Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 2/2011

01.02.2011 | Symposium: International Symposium on Stress Corrosion Cracking in Structural Materials

Effect of Variable Stress Intensity Factor on Hydrogen Environment Assisted Cracking

verfasst von: M.M. Hall Jr

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 2/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fitness-for-service evaluations of engineered components that are subject to environment assisted cracking (EAC) often require analyses of potentially large crack extensions through regions of variable stress intensity. However, there are few EAC data and models that directly address the effects of variable stress intensity factor on EAC crack growth. The model developed here is used to evaluate stress corrosion cracking (SCC) data that were obtained on a high-strength beta-titanium alloy under conditions of variable crack mouth opening displacement (CMOD) rate. SCC of this Ti alloy in ambient temperature, near-neutral NaCl aqueous solution is thought to be due to hydrogen environment assisted cracking (HEAC). As the model equations developed here do not admit to a closed form solution for crack velocity as a function of applied stress intensity factor, K, a semiquantitative graphical solution is used to rationalize the crack growth data. The analyses support a previous suggestion that the observed crack growth rate behavior can be attributed to the effect of crack tip strain rate on rates of mechanical disruption and repair of an otherwise protective crack tip oxide film. Model elements introduced here to HEAC modeling include (1) an expression relating corrosion-active surface area to crack tip strain rate and repassivation rate, (2) an expression relating the critical grain boundary hydrogen to the applied stress intensity factor, and (3) an expression relating CTSR to both applied and crack advance strain rate components. Intergranular crack advance is modeled assuming diffusive segregation of corrosion-generated hydrogen to grain boundary trap sites causing embrittlement of the fracture process zone (FPZ). The model equations developed here provide a quantitative basis for understanding the physical significance of K-variation effects and, with additional development, will provide an engineering tool for analysis of crack growth in a variable K field.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J.D. Landis and R.P. Wei: Int. J. Fract., 1973, vol. 9, pp. 277–93.CrossRef J.D. Landis and R.P. Wei: Int. J. Fract., 1973, vol. 9, pp. 277–93.CrossRef
2.
Zurück zum Zitat S.J. Hudak, Jr. and R.P. Wei: Int. J. Pres. Ves. Pip., 1981, vol. 9, pp. 63–74.CrossRef S.J. Hudak, Jr. and R.P. Wei: Int. J. Pres. Ves. Pip., 1981, vol. 9, pp. 63–74.CrossRef
3.
Zurück zum Zitat E. Smith: Res Mechanica, 1983, vol. 9, pp. 237–47 E. Smith: Res Mechanica, 1983, vol. 9, pp. 237–47
4.
Zurück zum Zitat J. Blaine, J. Masounave, and J.I. Dickson: Corr. Sci., 1984, vol. 24, pp. 1–12.CrossRef J. Blaine, J. Masounave, and J.I. Dickson: Corr. Sci., 1984, vol. 24, pp. 1–12.CrossRef
5.
6.
7.
Zurück zum Zitat M. M. Hall, Jr. and D.M. Symons: Chemistry and Electrochemistry of Stress Corrosion Cracking: A Symposium Honoring the Contributions of R.W. Staehle, R.H. Jones, ed., TMS, Warrendale, PA, 2001, pp. 447–66. M. M. Hall, Jr. and D.M. Symons: Chemistry and Electrochemistry of Stress Corrosion Cracking: A Symposium Honoring the Contributions of R.W. Staehle, R.H. Jones, ed., TMS, Warrendale, PA, 2001, pp. 447–66.
9.
Zurück zum Zitat D.G. Kolman and J.R. Scully: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 2645–56.CrossRef D.G. Kolman and J.R. Scully: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 2645–56.CrossRef
10.
Zurück zum Zitat M.A. Gaudett and J.R. Scully: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 65–79.CrossRef M.A. Gaudett and J.R. Scully: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 65–79.CrossRef
11.
Zurück zum Zitat M.A. Gaudett and J.R. Scully: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 81–92.CrossRef M.A. Gaudett and J.R. Scully: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 81–92.CrossRef
12.
Zurück zum Zitat B.P. Somerday, L.M. Young, and R.P. Gangloff: Fatigue Fract. Eng. Mater. Struct., 2000, vol. 23, pp. 39–58.CrossRef B.P. Somerday, L.M. Young, and R.P. Gangloff: Fatigue Fract. Eng. Mater. Struct., 2000, vol. 23, pp. 39–58.CrossRef
13.
Zurück zum Zitat B.P. Somerday: Ph.D. Dissertation, University of Virginia, Charlottesville, VA, 1997. B.P. Somerday: Ph.D. Dissertation, University of Virginia, Charlottesville, VA, 1997.
14.
Zurück zum Zitat B.P. Somerday, A.W. Wilson, J.M. Howe, and R.P. Gangloff: University of Virginia, Charlottesville, VA, unpublished research, 2004. B.P. Somerday, A.W. Wilson, J.M. Howe, and R.P. Gangloff: University of Virginia, Charlottesville, VA, unpublished research, 2004.
15.
Zurück zum Zitat R.P. Gangloff: in Environment-Induced Cracking of Materials, Volume 1: Chemistry, Mechanics and Mechanisms, S.A. Shipilov, R.H. Jones, J.-M. Olive, and R.B. Reback, eds., Elsevier, Oxford, United Kingdom, 2007, pp. 141–65. R.P. Gangloff: in Environment-Induced Cracking of Materials, Volume 1: Chemistry, Mechanics and Mechanisms, S.A. Shipilov, R.H. Jones, J.-M. Olive, and R.B. Reback, eds., Elsevier, Oxford, United Kingdom, 2007, pp. 141–65.
16.
Zurück zum Zitat D.A. Meyn and P.S. Pao: in Slow Strain Rate Testing for the Evaluation of Environmentally Induced Cracking: Research and Engineering Applications, R.D. Kane, ed., ASTM STP 1210, ASTM, Philadelphia, PA, 1993, pp. 158–69.CrossRef D.A. Meyn and P.S. Pao: in Slow Strain Rate Testing for the Evaluation of Environmentally Induced Cracking: Research and Engineering Applications, R.D. Kane, ed., ASTM STP 1210, ASTM, Philadelphia, PA, 1993, pp. 158–69.CrossRef
17.
Zurück zum Zitat T.W. Webb and D.A. Meyn: in Fracture Mechanics 26th Volume, W.G. Reuter, J.H. Underwood, and J.C. Newman, eds., ASTM STP 1256, ASTM, Philadelphia, PA, 1995, pp. 698–712.CrossRef T.W. Webb and D.A. Meyn: in Fracture Mechanics 26th Volume, W.G. Reuter, J.H. Underwood, and J.C. Newman, eds., ASTM STP 1256, ASTM, Philadelphia, PA, 1995, pp. 698–712.CrossRef
18.
Zurück zum Zitat P.L. Andresen and M.M. Morra: Proc. 12th Int. Conf. on Environmental Degradation in Nuclear Power Systems–Water Reactors, Skamania Lodge, L. Nelson and P. King, eds., The Metallurgical Society, Warrendale, PA, 2005, pp. 167–81. P.L. Andresen and M.M. Morra: Proc. 12th Int. Conf. on Environmental Degradation in Nuclear Power Systems–Water Reactors, Skamania Lodge, L. Nelson and P. King, eds., The Metallurgical Society, Warrendale, PA, 2005, pp. 167–81.
19.
Zurück zum Zitat P.L. Andresen and M.M. Morra: Physica Scripta, 2003, vol. T103, pp. 11–14.CrossRef P.L. Andresen and M.M. Morra: Physica Scripta, 2003, vol. T103, pp. 11–14.CrossRef
21.
Zurück zum Zitat D. Kato, H. Iwakiri, and K. Morishita: J. Plasma Fus. Res. Ser., 2009, vol. 8, pp. 404–07. D. Kato, H. Iwakiri, and K. Morishita: J. Plasma Fus. Res. Ser., 2009, vol. 8, pp. 404–07.
22.
Zurück zum Zitat Q.Z. Chen, G.H. Zhou, Y.Z. Huang, and W.Y. Chu: J. Mater. Sci., 1998, vol. 33, pp. 4813–19.CrossRef Q.Z. Chen, G.H. Zhou, Y.Z. Huang, and W.Y. Chu: J. Mater. Sci., 1998, vol. 33, pp. 4813–19.CrossRef
24.
Zurück zum Zitat M.M. Hall Jr., D.M. Symons, and J.J. Kearns: Proc. Parkins Symp. on Fundamental Aspects of Stress Corrosion Cracking, S.M. Bruemmer, E.I. Meletis, R.H. Jones, W.W. Gerberich, F.P. Ford, and R.W. Staehle, eds., TMS, Warrendale, PA, 1992, pp. 231–44. M.M. Hall Jr., D.M. Symons, and J.J. Kearns: Proc. Parkins Symp. on Fundamental Aspects of Stress Corrosion Cracking, S.M. Bruemmer, E.I. Meletis, R.H. Jones, W.W. Gerberich, F.P. Ford, and R.W. Staehle, eds., TMS, Warrendale, PA, 1992, pp. 231–44.
25.
Zurück zum Zitat T.L. Anderson: Fracture Mechanics, Fundamentals and Applications, CRC Press, Boca Raton, FL, 2005. T.L. Anderson: Fracture Mechanics, Fundamentals and Applications, CRC Press, Boca Raton, FL, 2005.
26.
Zurück zum Zitat H.K. Birnbaum, I.M. Robertson, P. Sofronis, and D. Teter: 2nd Int. Conf. on Corrosion-Deformation Interactions, T. Magnin, ed., Institute of Materials, London, 1997, pp. 172–95. H.K. Birnbaum, I.M. Robertson, P. Sofronis, and D. Teter: 2nd Int. Conf. on Corrosion-Deformation Interactions, T. Magnin, ed., Institute of Materials, London, 1997, pp. 172–95.
27.
29.
Zurück zum Zitat A. McNabb and P.K. Foster: Trans. AIME, 1963, vol. 227, pp. 618–27. A. McNabb and P.K. Foster: Trans. AIME, 1963, vol. 227, pp. 618–27.
30.
Zurück zum Zitat P. Sofronis and R.M. McMeeking: J. Mech. Phys. Solids, 1989, vol. 37, pp. 317–50.CrossRef P. Sofronis and R.M. McMeeking: J. Mech. Phys. Solids, 1989, vol. 37, pp. 317–50.CrossRef
31.
Zurück zum Zitat A.H.M. Krom, R.W. Koers, and A. Bakker: J. Mech. Phys. Solids, 1999, vol. 47, pp. 971–92.CrossRef A.H.M. Krom, R.W. Koers, and A. Bakker: J. Mech. Phys. Solids, 1999, vol. 47, pp. 971–92.CrossRef
32.
Zurück zum Zitat H. Kanayama, S. Ndong-Mefane, M. Ogino, and R. Miresmaeili: Reconsideration of Hydrogen Diffusion Model Using The McNabb–Foster Formulation, Memoirs of the Faculty of Engineering, Kyushu University, Fukuoka City, Fukuoka, Japan, 2009, vol. 69, pp. 149–61. H. Kanayama, S. Ndong-Mefane, M. Ogino, and R. Miresmaeili: Reconsideration of Hydrogen Diffusion Model Using The McNabb–Foster Formulation, Memoirs of the Faculty of Engineering, Kyushu University, Fukuoka City, Fukuoka, Japan, 2009, vol. 69, pp. 149–61.
33.
34.
35.
Zurück zum Zitat G.A. Young, Jr. and J.R. Scully: Corrosion, 1994, vol. 50, pp. 919–33.CrossRef G.A. Young, Jr. and J.R. Scully: Corrosion, 1994, vol. 50, pp. 919–33.CrossRef
36.
Zurück zum Zitat W.W. Gerberich, T. Livne, and X. Chen: in A Transient Model for Subcritical Cracking in Bcc Alloys, R.H. Jones and W.W. Gerberich, eds., TMS-AIME, Warrendale, PA, 1986, pp. 243–58. W.W. Gerberich, T. Livne, and X. Chen: in A Transient Model for Subcritical Cracking in Bcc Alloys, R.H. Jones and W.W. Gerberich, eds., TMS-AIME, Warrendale, PA, 1986, pp. 243–58.
37.
Zurück zum Zitat J. Lufrano and P. Sofronis: Acta Mater., 1998, vol. 46, pp. 1519–26.CrossRef J. Lufrano and P. Sofronis: Acta Mater., 1998, vol. 46, pp. 1519–26.CrossRef
38.
39.
Zurück zum Zitat R.P. Gangloff: in Hydrogen Effects on Material Behavior and Corrosion Deformation Interactions, N.R. Moody, A.W. Thompson, R. E. Ricker, G.W. Was, and R.H. Jones, eds., TMS, Warrendale, PA, 2003, pp. 477–97. R.P. Gangloff: in Hydrogen Effects on Material Behavior and Corrosion Deformation Interactions, N.R. Moody, A.W. Thompson, R. E. Ricker, G.W. Was, and R.H. Jones, eds., TMS, Warrendale, PA, 2003, pp. 477–97.
40.
Zurück zum Zitat D.G. Kolman, M.A. Gaudett, and J.R. Scully: J. Electrochem. Soc., 1998, vol. 145, pp. 1829–40.CrossRef D.G. Kolman, M.A. Gaudett, and J.R. Scully: J. Electrochem. Soc., 1998, vol. 145, pp. 1829–40.CrossRef
41.
Zurück zum Zitat W.Y. Choo and J.Y. Lee: Metall. Trans. A, 1982, vol. 13A, pp. 135–40. W.Y. Choo and J.Y. Lee: Metall. Trans. A, 1982, vol. 13A, pp. 135–40.
42.
Zurück zum Zitat J.E. Angelo, N.R. Moody, and M.I. Baskes: Modell. Simul. Mater. Sci. Eng., 1995, vol. 3, pp. 289–307.CrossRef J.E. Angelo, N.R. Moody, and M.I. Baskes: Modell. Simul. Mater. Sci. Eng., 1995, vol. 3, pp. 289–307.CrossRef
43.
Zurück zum Zitat L.M. Young: Ph.D. Dissertation, University of Virginia, Charlottesville, VA, 1999. L.M. Young: Ph.D. Dissertation, University of Virginia, Charlottesville, VA, 1999.
44.
Zurück zum Zitat D. Kato, H. Iwakiri, and K. Morishita: J. Plasma Fus. Res., 2009, vol. 8, pp. 404–07. D. Kato, H. Iwakiri, and K. Morishita: J. Plasma Fus. Res., 2009, vol. 8, pp. 404–07.
45.
Zurück zum Zitat G.S. Frankel and R.M. Latanision: Metall. Trans. A, 1986, vol. 17A, pp. 861–67. A G.S. Frankel and R.M. Latanision: Metall. Trans. A, 1986, vol. 17A, pp. 861–67. A
46.
Zurück zum Zitat Y. Huang, A. Nakajima, A. Nishikata, and T. Tsura: ISIJ Int., 2003, vol. 43, pp. 548–54.CrossRef Y. Huang, A. Nakajima, A. Nishikata, and T. Tsura: ISIJ Int., 2003, vol. 43, pp. 548–54.CrossRef
47.
Zurück zum Zitat A.H.M. Krom and A. Bakker: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 1475–82.CrossRef A.H.M. Krom and A. Bakker: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 1475–82.CrossRef
48.
Zurück zum Zitat K.R. Cooper and R.G. Kelly: Corr. Sci., 2007, vol. 49, pp. 2636–62.CrossRef K.R. Cooper and R.G. Kelly: Corr. Sci., 2007, vol. 49, pp. 2636–62.CrossRef
Metadaten
Titel
Effect of Variable Stress Intensity Factor on Hydrogen Environment Assisted Cracking
verfasst von
M.M. Hall Jr
Publikationsdatum
01.02.2011
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 2/2011
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-010-0226-2

Weitere Artikel der Ausgabe 2/2011

Metallurgical and Materials Transactions A 2/2011 Zur Ausgabe

Symposium: International Symposium on Stress Corrosion Cracking in Structural Materials

A Nanoscale Study of Dislocation Nucleation at the Crack Tip in the Nickel-Hydrogen System

Symposium: International Symposium on Stress Corrosion Cracking in Structural Materials

Role of Slip Mode on Stress Corrosion Cracking Behavior

Symposium: International Symposium on Stress Corrosion Cracking in Structural Materials

Review of Environmentally Assisted Cracking

Symposium: International Symposium on Stress Corrosion Cracking in Structural Materials

Observation and Modeling of Stress Corrosion Cracking in High Pressure Gas Pipe Steel

Symposium: International Symposium on Stress Corrosion Cracking in Structural Materials

The Use of Atomic Force Microscopy to Study Crack Tips in Glass

Symposium: International Symposium on Stress Corrosion Cracking in Structural Materials

Role of Viscosity on Capillary Flow and Stress Corrosion Cracking Behavior

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.