Skip to main content
Top
Published in: Metallurgical and Materials Transactions A 3/2013

01-03-2013 | Symposium: Environmental Damage in Structural Materials under Static/Dynamic Loads at Ambient Temperature

Environmental Crack Driving Force

Author: M. M. Hall Jr.

Published in: Metallurgical and Materials Transactions A | Issue 3/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effect of environment on the crack driving force is considered, first by assuming quasistatic extension of a stationary crack and second, by use of stress corrosion cracking (SCC) crack growth rate models developed previously by this author and developed further here. A quasistatic thermodynamic energy balance approach, of the Griffith-Irwin type, is used to develop stationary crack threshold expressions, \( \tilde{J}_{\rm c} \), which represent the conjoint mechanical and electrochemical conditions, below which stationary cracks are stable. Expressions for the electrochemical crack driving force (CDF) were derived using an analysis that is analogous to that used by Irwin to derive his “strain energy release rate,” G, which Rice showed as being equivalent to his mechanical CDF, J. The derivations show that electrochemical CDFs both for active path dissolution (APD) and hydrogen embrittlement (HE) mechanisms of SCC are simply proportional to Tafel’s electrochemical anodic and cathodic overpotentials, η a and η c, respectively. Phenomenological SCC models based on the kinetics of APD and HE crack growth are used to derive expressions for the kinetic threshold, J scc, below which crack growth cannot be sustained. These models show how independent mechanical and environmental CDFs may act together to drive SCC crack advance. Development of a user-friendly computational tool for calculating Tafel’s overpotentials is advocated.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference A.K. Vasudevan, N.R. Moody, N.J.H. Holroyd and R.E. Ricker: Metall. Mater. Trans., 2011, vol. 42A, p. 249. A.K. Vasudevan, N.R. Moody, N.J.H. Holroyd and R.E. Ricker: Metall. Mater. Trans., 2011, vol. 42A, p. 249.
4.
go back to reference J.M. West: Basic Corrosion and Oxidation, Ellis Horwood Publishers, Wiley, New York, 1980, p. 153. J.M. West: Basic Corrosion and Oxidation, Ellis Horwood Publishers, Wiley, New York, 1980, p. 153.
6.
go back to reference J.A. Begley and J.D. Landes: Fracture Toughness, Proceedings of the 1971 National Symposium on Fracture Mechanics, Part II, ASTM STP 514, American Society for Testing and Materials, Philadelphia, 1972, pp. 1–20. J.A. Begley and J.D. Landes: Fracture Toughness, Proceedings of the 1971 National Symposium on Fracture Mechanics, Part II, ASTM STP 514, American Society for Testing and Materials, Philadelphia, 1972, pp. 1–20.
7.
go back to reference A.A. Griffith: Philos. Trans. A, 1920, vol. A221, pp. 163-98. A.A. Griffith: Philos. Trans. A, 1920, vol. A221, pp. 163-98.
8.
go back to reference G.R. Irwin: Sagamore Research Conference Proceedings, 1956, vol. 2, pp. 289–305. G.R. Irwin: Sagamore Research Conference Proceedings, 1956, vol. 2, pp. 289–305.
9.
go back to reference J.R. Rice: in Proceedings of 1st International Conference on Fracture, Sendi, Tokyo, T. Yokobori, T. Kawasaki, and J.L. Swedlow, eds., Japanese Society for Strength and Fracture of Materials, Tokyo, 1966, pp. 309–40. J.R. Rice: in Proceedings of 1st International Conference on Fracture, Sendi, Tokyo, T. Yokobori, T. Kawasaki, and J.L. Swedlow, eds., Japanese Society for Strength and Fracture of Materials, Tokyo, 1966, pp. 309–40.
10.
go back to reference G. Elssner, D. Korn and M. Ruhle: Scripta Metall. Mater., 1994, vol. 31, pp. 1037-42.CrossRef G. Elssner, D. Korn and M. Ruhle: Scripta Metall. Mater., 1994, vol. 31, pp. 1037-42.CrossRef
11.
go back to reference M.L. Jokl, V. Vitek and C.J. McMahon: Acta Metall., 1980, vol. 28, pp. 1479–88.CrossRef M.L. Jokl, V. Vitek and C.J. McMahon: Acta Metall., 1980, vol. 28, pp. 1479–88.CrossRef
12.
go back to reference P. Novak, R. Yuan, B.P. Somerday, P. Sofronis, R.O. Ritchie: J. Mech. Phys. Solids, 2010, vol. 58, pp. 206–26.CrossRef P. Novak, R. Yuan, B.P. Somerday, P. Sofronis, R.O. Ritchie: J. Mech. Phys. Solids, 2010, vol. 58, pp. 206–26.CrossRef
13.
go back to reference J. Tafel: Z. Phys. Chem., 1905, vol. 50, pp. 641-712. J. Tafel: Z. Phys. Chem., 1905, vol. 50, pp. 641-712.
17.
go back to reference D.A. Jones: Principals and Prevention of Corrosion, 2nd ed., Prentice Hall, Upper Saddle River, NJ, 1996. D.A. Jones: Principals and Prevention of Corrosion, 2nd ed., Prentice Hall, Upper Saddle River, NJ, 1996.
18.
go back to reference T.L. Anderson: Fracture Mechanics, 3rd ed., Taylor and Francis, Boca Raton, FL, 2005. T.L. Anderson: Fracture Mechanics, 3rd ed., Taylor and Francis, Boca Raton, FL, 2005.
20.
21.
go back to reference M.M. Hall, Jr.: in Environment-Induced Cracking of Materials, S. Shipilov, R. Jones, J. Olive, and R. Rebak, eds., Elsevier, Amsterdam, 2008, pp. 59–68. M.M. Hall, Jr.: in Environment-Induced Cracking of Materials, S. Shipilov, R. Jones, J. Olive, and R. Rebak, eds., Elsevier, Amsterdam, 2008, pp. 59–68.
22.
go back to reference W. Ramberg and W.R. Osgood: Technical Note No. 902, National Advisory Committee for Aeronautics, Washington DC, 1943. W. Ramberg and W.R. Osgood: Technical Note No. 902, National Advisory Committee for Aeronautics, Washington DC, 1943.
23.
go back to reference H. Tanaka, T. Yamada, E. Sato, I. Jimbo: Scripta Mater., 2006, vol. 54, pp. 121-24.CrossRef H. Tanaka, T. Yamada, E. Sato, I. Jimbo: Scripta Mater., 2006, vol. 54, pp. 121-24.CrossRef
24.
26.
go back to reference M.M. Hall, Jr., D.M. Symons, and J.J. Kearns: in Parkins Symposium on Fundamental Aspects of Stress Corrosion Cracking, S.M. Bruemmer, E.I. Meletis, R.H. Jones., W.W. Gerberich, F.P. Ford, and R.W. Staehle, eds., The Minerals, Metals & Materials Society, Warrendale, PA, 1992, pp. 231–44. M.M. Hall, Jr., D.M. Symons, and J.J. Kearns: in Parkins Symposium on Fundamental Aspects of Stress Corrosion Cracking, S.M. Bruemmer, E.I. Meletis, R.H. Jones., W.W. Gerberich, F.P. Ford, and R.W. Staehle, eds., The Minerals, Metals & Materials Society, Warrendale, PA, 1992, pp. 231–44.
28.
go back to reference M.M. Hall, Jr. and D.M. Symons: in Chemistry and Electrochemistry of Stress Corrosion Cracking, R.H. Jones, ed., The Minerals, Metals and Materials Society, Warrendale, PA, 2001, pp. 447–66. M.M. Hall, Jr. and D.M. Symons: in Chemistry and Electrochemistry of Stress Corrosion Cracking, R.H. Jones, ed., The Minerals, Metals and Materials Society, Warrendale, PA, 2001, pp. 447–66.
29.
31.
go back to reference T. McMullen, M.J. Stott and E. Zaremba: Philos. Mag. A, 1989, vol. 59, pp. 161-70.CrossRef T. McMullen, M.J. Stott and E. Zaremba: Philos. Mag. A, 1989, vol. 59, pp. 161-70.CrossRef
32.
go back to reference J.R. Rice, W.J. Drugan, and T.-L. Sham: in Fracture Mechanics, Twelth Conference, ASTM STP 700, American Society for Testing and Materials, Philadelphia, 1980, pp. 189–221. J.R. Rice, W.J. Drugan, and T.-L. Sham: in Fracture Mechanics, Twelth Conference, ASTM STP 700, American Society for Testing and Materials, Philadelphia, 1980, pp. 189–221.
33.
go back to reference W. Dietzel and K.H. Schwalbe: in Hydrogen Effects on Material Behavior, N.R. Moody and A.W. Thompson, eds., The Minerals, Metal & Material Society, Warrendale, 1990, pp. 975–83. W. Dietzel and K.H. Schwalbe: in Hydrogen Effects on Material Behavior, N.R. Moody and A.W. Thompson, eds., The Minerals, Metal & Material Society, Warrendale, 1990, pp. 975–83.
36.
go back to reference J.R. Rice: in Effect of Hydrogen on Behavior of Materials, A.M. Thompson and I.M. Berstein, eds., TMS-AIME, New York, 1976, pp. 455–66. J.R. Rice: in Effect of Hydrogen on Behavior of Materials, A.M. Thompson and I.M. Berstein, eds., TMS-AIME, New York, 1976, pp. 455–66.
37.
go back to reference J.P. Hirth and J.R. Rice: Metall. Trans A, 1975, vol. 11A, pp. 1501-11. J.P. Hirth and J.R. Rice: Metall. Trans A, 1975, vol. 11A, pp. 1501-11.
38.
go back to reference M. Dadfarnia, P. Sofronis, B.P. Somerday, J.B. Liu, D.D. Johnson, and I.M. Robertson: in Effect of Hydrogen on Behavior of Materials, B. Somerday. P. Sofronis, and R. Jones, eds., ASM International, Metals Park, 2009, pp. 613–20. M. Dadfarnia, P. Sofronis, B.P. Somerday, J.B. Liu, D.D. Johnson, and I.M. Robertson: in Effect of Hydrogen on Behavior of Materials, B. Somerday. P. Sofronis, and R. Jones, eds., ASM International, Metals Park, 2009, pp. 613–20.
39.
go back to reference Y. Mishin, P. Sofronis and J.L. Bassani: Acta Mater., 2002, vol. 50, pp. 3609-22.CrossRef Y. Mishin, P. Sofronis and J.L. Bassani: Acta Mater., 2002, vol. 50, pp. 3609-22.CrossRef
40.
go back to reference B.F. Brown, C.T. Fujii, E.P. Dahlberg: J. Electrochem. Soc., 1969, vol. 116, pp. 218–19.CrossRef B.F. Brown, C.T. Fujii, E.P. Dahlberg: J. Electrochem. Soc., 1969, vol. 116, pp. 218–19.CrossRef
42.
go back to reference J. O’M. Bockris and P.K. Subramanyan: Electrochim. Acta, 1971, vol. 16, pp. 2169–79. J. O’M. Bockris and P.K. Subramanyan: Electrochim. Acta, 1971, vol. 16, pp. 2169–79.
43.
Metadata
Title
Environmental Crack Driving Force
Author
M. M. Hall Jr.
Publication date
01-03-2013
Publisher
Springer US
Published in
Metallurgical and Materials Transactions A / Issue 3/2013
Print ISSN: 1073-5623
Electronic ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-012-1439-3

Other articles of this Issue 3/2013

Metallurgical and Materials Transactions A 3/2013 Go to the issue

Symposium: Environmental Damage in Structural Materials under Static/Dynamic Loads at Ambient Temperature

Fatigue Crack Growth Analysis Under Spectrum Loading in Various Environmental Conditions

Symposium: Environmental Damage in Structural Materials under Static/Dynamic Loads at Ambient Temperature

Stress Corrosion Cracking in Al-Zn-Mg-Cu Aluminum Alloys in Saline Environments

Symposium: Environmental Damage in Structural Materials under Static/Dynamic Loads at Ambient Temperature

Environmental Crack Growth Behavior Affected by Thickness/Geometry Constraint

Premium Partners