WJ, Wang C, Helal AS, Li J, Chang JK. Moderately concentrated electrolyte improves solid-electrolyte interphase and sodium storage performance of hard carbon. Energy Storage Mater. 2019;16:146.
[26]
Zurück zum Zitat Pan KH, Lu HY, Zhong FP, Ai XP, Yang HX, Cao YL. Understanding the electrochemical compatibility and reaction mechanism on Na metal and hard carbon anodes of PC-based electrolytes for sodium-ion batteries. ACS Appl Mater Interfaces. 2018;10(46):39651. Pan KH, Lu HY, Zhong FP, Ai XP, Yang HX, Cao YL. Understanding the electrochemical compatibility and reaction mechanism on Na metal and hard carbon anodes of PC-based electrolytes for sodium-ion batteries. ACS Appl Mater Interfaces. 2018;10(46):39651.
[27]
Zurück zum Zitat Hu MX, Yang L, Zhou K, Zhou CS, Huang ZH, Kang FY, Lv RT. Enhanced sodium-ion storage of nitrogen-rich hard carbon by NaCl intercalation. Carbon. 2017;122:680. Hu MX, Yang L, Zhou K, Zhou CS, Huang ZH, Kang FY, Lv RT. Enhanced sodium-ion storage of nitrogen-rich hard carbon by NaCl intercalation. Carbon. 2017;122:680.
[28]
Zurück zum Zitat Zhu YY, Chen MM, Li Q, Yuan C, Wang CY. High-yield humic acid-based hard carbons as promising anode materials for sodium-ion batteries. Carbon. 2017;123:727. Zhu YY, Chen MM, Li Q, Yuan C, Wang CY. High-yield humic acid-based hard carbons as promising anode materials for sodium-ion batteries. Carbon. 2017;123:727.
[29]
Zurück zum Zitat Jiang LL, Sheng LZ, Fan ZJ. Biomass-derived carbon materials with structural diversities and their applications in energy storage. Sci China Mater. 2018;61(2):133. Jiang LL, Sheng LZ, Fan ZJ. Biomass-derived carbon materials with structural diversities and their applications in energy storage. Sci China Mater. 2018;61(2):133.
[30]
Zurück zum Zitat Xiao BW, Rojo T, Li XL. Hard carbon as sodium-ion battery anodes: progress and challenges. Chemsuschem. 2019;12(1):133. Xiao BW, Rojo T, Li XL. Hard carbon as sodium-ion battery anodes: progress and challenges. Chemsuschem. 2019;12(1):133.
[31]
Zurück zum Zitat Xu BL, Qi SH, Li F, Peng XX, Cai JF, Liang JJ, Ma JM. Cotton-derived oxygen-sulfur co-doped hard carbon as advanced anode material for potassium-ion batteries. Chin Chem Lett. 2019;31(1):217. Xu BL, Qi SH, Li F, Peng XX, Cai JF, Liang JJ, Ma JM. Cotton-derived oxygen-sulfur co-doped hard carbon as advanced anode material for potassium-ion batteries. Chin Chem Lett. 2019;31(1):217.
[32]
Zurück zum Zitat Dahbi M, Kiso M, Kubota K, Horiba T, Chafik T, Hida K, Matsuyama T, Komaba S. Synthesis of hard carbon from argan shells for Na-ion batteries. J Mater Chem A. 2017;5(20):9917. Dahbi M, Kiso M, Kubota K, Horiba T, Chafik T, Hida K, Matsuyama T, Komaba S. Synthesis of hard carbon from argan shells for Na-ion batteries. J Mater Chem A. 2017;5(20):9917.
[33]
Zurück zum Zitat Liu P, Li YM, Hu YS, Li H, Chen LQ, Huang XJ. A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries. J Mater Chem A. 2016;4:13046. Liu P, Li YM, Hu YS, Li H, Chen LQ, Huang XJ. A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries. J Mater Chem A. 2016;4:13046.
[34]
Zurück zum Zitat Wahid M, Gawli Y, Puthusseri D, Kumar A, Shelke MV, Ogale S. Nutty carbon: morphology replicating hard carbon from walnut shell for Na ion battery anode. ACS Omega. 2017;2(7):3601. Wahid M, Gawli Y, Puthusseri D, Kumar A, Shelke MV, Ogale S. Nutty carbon: morphology replicating hard carbon from walnut shell for Na ion battery anode. ACS Omega. 2017;2(7):3601.
[35]
Zurück zum Zitat Lin XY, Liu YZ, Tan H, Zhang B. Advanced lignin-derived hard carbon for Na-ion batteries and a comparison with Li and K ion storage. Carbon. 2020;157:316. Lin XY, Liu YZ, Tan H, Zhang B. Advanced lignin-derived hard carbon for Na-ion batteries and a comparison with Li and K ion storage. Carbon. 2020;157:316.
[36]
Zurück zum Zitat Wang C, Xiong Y, Wang HW, Jin CD, Sun QF. Naturally three-dimensional laminated porous carbon network structured short nano-chains bridging nanospheres for energy storage. J Mater Chem A. 2017;5(30):15759. Wang C, Xiong Y, Wang HW, Jin CD, Sun QF. Naturally three-dimensional laminated porous carbon network structured short nano-chains bridging nanospheres for energy storage. J Mater Chem A. 2017;5(30):15759.
[38]
Zurück zum Zitat Hong KL, Qie L, Zeng R, Yi ZQ, Zhang W, Wang D, Yin W, Wu C, Fan QJ, Zhang WX, Huang YH. Biomass derived hard carbon used as a high performance anode material for sodium ion batteries. J Mater Chem A. 2014;2(32):12733. Hong KL, Qie L, Zeng R, Yi ZQ, Zhang W, Wang D, Yin W, Wu C, Fan QJ, Zhang WX, Huang YH. Biomass derived hard carbon used as a high performance anode material for sodium ion batteries. J Mater Chem A. 2014;2(32):12733.
[39]
Zurück zum Zitat Xiao LF, Lu HY, Fang YJ, Sushko ML, Cao YL, Ai XP, Yang HX, Liu J. Low-defect and low-porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode. Adv Energy Mater. 2018;8(20):1703238. Xiao LF, Lu HY, Fang YJ, Sushko ML, Cao YL, Ai XP, Yang HX, Liu J. Low-defect and low-porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode. Adv Energy Mater. 2018;8(20):1703238.
[40]
Zurück zum Zitat Lee SW, Yabuuchi N, Gallant BM, Chen S, Kim BS, Hammond PT, Shao-Horn Y. High-power lithium batteries from functionalized carbon-nanotube electrodes. Nature Nanotech. 2010;5(7):531. Lee SW, Yabuuchi N, Gallant BM, Chen S, Kim BS, Hammond PT, Shao-Horn Y. High-power lithium batteries from functionalized carbon-nanotube electrodes. Nature Nanotech. 2010;5(7):531.
[41]
Zurück zum Zitat Yu ZL, Xin S, You Y, Yu L, Lin Y, Xu DW, Qiao C, Huang ZH, Yang N, Yu SH, Goodenough JB. Ion-catalyzed synthesis of microporous hard carbon embedded with expanded nanographite for enhanced lithium/sodium storage. J Am Chem Soc. 2016;138(45):14915. Yu ZL, Xin S, You Y, Yu L, Lin Y, Xu DW, Qiao C, Huang ZH, Yang N, Yu SH, Goodenough JB. Ion-catalyzed synthesis of microporous hard carbon embedded with expanded nanographite for enhanced lithium/sodium storage. J Am Chem Soc. 2016;138(45):14915.
[42]
Zurück zum Zitat Zhang LP, Feng GH, Li XL, Cui SZ, Ying SW, Feng XM, Mi LW, Chen WH. Synergism of surface group transfer and in situ growth of silica-aerogel induced high-performance modified polyacrylonitrile separator for lithium/sodium-ion batteries. J Membrane Sci. 2019;577:137. Zhang LP, Feng GH, Li XL, Cui SZ, Ying SW, Feng XM, Mi LW, Chen WH. Synergism of surface group transfer and in situ growth of silica-aerogel induced high-performance modified polyacrylonitrile separator for lithium/sodium-ion batteries. J Membrane Sci. 2019;577:137.
[43]
Zurück zum Zitat Zhu ZY, Liang F, Zhou ZR, Zeng XY, Wang D, Dong P, Zhao JB, Sun SG, Zhang YJ, Li X. Expanded biomass-derived hard carbon with ultrastable performance in sodium-ion batteries. J Mater Chem A. 2018;6(4):1513. Zhu ZY, Liang F, Zhou ZR, Zeng XY, Wang D, Dong P, Zhao JB, Sun SG, Zhang YJ, Li X. Expanded biomass-derived hard carbon with ultrastable performance in sodium-ion batteries. J Mater Chem A. 2018;6(4):1513.
[44]
Zurück zum Zitat Dou XW, Hasa I, Saurel D, Jauregui M, Buchholz D, Rojo T, Passerini S. Impact of the acid treatment on lignocellulosic biomass hard carbon for sodium-ion battery anodes. Chemsuschem. 2018;11(18):3276. Dou XW, Hasa I, Saurel D, Jauregui M, Buchholz D, Rojo T, Passerini S. Impact of the acid treatment on lignocellulosic biomass hard carbon for sodium-ion battery anodes. Chemsuschem. 2018;11(18):3276.
[45]
Zurück zum Zitat Sun N, Guan ZRX, Liu YW, Cao YL, Zhu QZ, Liu H, Wang ZX, Zhang P, Xu B. Extended, “adsorption–insertion” model: a new insight into the sodium storage mechanism of hard carbons. Adv Energy Mater. 2019;9(32):1901351. Sun N, Guan ZRX, Liu YW, Cao YL, Zhu QZ, Liu H, Wang ZX, Zhang P, Xu B. Extended, “adsorption–insertion” model: a new insight into the sodium storage mechanism of hard carbons. Adv Energy Mater. 2019;9(32):1901351.
[46]
Zurück zum Zitat Zhang YJ, Li X, Dong P, Wu G, Xiao J, Zeng XY, Zhang YJ, Sun XL. Honeycomb-like hard carbon derived from pine pollen as high-performance anode material for sodium-ion batteries. ACS Appl Mater Interfaces. 2018;10(49):42796. Zhang YJ, Li X, Dong P, Wu G, Xiao J, Zeng XY, Zhang YJ, Sun XL. Honeycomb-like hard carbon derived from pine pollen as high-performance anode material for sodium-ion batteries. ACS Appl Mater Interfaces. 2018;10(49):42796.
[47]
Zurück zum Zitat Zhao X, Ding Y, Xu Q, Yu X, Liu Y, Shen H. Low-temperature growth of hard carbon with graphite crystal for sodium-ion storage with high initial coulombic efficiency: a general method. Adv Energy Mater. 2019;9(10):1803648. Zhao X, Ding Y, Xu Q, Yu X, Liu Y, Shen H. Low-temperature growth of hard carbon with graphite crystal for sodium-ion storage with high initial coulombic efficiency: a general method. Adv Energy Mater. 2019;9(10):1803648.
[48]
Zurück zum Zitat Li Y, Yuan YF, Bai Y, Liu YC, Wang ZH, Li LM, Wu F, Amine K, Wu C, Lu J. Insights into the Na+ storage mechanism of phosphorus-functionalized hard carbon as ultrahigh capacity anodes. Adv Energy Mater. 2018;8(18):1702781. Li Y, Yuan YF, Bai Y, Liu YC, Wang ZH, Li LM, Wu F, Amine K, Wu C, Lu J. Insights into the Na+ storage mechanism of phosphorus-functionalized hard carbon as ultrahigh capacity anodes. Adv Energy Mater. 2018;8(18):1702781.
[49]
Zurück zum Zitat Liu Y, Dai HD, Wu L, Zhou WB, He L, Wang WG, Yan WQ, Huang QH, Fu LJ, Wu YP. A large scalable and low-cost sulfur/nitrogen dual-doped hard carbon as the negative electrode material for high-performance potassium-ion batteries. Adv Energy Mater. 2019;9(34):1901379. Liu Y, Dai HD, Wu L, Zhou WB, He L, Wang WG, Yan WQ, Huang QH, Fu LJ, Wu YP. A large scalable and low-cost sulfur/nitrogen dual-doped hard carbon as the negative electrode material for high-performance potassium-ion batteries. Adv Energy Mater. 2019;9(34):1901379.
[50]
Zurück zum Zitat Wu MG, Liao JQ, Yu LX, Lv RT, Li P, Sun WP, Tan R, Duan XC, Zhang L, Li F, Kim JY, Shin KH, Park HP, Zhang WC, Guo ZP, Wang HT, Tang YB, Gorgolis G, Galiotis C, Ma JM. Roadmap on carbon materials for energy storage and conversion. Chem Asian J. 2020;15(7):995. Wu MG, Liao JQ, Yu LX, Lv RT, Li P, Sun WP, Tan R, Duan XC, Zhang L, Li F, Kim JY, Shin KH, Park HP, Zhang WC, Guo ZP, Wang HT, Tang YB, Gorgolis G, Galiotis C, Ma JM. Roadmap on carbon materials for energy storage and conversion. Chem Asian J. 2020;15(7):995.
[51]
Zurück zum Zitat Hou BH, Wang YY, Ning QL, Li WH, Xi XT, Yang X, Liang HJ, Feng X, Wu XL. Self-Supporting, Flexible, Additive-Free, and Scalable Hard Carbon Paper Self-Interwoven by 1D Microbelts: superb room/low-temperature sodium storage and working mechanism. Adv Mater. 2019;31(40):1903125. Hou BH, Wang YY, Ning QL, Li WH, Xi XT, Yang X, Liang HJ, Feng X, Wu XL. Self-Supporting, Flexible, Additive-Free, and Scalable Hard Carbon Paper Self-Interwoven by 1D Microbelts: superb room/low-temperature sodium storage and working mechanism. Adv Mater. 2019;31(40):1903125.
[52]
Zurück zum Zitat Rangom Y, Gaddam RR, Duignan TT, Zhao XS. Improvement of hard carbon electrode performance by manipulating SEI formation at high charging rates. ACS Appl Mater Interfaces. 2019;1(38):34796. Rangom Y, Gaddam RR, Duignan TT, Zhao XS. Improvement of hard carbon electrode performance by manipulating SEI formation at high charging rates. ACS Appl Mater Interfaces. 2019;1(38):34796.
[53]
Zurück zum Zitat Chen WH, Qi SH, Guan LQ, Liu CT, Cui SZ, Shen CY, Mi LW. Pyrite FeS2 microspheres anchoring on reduced graphene oxide aerogel as an enhanced electrode material for sodium-ion batteries. J Mater Chem A. 2017;5(11):5332. Chen WH, Qi SH, Guan LQ, Liu CT, Cui SZ, Shen CY, Mi LW. Pyrite FeS2 microspheres anchoring on reduced graphene oxide aerogel as an enhanced electrode material for sodium-ion batteries. J Mater Chem A. 2017;5(11):5332.
[54]
Zurück zum Zitat Eshetu GG, Diemant T, Hekmatfar M, Grugeon S, Behm RJ, Laruelle S, Armand M, Passerini S. Impact of the electrolyte salt anion on the solid electrolyte interphase formation in sodium ion batteries. Nano Energy. 2019;55:327. Eshetu GG, Diemant T, Hekmatfar M, Grugeon S, Behm RJ, Laruelle S, Armand M, Passerini S. Impact of the electrolyte salt anion on the solid electrolyte interphase formation in sodium ion batteries. Nano Energy. 2019;55:327.
Metadaten
Titel
Hierarchical porous hard carbon enables integral solid electrolyte interphase as robust anode for sodium-ion batteries
verfasst von
Xu-Kun Wang
Juan Shi
Li-Wei Mi
Yun-Pu Zhai
Ji-Yu Zhang
Xiang-Ming Feng
Zi-Jie Wu
Wei-Hua Chen
Publikationsdatum
30.06.2020
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 9/2020
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01469-3

Weitere Artikel der Ausgabe 9/2020

Rare Metals 9/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.