Skip to main content
Top
Published in: Rare Metals 5/2022

21-01-2022 | Letter

Improved thermoelectric properties of zone-melted p-type bismuth-telluride-based alloys for power generation

Authors: Ren-Shuang Zhai, Tie-Jun Zhu

Published in: Rare Metals | Issue 5/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …
Zone-melted bismuth-telluride-based alloys (ZM-BT) are extensively applied to manufacture commercial thermoelectric power generators (TEG). Optimizing the average figure of merit (zT) during 300–500 K of ZM-BT is favorable for improving the conversion efficiency of common TEGs, and manipulating point defects is the primary approach to reduce their relatively high lattice thermal conductivity (κl) and enhance thermoelectric properties further. Se/Te alloying has been confirmed effective for traditional n-type Bi2Te3 compound, while Se alloying in p-type counterparts is rarely reported. Herein, to further reduce κl, we introduce Se alloying into p-type Bi0.3Sb1.7Te3 to enhance the scattering of high-frequency phonons. Combined with the carrier concentration adjustment via excess Te doping, a high average zT ~ 0.75 between 300 and 500 K was obtained, 22% higher than that of the pristine ingot.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Yang J, Stabler FR. Automotive applications of thermoelectric materials. J Electron Mater. 2009;38(7):1245.CrossRef Yang J, Stabler FR. Automotive applications of thermoelectric materials. J Electron Mater. 2009;38(7):1245.CrossRef
[2]
go back to reference Bell LE. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science. 2008;321(5895):1457.CrossRef Bell LE. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science. 2008;321(5895):1457.CrossRef
[3]
go back to reference Disalvo FJ. Thermoelectric cooling and power Generation. Science. 1999;285(5428):703.CrossRef Disalvo FJ. Thermoelectric cooling and power Generation. Science. 1999;285(5428):703.CrossRef
[4]
go back to reference Kajikawa T. Thermoelectric application for power generation in japan. Adv Sci Technol. 2010;74:83.CrossRef Kajikawa T. Thermoelectric application for power generation in japan. Adv Sci Technol. 2010;74:83.CrossRef
[5]
go back to reference Shinohara Y. The state of the art on thermoelectric devices in japan. Mater Today Proc. 2015;2(2):877.CrossRef Shinohara Y. The state of the art on thermoelectric devices in japan. Mater Today Proc. 2015;2(2):877.CrossRef
[6]
go back to reference Rosi FD, Abeles B, Jensen RV. Materials for thermoelectric refrigeration. J Phys Chem Solids. 1959;10(2):191.CrossRef Rosi FD, Abeles B, Jensen RV. Materials for thermoelectric refrigeration. J Phys Chem Solids. 1959;10(2):191.CrossRef
[7]
go back to reference Yim WM, Fitzke EV, Rosi FD. Thermoelectric properties of Bi2Te3-Sb2Te3-Sb2Se3 pseudo-ternary alloys in the temperature range 77 to 300 K. J Mater Sci. 1966;1(1):52.CrossRef Yim WM, Fitzke EV, Rosi FD. Thermoelectric properties of Bi2Te3-Sb2Te3-Sb2Se3 pseudo-ternary alloys in the temperature range 77 to 300 K. J Mater Sci. 1966;1(1):52.CrossRef
[8]
go back to reference Rosi FD. Thermoelectricity and thermoelectric power generation. Solid State Electron. 1968;11(9):833.CrossRef Rosi FD. Thermoelectricity and thermoelectric power generation. Solid State Electron. 1968;11(9):833.CrossRef
[9]
go back to reference Yim WM, Rosi FD. Compound tellurides and their alloys for peltier cooling-a review. Solid State Electron. 1972;15(10):1121.CrossRef Yim WM, Rosi FD. Compound tellurides and their alloys for peltier cooling-a review. Solid State Electron. 1972;15(10):1121.CrossRef
[10]
go back to reference Zhai RS, Wu YH, Zhu TJ, Zhao XB. Thermoelectric performance of p-type zone-melted Se-doped Bi0.5Sb1.5Te3 alloys. Rare Met. 2018;37(4):308. Zhai RS, Wu YH, Zhu TJ, Zhao XB. Thermoelectric performance of p-type zone-melted Se-doped Bi0.5Sb1.5Te3 alloys. Rare Met. 2018;37(4):308.
[11]
go back to reference Zhai RS, Wu YH, Zhu TJ, Zhao XB. Tunable optimum temperature range of high-performance zone melted bismuth-telluride-based solid solutions. Cryst Growth Des. 2018;18(8):4646.CrossRef Zhai RS, Wu YH, Zhu TJ, Zhao XB. Tunable optimum temperature range of high-performance zone melted bismuth-telluride-based solid solutions. Cryst Growth Des. 2018;18(8):4646.CrossRef
[12]
go back to reference Lostak P, Klichova I, Svanda P, Sramkova J. Characterization of Ag-doped Bi1.5Sb0.5Te3 single crystals. Cryst Res Technol. 1999;34:995.CrossRef Lostak P, Klichova I, Svanda P, Sramkova J. Characterization of Ag-doped Bi1.5Sb0.5Te3 single crystals. Cryst Res Technol. 1999;34:995.CrossRef
[13]
go back to reference Xie D, Xu J, Liu G, Liu Z, Shao H, Tan X, Jiang J, Jiang H. Synergistic optimization of thermoelectric performance in p-type Bi0.48Sb1.52Te3/graphene composite. Energies. 2016; 9(4): 236CrossRef Xie D, Xu J, Liu G, Liu Z, Shao H, Tan X, Jiang J, Jiang H. Synergistic optimization of thermoelectric performance in p-type Bi0.48Sb1.52Te3/graphene composite. Energies. 2016; 9(4): 236CrossRef
[14]
go back to reference Ivanova LD, Granatkina YV, Scherrer H. Effects of growth-charge purity and perfection of Bi0.5Sb1.5Te3 single crystals on their thermoelectric properties. Inorg Mater. 2000; 36: 678.CrossRef Ivanova LD, Granatkina YV, Scherrer H. Effects of growth-charge purity and perfection of Bi0.5Sb1.5Te3 single crystals on their thermoelectric properties. Inorg Mater. 2000; 36: 678.CrossRef
[15]
go back to reference Ivanova LD, Granatkina YV. Thermoelectric properties of Bi2Te3-Sb2Te3 single crystals in the range 100–700 K. Inorg Mater. 1998;36:672.CrossRef Ivanova LD, Granatkina YV. Thermoelectric properties of Bi2Te3-Sb2Te3 single crystals in the range 100–700 K. Inorg Mater. 1998;36:672.CrossRef
[16]
go back to reference Zhou Y, Li X, Bai S, Chen L. Comparison of space- and ground-grown Bi2Se0.21Te2.79 thermoelectric crystals. J Cryst Growth. 2010; 312(6): 775CrossRef Zhou Y, Li X, Bai S, Chen L. Comparison of space- and ground-grown Bi2Se0.21Te2.79 thermoelectric crystals. J Cryst Growth. 2010; 312(6): 775CrossRef
[17]
go back to reference Yang YX, Wu YH, Zhang Q, Cao GS, Zhu TJ, Zhao XB. Enhanced thermoelectric performance of Bi2Se3/TiO2 composite. Rare Met. 2020;39(8):887.CrossRef Yang YX, Wu YH, Zhang Q, Cao GS, Zhu TJ, Zhao XB. Enhanced thermoelectric performance of Bi2Se3/TiO2 composite. Rare Met. 2020;39(8):887.CrossRef
[18]
go back to reference Li JH, Tan Q, Li JF, Liu DW, Li F, Li ZY, Zou MM, Wang K. BiSbTe-based nanocomposites with high ZT: the effect of sic nano dispersion on thermoelectric properties. Adv Funct Mater. 2013;23(35):4317.CrossRef Li JH, Tan Q, Li JF, Liu DW, Li F, Li ZY, Zou MM, Wang K. BiSbTe-based nanocomposites with high ZT: the effect of sic nano dispersion on thermoelectric properties. Adv Funct Mater. 2013;23(35):4317.CrossRef
[19]
go back to reference Poudel B, Qing H, Ma Y, Lan YC, Minnich A, Yu B, Yan X, Wang DZ, Muto A, Vashaee A, Chen XY, Liu JM, Dresselhaus MS, Chen G, Ren ZF. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science. 2008;320(5876):634.CrossRef Poudel B, Qing H, Ma Y, Lan YC, Minnich A, Yu B, Yan X, Wang DZ, Muto A, Vashaee A, Chen XY, Liu JM, Dresselhaus MS, Chen G, Ren ZF. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science. 2008;320(5876):634.CrossRef
[20]
go back to reference Xie W, Tang X, Yan Y, Zhang Q, Tritt TM. Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys. Appl Phys Lett. 2009; 94(10): 102111.CrossRef Xie W, Tang X, Yan Y, Zhang Q, Tritt TM. Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys. Appl Phys Lett. 2009; 94(10): 102111.CrossRef
[21]
go back to reference Zheng Y, Zhang Q, Su XL, Xie HY, Shu SC, Chen TL, Tan GJ, Yan YG, Tang XF, Uher C, Snyder GJ. Mechanically robust BiSbTe alloys with superior thermoelectric performance: a case study of stable hierarchical nanostructured thermoelectric materials. Adv Energy Mater. 2015; 5(5): 102111CrossRef Zheng Y, Zhang Q, Su XL, Xie HY, Shu SC, Chen TL, Tan GJ, Yan YG, Tang XF, Uher C, Snyder GJ. Mechanically robust BiSbTe alloys with superior thermoelectric performance: a case study of stable hierarchical nanostructured thermoelectric materials. Adv Energy Mater. 2015; 5(5): 102111CrossRef
[22]
go back to reference Kim S II, Lee KH, Mun HA, Kim HS, Hwang SW, Roh JW, Yang DJ, Shin WH, Li XS, Lee YH, Snyder GJ, Kim SW. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Sicence. 2015;348(6230):109.CrossRef Kim S II, Lee KH, Mun HA, Kim HS, Hwang SW, Roh JW, Yang DJ, Shin WH, Li XS, Lee YH, Snyder GJ, Kim SW. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Sicence. 2015;348(6230):109.CrossRef
[23]
go back to reference Jiang YZ, Duan XK. Thermoelectric properties of Bi0.5Sb1.4-xNaxIn0.1Te3 alloys. Rare Met. 2019;38(12):1187.CrossRef Jiang YZ, Duan XK. Thermoelectric properties of Bi0.5Sb1.4-xNaxIn0.1Te3 alloys. Rare Met. 2019;38(12):1187.CrossRef
[24]
go back to reference Hao F, Qiu P, Tang Y, Bai S, Xing T, Chu HS, Zhang Q, Lu P, Zhang T, Ren D, Chen J, Shi X, Chen L. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 °C. Energy Environ Sci. 2016;9(10):3120.CrossRef Hao F, Qiu P, Tang Y, Bai S, Xing T, Chu HS, Zhang Q, Lu P, Zhang T, Ren D, Chen J, Shi X, Chen L. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 °C. Energy Environ Sci. 2016;9(10):3120.CrossRef
[25]
go back to reference Hao F, Qiu P, Song QF, Chen HY, Lu P, Ren DD, Shi X, Chen LD. Roles of cu in the enhanced thermoelectric properties in Bi0.5Sb1.5Te3. Materials, 2017, 10(3):251. Hao F, Qiu P, Song QF, Chen HY, Lu P, Ren DD, Shi X, Chen LD. Roles of cu in the enhanced thermoelectric properties in Bi0.5Sb1.5Te3. Materials, 2017, 10(3):251.
[26]
go back to reference Xu Z, Wu H, Zhu T, Fu C, Liu X, Hu L, He J, He J, Zhao X. Attaining high mid-temperature performance in (Bi,Sb)2Te3 thermoelectric materials via synergistic optimization. Npg Asia Mater. 2016; 8(9): e302. Xu Z, Wu H, Zhu T, Fu C, Liu X, Hu L, He J, He J, Zhao X. Attaining high mid-temperature performance in (Bi,Sb)2Te3 thermoelectric materials via synergistic optimization. Npg Asia Mater. 2016; 8(9): e302.
[27]
go back to reference Hu LP, Zhu TJ, Wang YG, Xie HH, Xu ZJ, Zhao XB. Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction. Npg Asia Mater. 2014; 6(2): e88. Hu LP, Zhu TJ, Wang YG, Xie HH, Xu ZJ, Zhao XB. Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction. Npg Asia Mater. 2014; 6(2): e88.
[28]
go back to reference Tang Z, Hu L, Zhu T, Liu X, Zhao X. High performance n-type bismuth telluride based alloys for mid-temperature power generation. J Mater Chem C. 2015;3(40):10597.CrossRef Tang Z, Hu L, Zhu T, Liu X, Zhao X. High performance n-type bismuth telluride based alloys for mid-temperature power generation. J Mater Chem C. 2015;3(40):10597.CrossRef
[29]
go back to reference Hu LP, Liu XH, Xie HH, Shen JJ, Zhu TJ, Zhao XB. Improving thermoelectric properties of n-type bismuth-telluride-based alloys by deformation-induced lattice defects and texture enhancment. Acta Mater. 2012;60(11):4431.CrossRef Hu LP, Liu XH, Xie HH, Shen JJ, Zhu TJ, Zhao XB. Improving thermoelectric properties of n-type bismuth-telluride-based alloys by deformation-induced lattice defects and texture enhancment. Acta Mater. 2012;60(11):4431.CrossRef
[30]
go back to reference Hao F, Xing T, Qiu P, Hu P, Wei TR, Ren DD, Shi X, Chen LD. Enhanced thermoelectric performance in n-type Bi2Te3-based alloys via suppressing intrinsic excitation. Acs Applied Materials & Interfaces, 2018:acsami.8b06533. Hao F, Xing T, Qiu P, Hu P, Wei TR, Ren DD, Shi X, Chen LD. Enhanced thermoelectric performance in n-type Bi2Te3-based alloys via suppressing intrinsic excitation. Acs Applied Materials & Interfaces, 2018:acsami.8b06533.
[31]
go back to reference Wang SY, Tan GJ, Xie WJ, Zheng G, Li H, Yang JH, Tang XF. Enhanced thermoelectric properties of Bi2(Te1-xSex)3-based compounds as n-type legs for low-temperature power generation. J Mater Chem. 2012;22(39):20943.CrossRef Wang SY, Tan GJ, Xie WJ, Zheng G, Li H, Yang JH, Tang XF. Enhanced thermoelectric properties of Bi2(Te1-xSex)3-based compounds as n-type legs for low-temperature power generation. J Mater Chem. 2012;22(39):20943.CrossRef
[32]
go back to reference Jiang J, Chen L, Bai S, Yao Q, Wang Q. Thermoelectric properties of p-type (Bi2Te3)x(Sb2Te3)1–x crystals prepared via zone melting. J Cryst Growth. 2005;277(1–4):258.CrossRef Jiang J, Chen L, Bai S, Yao Q, Wang Q. Thermoelectric properties of p-type (Bi2Te3)x(Sb2Te3)1–x crystals prepared via zone melting. J Cryst Growth. 2005;277(1–4):258.CrossRef
[33]
go back to reference Goldsmid HJ. Recent studies of bismuth telluride and its alloys. J Appl Phys. 1961;32(10):2198.CrossRef Goldsmid HJ. Recent studies of bismuth telluride and its alloys. J Appl Phys. 1961;32(10):2198.CrossRef
[34]
go back to reference Zhu T, Hu L, Zhao X, He J. New insights into intrinsic point defects in V2VI3 thermoelectric materials. Adv Sci. 2016;3(7):1600004.CrossRef Zhu T, Hu L, Zhao X, He J. New insights into intrinsic point defects in V2VI3 thermoelectric materials. Adv Sci. 2016;3(7):1600004.CrossRef
[35]
go back to reference Pan, Y, Li, J. F. Thermoelectric performance enhancement in n-Type Bi2(TeSe)3 alloys owing to nanoscale inhomogeneity combined with a spark plasma-textured microstructure. NPG Asia Mater. 2016; 8(6): e275.CrossRef Pan, Y, Li, J. F. Thermoelectric performance enhancement in n-Type Bi2(TeSe)3 alloys owing to nanoscale inhomogeneity combined with a spark plasma-textured microstructure. NPG Asia Mater. 2016; 8(6): e275.CrossRef
[36]
go back to reference Kim HS, Heinz NA, Gibbs ZM, Tang Y, Kang SD, Snyder GJ. High thermoelectric performance in (Bi0.25Sb0.75)2Te3 due to band convergence and improved by carrier concentration control. Mater Today. 2017; 20(8): 452. Kim HS, Heinz NA, Gibbs ZM, Tang Y, Kang SD, Snyder GJ. High thermoelectric performance in (Bi0.25Sb0.75)2Te3 due to band convergence and improved by carrier concentration control. Mater Today. 2017; 20(8): 452.
Metadata
Title
Improved thermoelectric properties of zone-melted p-type bismuth-telluride-based alloys for power generation
Authors
Ren-Shuang Zhai
Tie-Jun Zhu
Publication date
21-01-2022
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 5/2022
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-021-01901-2

Other articles of this Issue 5/2022

Rare Metals 5/2022 Go to the issue

Premium Partners