Skip to main content
Top
Published in: Wireless Personal Communications 3/2021

14-09-2020

Enhancing the Spectrum Sensing Performance of Cluster-Based Cooperative Cognitive Radio Networks via Sequential Multiple Reporting Channels

Authors: Mohammad Amzad Hossain, Michael Schukat, Enda Barrett

Published in: Wireless Personal Communications | Issue 3/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In cluster-based cooperative cognitive radio networks (CCRNs), spectrum sensing and decision making processes to determine whether the primary user (PU) signal is present or absent in the network are very important and vital issues to the utilisation of the idle spectrum. The reporting time delay is a very important matter to make quick and effective global decisions for the fusion center (FC) in a cluster-based CCRNs. In this paper, we propose the concept of multiple reporting channels (MRC) for cluster-based CCRNs to better utilize the reporting time slot by extending the sensing time of secondary users (SUs). A multiple reporting channels concept is proposed based on frequency division multiple access to enhance the spectrum sensing performance and reduce the reporting time delay of all cluster heads (CHs). In this approach, we assign an individual reporting channel to each cluster for reporting purposes. All the SUs in each cluster sequentially pass their sensing results to the corresponding cluster head (CH) via the assigned single reporting channel, which extends the sensing time duration of SUs. Each CH uses the dedicated reporting channel to forward the cluster decision to the FC that makes a final decision by using the “K-out-of-N” rule to identify the presence of the PU signal. This approach significantly enhances the sensing time for all SUs than the non-sequential as well as minimize the reporting time delay of all CHs than sequential single channel reporting approach. These two features of our proposed approach increase the decision accuracy of the FC more than the conventional approach. Simulation results prove that our proposed approach significantly enhances the sensing accuracy and mitigate the reporting time delay of CH compared to the conventional approach.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Hesham, L., Sultan, A., Nafie, M., & Digham, F. (2012). Distributed spectrum sensing with sequential ordered transmissions to a cognitive fusion center. IEEE Transactions on Signal Processing, 60(5), 2524–2538.MathSciNetCrossRef Hesham, L., Sultan, A., Nafie, M., & Digham, F. (2012). Distributed spectrum sensing with sequential ordered transmissions to a cognitive fusion center. IEEE Transactions on Signal Processing, 60(5), 2524–2538.MathSciNetCrossRef
2.
go back to reference Bera, D., Chakrabarti, I., & Pathak, S. S. (2016). Modelling of cooperative spectrum sensing over rayleigh fading without CSI in cognitive radio networks. Wireless Personal Communications, 86(3), 1281–1297.CrossRef Bera, D., Chakrabarti, I., & Pathak, S. S. (2016). Modelling of cooperative spectrum sensing over rayleigh fading without CSI in cognitive radio networks. Wireless Personal Communications, 86(3), 1281–1297.CrossRef
3.
go back to reference Rammyaa, B., Vishvaksenan, K. S., Poobal, S., & Krishnan, M. M. M. (2019). Coded downlink MIMO MC-CDMA system for cognitive radio network: Performance results. Cluster Computing, 22(4), 8371–8378.CrossRef Rammyaa, B., Vishvaksenan, K. S., Poobal, S., & Krishnan, M. M. M. (2019). Coded downlink MIMO MC-CDMA system for cognitive radio network: Performance results. Cluster Computing, 22(4), 8371–8378.CrossRef
4.
go back to reference Manimegalai, M., & Bhagyaveni, M. A. (2019). A method to enhance the throughput of cognitive radio network using Kullback Leibler divergence with optimized sensing time (KLDOST). Wireless Personal Communications, 109(3), 1645–1660.CrossRef Manimegalai, M., & Bhagyaveni, M. A. (2019). A method to enhance the throughput of cognitive radio network using Kullback Leibler divergence with optimized sensing time (KLDOST). Wireless Personal Communications, 109(3), 1645–1660.CrossRef
5.
go back to reference Ali, A., & Hamouda, W. (2016). Advances on spectrum sensing for cognitive radio networks: Theory and applications. IEEE Communications Surveys & Tutorials, 19(2), 1277–1304.CrossRef Ali, A., & Hamouda, W. (2016). Advances on spectrum sensing for cognitive radio networks: Theory and applications. IEEE Communications Surveys & Tutorials, 19(2), 1277–1304.CrossRef
6.
go back to reference Surampudi, A., & Kalimuthu, K. (2016). An adaptive decision threshold scheme for the matched filter method of spectrum sensing in cognitive radio using artificial neural networks. In 2016 1st India international conference on information processing (IICIP) (pp. 1–5). IEEE. Surampudi, A., & Kalimuthu, K. (2016). An adaptive decision threshold scheme for the matched filter method of spectrum sensing in cognitive radio using artificial neural networks. In 2016 1st India international conference on information processing (IICIP) (pp. 1–5). IEEE.
7.
go back to reference Chatterjee, S., Banerjee, A., Acharya, T., & Maity, S. P. (2014). Fuzzy c-means clustering in energy detection for cooperative spectrum sensing in cognitive radio system. In International workshop on multiple access communications (pp. 84–95). Cham: Springer. Chatterjee, S., Banerjee, A., Acharya, T., & Maity, S. P. (2014). Fuzzy c-means clustering in energy detection for cooperative spectrum sensing in cognitive radio system. In International workshop on multiple access communications (pp. 84–95). Cham: Springer.
8.
go back to reference Gato, L. M., Martínez, L., & Torres, J. (2015). Blind spectrum sensing based on cyclostationary feature detection. InIberoamerican congress on pattern recognition (pp. 535–542). Cham: Springer. Gato, L. M., Martínez, L., & Torres, J. (2015). Blind spectrum sensing based on cyclostationary feature detection. InIberoamerican congress on pattern recognition (pp. 535–542). Cham: Springer.
9.
go back to reference Kortun, A., Ratnarajah, T., Sellathurai, M., Zhong, C., & Papadias, C. B. (2010). On the performance of eigenvalue-based cooperative spectrum sensing for cognitive radio. IEEE Journal of Selected Topics in Signal Processing, 5(1), 49–55.CrossRef Kortun, A., Ratnarajah, T., Sellathurai, M., Zhong, C., & Papadias, C. B. (2010). On the performance of eigenvalue-based cooperative spectrum sensing for cognitive radio. IEEE Journal of Selected Topics in Signal Processing, 5(1), 49–55.CrossRef
10.
go back to reference Awe, O. P., & Lambotharan, S. (2015). Cooperative spectrum sensing in cognitive radio networks using multi-class support vector machine algorithms. In 2015 9th international conference on signal processing and communication systems (ICSPCS) (pp. 1–7). IEEE. Awe, O. P., & Lambotharan, S. (2015). Cooperative spectrum sensing in cognitive radio networks using multi-class support vector machine algorithms. In 2015 9th international conference on signal processing and communication systems (ICSPCS) (pp. 1–7). IEEE.
11.
go back to reference Kang, B. J. (2009). Spectrum sensing issues in cognitive radio networks. In 2009 9th international symposium on communications and information technology (pp. 824–828). IEEE. Kang, B. J. (2009). Spectrum sensing issues in cognitive radio networks. In 2009 9th international symposium on communications and information technology (pp. 824–828). IEEE.
12.
go back to reference Sun, M., Zhao, C., Yan, S., & Li, B. (2016). A novel spectrum sensing for cognitive radio networks with noise uncertainty. IEEE Transactions on Vehicular Technology, 66(5), 4424–4429. Sun, M., Zhao, C., Yan, S., & Li, B. (2016). A novel spectrum sensing for cognitive radio networks with noise uncertainty. IEEE Transactions on Vehicular Technology, 66(5), 4424–4429.
13.
go back to reference Mahendru, G., Shukla, A., & Banerjee, P. (2020). A novel mathematical model for energy detection based spectrum sensing in cognitive radio networks. Wireless Personal Communications, 110(3), 1237–1249.CrossRef Mahendru, G., Shukla, A., & Banerjee, P. (2020). A novel mathematical model for energy detection based spectrum sensing in cognitive radio networks. Wireless Personal Communications, 110(3), 1237–1249.CrossRef
14.
go back to reference Miah, M. S., Schukat, M., & Barrett, E. (2018). An enhanced sum rate in the cluster based cognitive radio relay network using the sequential approach for the future Internet of Things. Human-centric Computing and Information Sciences, 8(1), 16.CrossRef Miah, M. S., Schukat, M., & Barrett, E. (2018). An enhanced sum rate in the cluster based cognitive radio relay network using the sequential approach for the future Internet of Things. Human-centric Computing and Information Sciences, 8(1), 16.CrossRef
15.
go back to reference Miah, M. S., Schukat, M., & Barrett, E. (2017). Maximization of sum rate in AF-cognitive radio networks using superposition approach and n-out-of-k rule. In 2017 28th Irish signals and systems conference (ISSC) (pp. 1–6). IEEE. Miah, M. S., Schukat, M., & Barrett, E. (2017). Maximization of sum rate in AF-cognitive radio networks using superposition approach and n-out-of-k rule. In 2017 28th Irish signals and systems conference (ISSC) (pp. 1–6). IEEE.
16.
go back to reference Yadav, K., Roy, S. D., & Kundu, S. (2020). Defense against spectrum sensing data falsification attacker in cognitive radio networks. Wireless Personal Communications, 112, 849–862.CrossRef Yadav, K., Roy, S. D., & Kundu, S. (2020). Defense against spectrum sensing data falsification attacker in cognitive radio networks. Wireless Personal Communications, 112, 849–862.CrossRef
17.
go back to reference Nguyen-Thanh, N., & Koo, I. (2013). A cluster-based selective cooperative spectrum sensing scheme in cognitive radio. EURASIP Journal on Wireless Communications and Networking, 2013(1), 1–9.CrossRef Nguyen-Thanh, N., & Koo, I. (2013). A cluster-based selective cooperative spectrum sensing scheme in cognitive radio. EURASIP Journal on Wireless Communications and Networking, 2013(1), 1–9.CrossRef
18.
go back to reference Suseela, B., & Sivakumar, D. (2015). Non-cooperative spectrum sensing techniques in cognitive radio-a survey. In 2015 IEEE technological innovation in ICT for agriculture and rural development (TIAR) (pp. 127–133). IEEE. Suseela, B., & Sivakumar, D. (2015). Non-cooperative spectrum sensing techniques in cognitive radio-a survey. In 2015 IEEE technological innovation in ICT for agriculture and rural development (TIAR) (pp. 127–133). IEEE.
19.
go back to reference Ahsant, B., & Viswanathan, R. (2013). A review of cooperative spectrum sensing in cognitive radios. In In advancement in sensing technology (pp. 69–80). Berlin: Springer. Ahsant, B., & Viswanathan, R. (2013). A review of cooperative spectrum sensing in cognitive radios. In In advancement in sensing technology (pp. 69–80). Berlin: Springer.
20.
go back to reference Bhowmick, A., Nallagonda, S., Roy, S. D., & Kundu, S. (2015). Cooperative spectrum sensing with double threshold and censoring in Rayleigh faded cognitive radio network. Wireless Personal Communications, 84(1), 251–271.CrossRef Bhowmick, A., Nallagonda, S., Roy, S. D., & Kundu, S. (2015). Cooperative spectrum sensing with double threshold and censoring in Rayleigh faded cognitive radio network. Wireless Personal Communications, 84(1), 251–271.CrossRef
21.
go back to reference Alhamad, R., & Boujemaa, H. (2019). Multihop multibranch spectrum sensing for cognitive radio networks. Arabian Journal for Science and Engineering, 44(8), 6711–6726.CrossRef Alhamad, R., & Boujemaa, H. (2019). Multihop multibranch spectrum sensing for cognitive radio networks. Arabian Journal for Science and Engineering, 44(8), 6711–6726.CrossRef
22.
go back to reference Arjoune, Y., & Kaabouch, N. (2019). A comprehensive survey on spectrum sensing in cognitive radio networks: Recent advances, new challenges, and future research directions. Sensors, 19(1), 126.CrossRef Arjoune, Y., & Kaabouch, N. (2019). A comprehensive survey on spectrum sensing in cognitive radio networks: Recent advances, new challenges, and future research directions. Sensors, 19(1), 126.CrossRef
23.
go back to reference Prasad, R. G., & Venkatesan, P. (2019). Group based multi-channel synchronized spectrum sensing in cognitive radio network with 5G. Mobile Networks and Applications, 24(2), 327–339.CrossRef Prasad, R. G., & Venkatesan, P. (2019). Group based multi-channel synchronized spectrum sensing in cognitive radio network with 5G. Mobile Networks and Applications, 24(2), 327–339.CrossRef
24.
go back to reference Wan, R., Ding, L., Xiong, N., Shu, W., & Yang, L. (2019). Dynamic dual threshold cooperative spectrum sensing for cognitive radio under noise power uncertainty. Human-centric Computing and Information Sciences, 9(1), 22.CrossRef Wan, R., Ding, L., Xiong, N., Shu, W., & Yang, L. (2019). Dynamic dual threshold cooperative spectrum sensing for cognitive radio under noise power uncertainty. Human-centric Computing and Information Sciences, 9(1), 22.CrossRef
25.
go back to reference Shah, H. A., & Koo, I. (2018). Reliable machine learning based spectrum sensing in cognitive radio networks. Wireless Communications and Mobile Computing. Shah, H. A., & Koo, I. (2018). Reliable machine learning based spectrum sensing in cognitive radio networks. Wireless Communications and Mobile Computing.
26.
go back to reference Yang, K., Huang, Z., Wang, X., & Li, X. (2019). A blind spectrum sensing method based on deep learning. Sensors, 19(10), 2270.CrossRef Yang, K., Huang, Z., Wang, X., & Li, X. (2019). A blind spectrum sensing method based on deep learning. Sensors, 19(10), 2270.CrossRef
27.
go back to reference Fu, S., Zhang, G., & Shang, T. (2019). Cross-layer parallel cooperative spectrum sensing for heterogeneous channels based on iterative KM algorithm. Cluster Computing, 22(2), 2629–2637.CrossRef Fu, S., Zhang, G., & Shang, T. (2019). Cross-layer parallel cooperative spectrum sensing for heterogeneous channels based on iterative KM algorithm. Cluster Computing, 22(2), 2629–2637.CrossRef
28.
go back to reference Hoang, D. C., Kumar, R., & Panda, S. K. (2013). Realisation of a cluster-based protocol using fuzzy C-means algorithm for wireless sensor networks. IET Wireless Sensor Systems, 3(3), 163–171.CrossRef Hoang, D. C., Kumar, R., & Panda, S. K. (2013). Realisation of a cluster-based protocol using fuzzy C-means algorithm for wireless sensor networks. IET Wireless Sensor Systems, 3(3), 163–171.CrossRef
29.
go back to reference Yau, K. L. A., Ramli, N., Hashim, W., & Mohamad, H. (2014). Clustering algorithms for cognitive radio networks: A survey. Journal of network and computer applications, 45, 79–95.CrossRef Yau, K. L. A., Ramli, N., Hashim, W., & Mohamad, H. (2014). Clustering algorithms for cognitive radio networks: A survey. Journal of network and computer applications, 45, 79–95.CrossRef
30.
go back to reference Alam, M. S., Rahman, M. M., Hossain, M. A., Islam, M. K., Ahmed, K. M., Ahmed, K. T., et al. (2019). Automatic human brain tumor detection in MRI image using template-based k means and improved fuzzy C means clustering algorithm. Big Data and Cognitive Computing, 3(2), 27.CrossRef Alam, M. S., Rahman, M. M., Hossain, M. A., Islam, M. K., Ahmed, K. M., Ahmed, K. T., et al. (2019). Automatic human brain tumor detection in MRI image using template-based k means and improved fuzzy C means clustering algorithm. Big Data and Cognitive Computing, 3(2), 27.CrossRef
31.
go back to reference Maity, S. P., Chatterjee, S., & Acharya, T. (2016). On optimal fuzzy c-means clustering for energy efficient cooperative spectrum sensing in cognitive radio networks. Digital Signal Processing, 49, 104–115.CrossRef Maity, S. P., Chatterjee, S., & Acharya, T. (2016). On optimal fuzzy c-means clustering for energy efficient cooperative spectrum sensing in cognitive radio networks. Digital Signal Processing, 49, 104–115.CrossRef
32.
go back to reference Bhatti, D. M. S., Saeed, N., & Nam, H. (2016). Fuzzy c-means clustering and energy efficient cluster head selection for cooperative sensor network. Sensors, 16(9), 1459.CrossRef Bhatti, D. M. S., Saeed, N., & Nam, H. (2016). Fuzzy c-means clustering and energy efficient cluster head selection for cooperative sensor network. Sensors, 16(9), 1459.CrossRef
33.
go back to reference Hoang, D. C., Kumar, R., & Panda, S. K. (2010). Fuzzy C-means clustering protocol for wireless sensor networks. In 2010 IEEE international symposium on industrial electronics (pp. 3477–3482). IEEE. Hoang, D. C., Kumar, R., & Panda, S. K. (2010). Fuzzy C-means clustering protocol for wireless sensor networks. In 2010 IEEE international symposium on industrial electronics (pp. 3477–3482). IEEE.
34.
go back to reference Singh, A., Bhatnagar, M. R., & Mallik, R. K. (2011). Cooperative spectrum sensing in multiple antenna based cognitive radio network using an improved energy detector. IEEE Communications Letters, 16(1), 64–67.CrossRef Singh, A., Bhatnagar, M. R., & Mallik, R. K. (2011). Cooperative spectrum sensing in multiple antenna based cognitive radio network using an improved energy detector. IEEE Communications Letters, 16(1), 64–67.CrossRef
35.
go back to reference Shrestha, R., Swargam, V., & Murty, M. S. (2016). Cognitive-radio wireless-sensor based on energy detection with improved accuracy: Performance and hardware perspectives. In 2016 20th international symposium on VLSI design and test (VDAT) (pp. 1–6). IEEE. Shrestha, R., Swargam, V., & Murty, M. S. (2016). Cognitive-radio wireless-sensor based on energy detection with improved accuracy: Performance and hardware perspectives. In 2016 20th international symposium on VLSI design and test (VDAT) (pp. 1–6). IEEE.
36.
go back to reference Zeng, Y., Yetis, C. M., Gunawan, E., Guan, Y. L., & Zhang, R. (2013). Improper Gaussian signaling for the K-user SISO interference channel. In 2013 IEEE international conference on communications (ICC) (pp. 5219–5223). IEEE. Zeng, Y., Yetis, C. M., Gunawan, E., Guan, Y. L., & Zhang, R. (2013). Improper Gaussian signaling for the K-user SISO interference channel. In 2013 IEEE international conference on communications (ICC) (pp. 5219–5223). IEEE.
37.
go back to reference Smadi, M. A., Al-Haija, Q. A., & Itradat, A. H. (2014). Exact error rate analysis of MIMO-MRC system under cochannel interference and imperfect channel state Information. Wireless Personal Communications, 79(2), 847–859.CrossRef Smadi, M. A., Al-Haija, Q. A., & Itradat, A. H. (2014). Exact error rate analysis of MIMO-MRC system under cochannel interference and imperfect channel state Information. Wireless Personal Communications, 79(2), 847–859.CrossRef
38.
go back to reference Ghosh, S. K., Mehedi, J., & Samal, U. C. (2019). Sensing performance of energy detector in cognitive radio networks. International Journal of Information Technology, 11(4), 773–778.CrossRef Ghosh, S. K., Mehedi, J., & Samal, U. C. (2019). Sensing performance of energy detector in cognitive radio networks. International Journal of Information Technology, 11(4), 773–778.CrossRef
40.
go back to reference Ling, X., Wu, B., Wen, H., Ho, P. H., Bao, Z., & Pan, L. (2012). Adaptive threshold control for energy detection based spectrum sensing in cognitive radios. IEEE Wireless Communications Letters, 1(5), 448–451.CrossRef Ling, X., Wu, B., Wen, H., Ho, P. H., Bao, Z., & Pan, L. (2012). Adaptive threshold control for energy detection based spectrum sensing in cognitive radios. IEEE Wireless Communications Letters, 1(5), 448–451.CrossRef
41.
go back to reference Plata, D. M. M., & Reátiga, Á. G. A. (2012). Evaluation of energy detection for spectrum sensing based on the dynamic selection of detection-threshold. Procedia Engineering, 35, 135–143.CrossRef Plata, D. M. M., & Reátiga, Á. G. A. (2012). Evaluation of energy detection for spectrum sensing based on the dynamic selection of detection-threshold. Procedia Engineering, 35, 135–143.CrossRef
42.
go back to reference Amin, M. R., Rahman, M. M., Hossain, M. A., Islam, M. K., Ahmed, K. M., Singh, B. C., et al. (2018). Unscented kalman filter based on spectrum sensing in a cognitive radio network using an adaptive fuzzy system. Big Data and Cognitive Computing, 2(4), 39.CrossRef Amin, M. R., Rahman, M. M., Hossain, M. A., Islam, M. K., Ahmed, K. M., Singh, B. C., et al. (2018). Unscented kalman filter based on spectrum sensing in a cognitive radio network using an adaptive fuzzy system. Big Data and Cognitive Computing, 2(4), 39.CrossRef
43.
go back to reference Miah, M. S., & Rahman, M. M. (2014). An eigenvalue and superposition approach based cooperative spectrum sensing in cognitive radio networks. In: 2014 international conference on electrical engineering and information & communication technology (pp. 1–7). IEEE. Miah, M. S., & Rahman, M. M. (2014). An eigenvalue and superposition approach based cooperative spectrum sensing in cognitive radio networks. In: 2014 international conference on electrical engineering and information & communication technology (pp. 1–7). IEEE.
44.
go back to reference Anaand, P. P., & Charan, C. (2016). Two stage spectrum sensing for cognitive radio networks using ED and AIC under noise uncertainty. In 2016 international conference on recent trends in information technology (ICRTIT) (pp. 1–6). IEEE. Anaand, P. P., & Charan, C. (2016). Two stage spectrum sensing for cognitive radio networks using ED and AIC under noise uncertainty. In 2016 international conference on recent trends in information technology (ICRTIT) (pp. 1–6). IEEE.
45.
go back to reference Hossain, M. A., Schukat, M., & Barrett, E. (2019). Enhancing the spectrum utilization in cellular mobile networks by using cognitive radio technology. In:2019 30th Irish signals and systems conference (ISSC) (pp. 1–6). IEEE. Hossain, M. A., Schukat, M., & Barrett, E. (2019). Enhancing the spectrum utilization in cellular mobile networks by using cognitive radio technology. In:2019 30th Irish signals and systems conference (ISSC) (pp. 1–6). IEEE.
46.
go back to reference Arjoune, Y., El Mrabet, Z., El Ghazi, H., & Tamtaoui, A. (2018). Spectrum sensing: Enhanced energy detection technique based on noise measurement. In: 2018 IEEE 8th annual computing and communication workshop and conference (CCWC) (pp. 828–834). IEEE. Arjoune, Y., El Mrabet, Z., El Ghazi, H., & Tamtaoui, A. (2018). Spectrum sensing: Enhanced energy detection technique based on noise measurement. In: 2018 IEEE 8th annual computing and communication workshop and conference (CCWC) (pp. 828–834). IEEE.
47.
go back to reference Bilim, M. (2019). Some New Results for Integrals Involving Gaussian Q-function and Their Applications to Fading Channels. Wireless Personal Communications, 109(2), 1463–1469.CrossRef Bilim, M. (2019). Some New Results for Integrals Involving Gaussian Q-function and Their Applications to Fading Channels. Wireless Personal Communications, 109(2), 1463–1469.CrossRef
48.
go back to reference Sarker, M. (2015). Energy detector based spectrum sensing by adaptive threshold for low SNR in CR networks. In: 2015 24th wireless and optical communication conference (WOCC) (pp. 118–122). IEEE. Sarker, M. (2015). Energy detector based spectrum sensing by adaptive threshold for low SNR in CR networks. In: 2015 24th wireless and optical communication conference (WOCC) (pp. 118–122). IEEE.
49.
go back to reference Patil, R. B., Kulat, K. D., & Gandhi, A. S. (2018). SDR based energy detection spectrum sensing in cognitive radio for real time video transmission. Modelling and Simulation in Engineering. Patil, R. B., Kulat, K. D., & Gandhi, A. S. (2018). SDR based energy detection spectrum sensing in cognitive radio for real time video transmission. Modelling and Simulation in Engineering.
50.
go back to reference Chilakala, S., & Ram, M. S. S. (2018). Optimization of cooperative secondary users in cognitive radio networks. Engineering Science and Technology, an International Journal, 21(5), 815–821.CrossRef Chilakala, S., & Ram, M. S. S. (2018). Optimization of cooperative secondary users in cognitive radio networks. Engineering Science and Technology, an International Journal, 21(5), 815–821.CrossRef
51.
go back to reference Althunibat, S., Di Renzo, M., & Granelli, F. (2013). Optimizing the K-out-of-N rule for cooperative spectrum sensing in cognitive radio networks. In 2013 IEEE global communications conference (GLOBECOM) (pp. 1607–1611). IEEE. Althunibat, S., Di Renzo, M., & Granelli, F. (2013). Optimizing the K-out-of-N rule for cooperative spectrum sensing in cognitive radio networks. In 2013 IEEE global communications conference (GLOBECOM) (pp. 1607–1611). IEEE.
52.
go back to reference Hu, H., Zhang, H., & Yu, H. (2014). Throughput-delay trade-off for cognitive radio networks: A convex optimization perspective. In abstract and applied analysis (Vol. 2014). Hindawi. Hu, H., Zhang, H., & Yu, H. (2014). Throughput-delay trade-off for cognitive radio networks: A convex optimization perspective. In abstract and applied analysis (Vol. 2014). Hindawi.
53.
go back to reference Sezginer, S., & Sari, H. (2009). Full frequency reuse in OFDMA-based wireless networks with sectored cells. In 2009 IEEE wireless communications and networking conference (pp. 1–4). IEEE. Sezginer, S., & Sari, H. (2009). Full frequency reuse in OFDMA-based wireless networks with sectored cells. In 2009 IEEE wireless communications and networking conference (pp. 1–4). IEEE.
54.
go back to reference Ahmed, S., Hossain, M. A., & Chowdhury, M. Z. (2014). On demand cell sectoring based fractional frequency reuse in wireless networks. In 2014 9th international forum on strategic technology (IFOST) (pp. 148–151). IEEE. Ahmed, S., Hossain, M. A., & Chowdhury, M. Z. (2014). On demand cell sectoring based fractional frequency reuse in wireless networks. In 2014 9th international forum on strategic technology (IFOST) (pp. 148–151). IEEE.
55.
go back to reference Miah, M. S., Schukat, M., & Barrett, E. (2020). Sensing and throughput analysis of a MU-MIMO based cognitive radio scheme for the Internet of Things. Computer. Communications. Miah, M. S., Schukat, M., & Barrett, E. (2020). Sensing and throughput analysis of a MU-MIMO based cognitive radio scheme for the Internet of Things. Computer. Communications.
56.
go back to reference Vishnu, J. B., & Bhagyaveni, M. A. (2020). Energy efficient cognitive radio sensor networks with team-based hybrid sensing. Wireless Personal Communications, 111(2), 929–945.CrossRef Vishnu, J. B., & Bhagyaveni, M. A. (2020). Energy efficient cognitive radio sensor networks with team-based hybrid sensing. Wireless Personal Communications, 111(2), 929–945.CrossRef
57.
go back to reference Miah, M., Ahmed, K. M., Islam, M., Mahmud, M., Raihan, A., Rahman, M., et al. (2020). Enhanced sensing and sum-rate analysis in a cognitive radio-based internet of things. Sensors, 20(9), 2525.CrossRef Miah, M., Ahmed, K. M., Islam, M., Mahmud, M., Raihan, A., Rahman, M., et al. (2020). Enhanced sensing and sum-rate analysis in a cognitive radio-based internet of things. Sensors, 20(9), 2525.CrossRef
Metadata
Title
Enhancing the Spectrum Sensing Performance of Cluster-Based Cooperative Cognitive Radio Networks via Sequential Multiple Reporting Channels
Authors
Mohammad Amzad Hossain
Michael Schukat
Enda Barrett
Publication date
14-09-2020
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 3/2021
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07802-4

Other articles of this Issue 3/2021

Wireless Personal Communications 3/2021 Go to the issue