Skip to main content
Erschienen in: Wireless Personal Communications 3/2016

01.02.2016

Modelling of Cooperative Spectrum Sensing over Rayleigh Fading Without CSI in Cognitive Radio Networks

Erschienen in: Wireless Personal Communications | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

It is proved that cooperation among secondary users (SUs) in a cognitive radio network (CRN) greatly improves the spectrum sensing performance. However, modelling and analysis of cooperative spectrum sensing in a CRN over fading channels is an important issue. This paper derives a new fusion rule based on likelihood ratio test which requires exact channel statistics instead of instantaneous channel state information. This scheme provides Neyman–Pearson criteria based optimal sensing while considering both sensing and reporting channels as independently Rayleigh faded. We derive closed form solutions for local probabilities of detection and false alarm by assuming that all SUs perform energy detection, which makes real-time computations simple. Further, closed form solutions for system-level performance are derived by considering that all SUs experience independent fading and statistically identical signal-to-noise ratios. Performance of the proposed cooperative sensing scheme has been evaluated both analytically and by simulations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
In this context, previously in [24], the LRT statistic has been derived with simple approximations by considering reporting channels as BSC/AWGN and sensing channels as Rayleigh. However, closed form expressions for system-level performance metrics and other insights have not been investigated.
 
Literatur
1.
Zurück zum Zitat Mitola, J., & Maguire, G. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.CrossRef Mitola, J., & Maguire, G. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.CrossRef
2.
Zurück zum Zitat Song, M., Xin, C., Zhao, Y., & Cheng, X. (2012). Dynamic spectrum access: From cognitive radio to network radio. IEEE Transactions on Wireless Communications, 19(1), 23–29.CrossRef Song, M., Xin, C., Zhao, Y., & Cheng, X. (2012). Dynamic spectrum access: From cognitive radio to network radio. IEEE Transactions on Wireless Communications, 19(1), 23–29.CrossRef
3.
Zurück zum Zitat Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.CrossRef Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.CrossRef
4.
Zurück zum Zitat Sahai, A., Hoven, N., & Tandra, R. (2004). Some fundamental limits on cognitive radio. In Proceedings of the Allerton conference on communications, control and computing. Sahai, A., Hoven, N., & Tandra, R. (2004). Some fundamental limits on cognitive radio. In Proceedings of the Allerton conference on communications, control and computing.
5.
Zurück zum Zitat Ma, J., Li, G., & Juang, B.-H. (2009). Signal processing in cognitive radio. Proceedings of the IEEE, 97(5), 805–823.CrossRef Ma, J., Li, G., & Juang, B.-H. (2009). Signal processing in cognitive radio. Proceedings of the IEEE, 97(5), 805–823.CrossRef
6.
Zurück zum Zitat Lunden, J., Koivunen, V., Huttunen, A., & Poor, H. (2009). Collaborative cyclostationary spectrum sensing for cognitive radio systems. IEEE Transactions on Signal Processing, 57(11), 4182–4195.MathSciNetCrossRef Lunden, J., Koivunen, V., Huttunen, A., & Poor, H. (2009). Collaborative cyclostationary spectrum sensing for cognitive radio systems. IEEE Transactions on Signal Processing, 57(11), 4182–4195.MathSciNetCrossRef
7.
Zurück zum Zitat Kortun, A., Ratnarajah, T., Sellathurai, M., Zhong, C., & Papadias, C. (2011). On the performance of eigenvalue-based cooperative spectrum sensing for cognitive radio. IEEE Journal of Selected Topics in Signal Processing, 5(1), 49–55.CrossRef Kortun, A., Ratnarajah, T., Sellathurai, M., Zhong, C., & Papadias, C. (2011). On the performance of eigenvalue-based cooperative spectrum sensing for cognitive radio. IEEE Journal of Selected Topics in Signal Processing, 5(1), 49–55.CrossRef
8.
Zurück zum Zitat Font-Segura, J., & Wang, X. (2010). GLRT-based spectrum sensing for cognitive radio with prior information. IEEE Transactions on Communications, 58(7), 2137–2146.CrossRef Font-Segura, J., & Wang, X. (2010). GLRT-based spectrum sensing for cognitive radio with prior information. IEEE Transactions on Communications, 58(7), 2137–2146.CrossRef
9.
Zurück zum Zitat Banerjee, T., & Veeravalli, V. V. (2014). Data-efficient quickest change detection with unknown post-change distribution. In Information theory (ISIT), 2014, IEEE international symposium on (pp. 741–745). Banerjee, T., & Veeravalli, V. V. (2014). Data-efficient quickest change detection with unknown post-change distribution. In Information theory (ISIT), 2014, IEEE international symposium on (pp. 741–745).
10.
Zurück zum Zitat Ganesan, G., & Li, Y. (2007). Cooperative spectrum sensing in cognitive radio, part I: Two user networks. IEEE Transactions on Wireless Communications, 6(6), 2204–2213.CrossRef Ganesan, G., & Li, Y. (2007). Cooperative spectrum sensing in cognitive radio, part I: Two user networks. IEEE Transactions on Wireless Communications, 6(6), 2204–2213.CrossRef
11.
Zurück zum Zitat Akyildiz, I. F., Brandon, F. L., & Balakrishnan, R. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication, Elsevier Journal on, 40–62. Akyildiz, I. F., Brandon, F. L., & Balakrishnan, R. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication, Elsevier Journal on, 40–62.
12.
Zurück zum Zitat Bera, D., Pathak, S., & Chakrabarti, I. A. (2012). Normal factor graph approach for co-operative spectrum sensing in cognitive radio. In National conference on communications (NCC), pp. 1–5. Bera, D., Pathak, S., & Chakrabarti, I. A. (2012). Normal factor graph approach for co-operative spectrum sensing in cognitive radio. In National conference on communications (NCC), pp. 1–5.
13.
Zurück zum Zitat Viswanathan, R., & Varshney, P. (1997). Distributed detection with multiple sensors: Part-I. Proceedings of the IEEE, 85(1), 54–63.CrossRef Viswanathan, R., & Varshney, P. (1997). Distributed detection with multiple sensors: Part-I. Proceedings of the IEEE, 85(1), 54–63.CrossRef
14.
Zurück zum Zitat Tsitsiklis, J. (1993). Decentralized detection. In Poor, H. V. & Thomas, J. B. (Eds.), Advances in statistical signal processing, signal detection (Vol. 2, pp. 297–344). Greenwitch, CT: JAI. Tsitsiklis, J. (1993). Decentralized detection. In Poor, H. V. & Thomas, J. B. (Eds.), Advances in statistical signal processing, signal detection (Vol. 2, pp. 297–344). Greenwitch, CT: JAI.
15.
Zurück zum Zitat Trees, H. L. V. (1968). Detection, estimation, and modulation theory (Vol. 1). New York: Wiley.MATH Trees, H. L. V. (1968). Detection, estimation, and modulation theory (Vol. 1). New York: Wiley.MATH
16.
Zurück zum Zitat Chair, Z., & Varshney, P. (1986). Optimal data fusion in multiple sensor detection systems. IEEE Transactions on Aerospace and Electronic Systems, AES–22(1), 98–101.CrossRef Chair, Z., & Varshney, P. (1986). Optimal data fusion in multiple sensor detection systems. IEEE Transactions on Aerospace and Electronic Systems, AES–22(1), 98–101.CrossRef
17.
Zurück zum Zitat Chen, B., Jiang, R., Kasetkasem, T., & Varshney, P. (2004). Channel aware decision fusion in wireless sensor networks. IEEE Transactions on Signal Processing, 52(12), 3454–3458.MathSciNetCrossRef Chen, B., Jiang, R., Kasetkasem, T., & Varshney, P. (2004). Channel aware decision fusion in wireless sensor networks. IEEE Transactions on Signal Processing, 52(12), 3454–3458.MathSciNetCrossRef
18.
Zurück zum Zitat Unnikrishnan, J., & Veeravalli, V. V. (2008). Cooperative sensing for primary detection in cognitive radio. IEEE Journal of Selected Topics in Signal Processing, 2(1), 18–27.CrossRef Unnikrishnan, J., & Veeravalli, V. V. (2008). Cooperative sensing for primary detection in cognitive radio. IEEE Journal of Selected Topics in Signal Processing, 2(1), 18–27.CrossRef
19.
Zurück zum Zitat Zhang, W., & Yeo, C. K. (2015). Cluster-based adaptive multispectrum sensing and access in cognitive radio networks. Wireless Communications and Mobile Computing, 15(1), 100–114.CrossRef Zhang, W., & Yeo, C. K. (2015). Cluster-based adaptive multispectrum sensing and access in cognitive radio networks. Wireless Communications and Mobile Computing, 15(1), 100–114.CrossRef
20.
Zurück zum Zitat Pratas, N., Marchetti, N., Prasad, N., Rodrigues, A., & Prasad, R. (2012). Performance evaluation of cooperative spectrum sensing scheme with censoring of cognitive radios in rayleigh fading channel. Wireless Personal Communications, 4(64), 93–106.CrossRef Pratas, N., Marchetti, N., Prasad, N., Rodrigues, A., & Prasad, R. (2012). Performance evaluation of cooperative spectrum sensing scheme with censoring of cognitive radios in rayleigh fading channel. Wireless Personal Communications, 4(64), 93–106.CrossRef
21.
Zurück zum Zitat Digham, F., Alouini, M.-S., & Simon, M. K. (2007). On the energy detection of unknown signals over fading channels. IEEE Transactions on Communications, 55(1), 21–24.CrossRef Digham, F., Alouini, M.-S., & Simon, M. K. (2007). On the energy detection of unknown signals over fading channels. IEEE Transactions on Communications, 55(1), 21–24.CrossRef
22.
Zurück zum Zitat Atapattu, S., Tellambura, C., & Jiang, H. (2011). Energy detection based cooperative spectrum sensing in cognitive radio networks. IEEE Transactions on Wireless Communications, 10(4), 1232–1241.CrossRef Atapattu, S., Tellambura, C., & Jiang, H. (2011). Energy detection based cooperative spectrum sensing in cognitive radio networks. IEEE Transactions on Wireless Communications, 10(4), 1232–1241.CrossRef
23.
Zurück zum Zitat Quan, Z., Cui, S., & Sayed, A. (2008). Optimal linear cooperation for spectrum sensing in cognitive radio networks. IEEE Journal of Selected Topics in Signal Processing, 2(1), 28–40.CrossRef Quan, Z., Cui, S., & Sayed, A. (2008). Optimal linear cooperation for spectrum sensing in cognitive radio networks. IEEE Journal of Selected Topics in Signal Processing, 2(1), 28–40.CrossRef
24.
Zurück zum Zitat Bera, D., Chakrabarti, I., Ray, P., Pathak, S. (2013). Factor graph based cooperative spectrum sensing in cognitive radio over time-varying channels. In IEEE 77th VTC(Spring) (pp. 1–5). Bera, D., Chakrabarti, I., Ray, P., Pathak, S. (2013). Factor graph based cooperative spectrum sensing in cognitive radio over time-varying channels. In IEEE 77th VTC(Spring) (pp. 1–5).
25.
Zurück zum Zitat Atapattu, S., Tellambura, C., & Jiang, H. (2014). Energy detection for spectrum sensing in cognitive radio. Adaptive Computation and Machine Learning Series. Springer. ISBN: 978-1-4939-0493-8 ed. Atapattu, S., Tellambura, C., & Jiang, H. (2014). Energy detection for spectrum sensing in cognitive radio. Adaptive Computation and Machine Learning Series. Springer. ISBN: 978-1-4939-0493-8 ed.
26.
Zurück zum Zitat Nallagonda, S., Dhar Roy, S., & Kundu, S. (2013). Performance evaluation of cooperative spectrum sensing scheme with censoring of cognitive radios in rayleigh fading channel. Wireless Personal Communications, 4(70), 1409–1424.CrossRef Nallagonda, S., Dhar Roy, S., & Kundu, S. (2013). Performance evaluation of cooperative spectrum sensing scheme with censoring of cognitive radios in rayleigh fading channel. Wireless Personal Communications, 4(70), 1409–1424.CrossRef
27.
Zurück zum Zitat Urkowitz, H. (1967). Energy detection of unknown deterministic signals. Proceedings of the IEEE, 55(4), 523–531.CrossRef Urkowitz, H. (1967). Energy detection of unknown deterministic signals. Proceedings of the IEEE, 55(4), 523–531.CrossRef
28.
Zurück zum Zitat Wang, S., Zhang, J., & Tong, L. (2010). Delay analysis for cognitive radio networks with random access: A fluid queue view. In INFOCOM, 2010 Proceedings IEEE (pp. 1–9). Wang, S., Zhang, J., & Tong, L. (2010). Delay analysis for cognitive radio networks with random access: A fluid queue view. In INFOCOM, 2010 Proceedings IEEE (pp. 1–9).
29.
Zurück zum Zitat Abramowitz, M., & Stegun, I. A. (1972). Handbook of mathematical functions. New York: Dover Publications.MATH Abramowitz, M., & Stegun, I. A. (1972). Handbook of mathematical functions. New York: Dover Publications.MATH
30.
Zurück zum Zitat Cacciapuoti, A., Akyildiz, I., & Paura, L. (2012). Correlation-aware user selection for cooperative spectrum sensing in cognitive radio ad hoc networks. IEEE Journal on Selected Areas in Communications, 30(2), 297–306.CrossRef Cacciapuoti, A., Akyildiz, I., & Paura, L. (2012). Correlation-aware user selection for cooperative spectrum sensing in cognitive radio ad hoc networks. IEEE Journal on Selected Areas in Communications, 30(2), 297–306.CrossRef
31.
Zurück zum Zitat Kay, S. M. (1998). Fundamentals of statistical signal processing: Detection theory (Vol. 2). Upper Saddle River: Prentice Hall. Kay, S. M. (1998). Fundamentals of statistical signal processing: Detection theory (Vol. 2). Upper Saddle River: Prentice Hall.
Metadaten
Titel
Modelling of Cooperative Spectrum Sensing over Rayleigh Fading Without CSI in Cognitive Radio Networks
Publikationsdatum
01.02.2016
Erschienen in
Wireless Personal Communications / Ausgabe 3/2016
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-015-2988-8

Weitere Artikel der Ausgabe 3/2016

Wireless Personal Communications 3/2016 Zur Ausgabe

Neuer Inhalt