Skip to main content
Top
Published in: Microsystem Technologies 4-5/2014

01-04-2014 | Technical Paper

Evaluation of low-acceleration MEMS piezoelectric energy harvesting devices

Authors: Nathan Jackson, Rosemary O’Keeffe, Finbarr Waldron, Mike O’Neill, Alan Mathewson

Published in: Microsystem Technologies | Issue 4-5/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Microelectromechanical systems-based piezoelectric energy harvesting device research is continuing to increase due to high demands in powering wireless sensor networks. This paper compares three different cantilever structures that have been the most widely used designs in MEMS energy harvesting devices. The cantilever structures consist of a wide beam, narrow beam, and trapezoidal beam structure. Aluminium nitride was used as the piezoelectric material because of its CMOS compatibility. Finite element modelling was used to investigate the theoretical outputs of the devices prior to fabrication. The three different structures were fabricated using standard micro-fabrication techniques on SOI wafers in order to verify the results experimentally. The finite element modelling results agree with the experimental results. The AlN deposited on the experimental wafers had a (002) FWHM rocking curve value of 1.7°. The power density based on the volume of space needed to fabricate the structures was 2.5, 0.78, and 0.65 mW/cm3/g2 at resonant frequency for the wide, trapezoidal, and narrow beam structures respectively. The bandwidth of the devices is also an important parameter when selecting the cantilever structure. An array of the cantilevers over a 4 cm2 area resulted in a bandwidth of was 4.8, 9, and 26.4 Hz for the wide, trapezoidal, and narrow beam structures respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Akiyama M, Nagao K, Ueno N, Tateyama H, Yamada T (2004) Influence of metal electrodes on crystal orientation of aluminium nitride thin films. Vacuum 74:699–703CrossRef Akiyama M, Nagao K, Ueno N, Tateyama H, Yamada T (2004) Influence of metal electrodes on crystal orientation of aluminium nitride thin films. Vacuum 74:699–703CrossRef
go back to reference Andosca R, McDonald T, Genova V, Rosenberg S, Keating J, Benedixen C, Wu J (2012) Experimental and theoretical studies on MEMS piezoelectric vibrational energy harvesters with mass loading. Sens Actuators A 178:76–87CrossRef Andosca R, McDonald T, Genova V, Rosenberg S, Keating J, Benedixen C, Wu J (2012) Experimental and theoretical studies on MEMS piezoelectric vibrational energy harvesters with mass loading. Sens Actuators A 178:76–87CrossRef
go back to reference Anton S, Sodano H (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16:R1CrossRef Anton S, Sodano H (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16:R1CrossRef
go back to reference Artieda A, Barbieri M, Sandu C, Muralt P (2009) Effect of substrate roughness on c-oriented AlN thin films. J Appl Phys 105:024504CrossRef Artieda A, Barbieri M, Sandu C, Muralt P (2009) Effect of substrate roughness on c-oriented AlN thin films. J Appl Phys 105:024504CrossRef
go back to reference Badel A, Guyomar D, Lefeuvre E, Richard C (2005) Efficiency enhancement of piezoelectric energy harvesting device in pulsed operation by synchronous charge inversion. J Intell Mater Syst Struct 16:889–901CrossRef Badel A, Guyomar D, Lefeuvre E, Richard C (2005) Efficiency enhancement of piezoelectric energy harvesting device in pulsed operation by synchronous charge inversion. J Intell Mater Syst Struct 16:889–901CrossRef
go back to reference Beeby S, Tudor J, White N (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17:R175CrossRef Beeby S, Tudor J, White N (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17:R175CrossRef
go back to reference Benasciutti D, Moro L, Zelenika S, Brusa E (2010) Vibration energy scavenging via piezoelectric bimorphs of optimized shapes. Microsyst Technol 16:657–668CrossRef Benasciutti D, Moro L, Zelenika S, Brusa E (2010) Vibration energy scavenging via piezoelectric bimorphs of optimized shapes. Microsyst Technol 16:657–668CrossRef
go back to reference Choi W, Jeon Y, Jeong J, Sood R, Kim S (2006) Energy harvesting MEMS device based on thin film piezoelectric cantilevers. J Electroceram 17:543–548CrossRef Choi W, Jeon Y, Jeong J, Sood R, Kim S (2006) Energy harvesting MEMS device based on thin film piezoelectric cantilevers. J Electroceram 17:543–548CrossRef
go back to reference Doll J, Petzold B, Ninan B, Mullapudi R, Pruitt B (2010) Aluminium nitride on titanium for CMOS compatible piezoelectric transducer. J Micromech Microeng 20:1–8 Doll J, Petzold B, Ninan B, Mullapudi R, Pruitt B (2010) Aluminium nitride on titanium for CMOS compatible piezoelectric transducer. J Micromech Microeng 20:1–8
go back to reference Elfrink R, Kamel T, Goedbloed M, Matova S, Hohlfed D, van Andel Y, van Schaijk R (2009) Vibration energy harvesting with aluminium nitride-based piezoelectric devices. J Micromech Microeng 19:1–8CrossRef Elfrink R, Kamel T, Goedbloed M, Matova S, Hohlfed D, van Andel Y, van Schaijk R (2009) Vibration energy harvesting with aluminium nitride-based piezoelectric devices. J Micromech Microeng 19:1–8CrossRef
go back to reference Feng G, Hung J (2008) Development of wide frequency range-operated micromachined piezoelectric generators based on figure of merit analysis. Microsyst Technol 14:419–425CrossRef Feng G, Hung J (2008) Development of wide frequency range-operated micromachined piezoelectric generators based on figure of merit analysis. Microsyst Technol 14:419–425CrossRef
go back to reference Goldschmidtboeing F, Woias P (2008) Characterization of different beam shapes for piezoelectric energy harvesting. J Micromech Microeng 18:104013CrossRef Goldschmidtboeing F, Woias P (2008) Characterization of different beam shapes for piezoelectric energy harvesting. J Micromech Microeng 18:104013CrossRef
go back to reference Hervas A, Vergara L, Olivares J, Iborra E, Morilla Y, Garcia-Lopez J, Clement M, Sangrador J, Respaldiza M (2005) Comparative study of c-axis AlN films sputtered on metallic surfaces. Diam Relat Mater 14:1198–1202CrossRef Hervas A, Vergara L, Olivares J, Iborra E, Morilla Y, Garcia-Lopez J, Clement M, Sangrador J, Respaldiza M (2005) Comparative study of c-axis AlN films sputtered on metallic surfaces. Diam Relat Mater 14:1198–1202CrossRef
go back to reference Jackson N, O’Keeffe R, O’Leary R, O’Neill M, Waldron F, Mathewson A (2012) A diaphragm based piezoelectric AlN film quality test structure. In: EEE International Conference on Microelectronic Test Structures (ICMTS), San Diego, pp 50–54 Jackson N, O’Keeffe R, O’Leary R, O’Neill M, Waldron F, Mathewson A (2012) A diaphragm based piezoelectric AlN film quality test structure. In: EEE International Conference on Microelectronic Test Structures (ICMTS), San Diego, pp 50–54
go back to reference Jackson N, Keeney L, Mathewson A (2013a) Flexible-CMOS and biocompatible piezoelectric AlN material for MEMS applications. Smart Mater Struct 22:115033 Jackson N, Keeney L, Mathewson A (2013a) Flexible-CMOS and biocompatible piezoelectric AlN material for MEMS applications. Smart Mater Struct 22:115033
go back to reference Jackson N, O’Keeffe R, O’Neill M, Waldron F, Mathewson A (2013b) CMOS compatible low-frequency aluminium nitride MEMS piezoelectric energy harvesting device. In: SPIE Microtechnologies, Grenoble, France, pp 876311–876317 Jackson N, O’Keeffe R, O’Neill M, Waldron F, Mathewson A (2013b) CMOS compatible low-frequency aluminium nitride MEMS piezoelectric energy harvesting device. In: SPIE Microtechnologies, Grenoble, France, pp 876311–876317
go back to reference Jackson N, O’Keeffe R, Waldron F, O’Neill M, Mathewson A (2013c) Influence of aluminium nitride crystal orientation on MEMS energy harvesting device performance. J Micromech Microeng 23(7):075014 Jackson N, O’Keeffe R, Waldron F, O’Neill M, Mathewson A (2013c) Influence of aluminium nitride crystal orientation on MEMS energy harvesting device performance. J Micromech Microeng 23(7):075014
go back to reference Kamohara T, Akiyama M, Ueno N, Nonaka K, Kuwano N (2007) Influence of aluminium nitride interlayers on crystal orientation and piezoelectric property of aluminium nitride thin films prepared on titanium electrodes. Thin Solid Films 515:4565–4569CrossRef Kamohara T, Akiyama M, Ueno N, Nonaka K, Kuwano N (2007) Influence of aluminium nitride interlayers on crystal orientation and piezoelectric property of aluminium nitride thin films prepared on titanium electrodes. Thin Solid Films 515:4565–4569CrossRef
go back to reference Kamohara T, Akiyama M, Kuwano N (2008) Influence of molybdenum bottom electrodes on crystal growth of aluminium nitride thin films. J Cryst Growth 310:345–350CrossRef Kamohara T, Akiyama M, Kuwano N (2008) Influence of molybdenum bottom electrodes on crystal growth of aluminium nitride thin films. J Cryst Growth 310:345–350CrossRef
go back to reference Komai K, Minoshima K, Inoue S (1998) Fracture and fatigue behaviour of single crystal silicon microelements and nanoscopic AFM damage evaluation. Microsyst Technol 5:30–37CrossRef Komai K, Minoshima K, Inoue S (1998) Fracture and fatigue behaviour of single crystal silicon microelements and nanoscopic AFM damage evaluation. Microsyst Technol 5:30–37CrossRef
go back to reference Liu J, Fang H, Xu Z, Mao X, Shen X, Chen D, Liao H, Cai B (2008) A MEMS-based piezoelectric power generator array for vibration energy harvesting. Microelectron J 39:802–806CrossRef Liu J, Fang H, Xu Z, Mao X, Shen X, Chen D, Liao H, Cai B (2008) A MEMS-based piezoelectric power generator array for vibration energy harvesting. Microelectron J 39:802–806CrossRef
go back to reference Magno M, Jackson N, Mathewson A, Benini L, Popovici E (2013) Combination of hybrid energy harvesters with MEMS piezoelectric and nano-Watt radio wake up to extend lifetime of system for wireless sensor nodes. In: International conference on ARCS Magno M, Jackson N, Mathewson A, Benini L, Popovici E (2013) Combination of hybrid energy harvesters with MEMS piezoelectric and nano-Watt radio wake up to extend lifetime of system for wireless sensor nodes. In: International conference on ARCS
go back to reference Marzencki M, Ammar Y, Basrour S (2008) Integrated power harvesting system including a MEMS generator and a power management circuit. Sens Actuators A 145:363–370CrossRef Marzencki M, Ammar Y, Basrour S (2008) Integrated power harvesting system including a MEMS generator and a power management circuit. Sens Actuators A 145:363–370CrossRef
go back to reference Muhlstein C, Brown S, Ritchie R (2001) High-cycle fatigue of single-crystal silicon thin films. J Microelectromech Syst 10(4):593–600CrossRef Muhlstein C, Brown S, Ritchie R (2001) High-cycle fatigue of single-crystal silicon thin films. J Microelectromech Syst 10(4):593–600CrossRef
go back to reference O’Keeffe R, Jackson N, Waldron F, O’Neill M, McCarthy K, Mathewson A (2013) Investigation into modelling power output for MEMS energy harvesting devices using COMSOL multiphysics. In: EuroSim O’Keeffe R, Jackson N, Waldron F, O’Neill M, McCarthy K, Mathewson A (2013) Investigation into modelling power output for MEMS energy harvesting devices using COMSOL multiphysics. In: EuroSim
go back to reference Petersen K (1982) Silicon as a mechanical material. Proc IEEE 70(5):420–457CrossRef Petersen K (1982) Silicon as a mechanical material. Proc IEEE 70(5):420–457CrossRef
go back to reference Reilly E, Burghardt F, Fain R, Wright P (2011) Powering a wireless sensor node with a vibration-driven piezoelectric energy harvester. Smart Mater Struct 20:125006CrossRef Reilly E, Burghardt F, Fain R, Wright P (2011) Powering a wireless sensor node with a vibration-driven piezoelectric energy harvester. Smart Mater Struct 20:125006CrossRef
go back to reference Roundy S, Wright P, Rabaey J (2003) A study of low level vibrations as a power source for wireless sensor nodes. Comput Commun 26(11):1131–1144CrossRef Roundy S, Wright P, Rabaey J (2003) A study of low level vibrations as a power source for wireless sensor nodes. Comput Commun 26(11):1131–1144CrossRef
go back to reference Roundy S, Leland E, Baker J, Carleton E, Reilly E, Lai E, Otis B, Rabaey J, Wright P, Sundararajan V (2005) Improving power output for vibration-based energy scavengers. Energy Harvest Conserv 4:28–36 Roundy S, Leland E, Baker J, Carleton E, Reilly E, Lai E, Otis B, Rabaey J, Wright P, Sundararajan V (2005) Improving power output for vibration-based energy scavengers. Energy Harvest Conserv 4:28–36
go back to reference Saadon S, Othman S (2011) A review of vibration-based MEMS piezoelectric energy harvesters. Energy Convers Manage 52(1):500–504CrossRef Saadon S, Othman S (2011) A review of vibration-based MEMS piezoelectric energy harvesters. Energy Convers Manage 52(1):500–504CrossRef
go back to reference Sanz-Hervas A, Vergara L, Olivares J, Iborra E, Morilla Y, Garcia-Lopez J, Clement M, Sangrador J, Respaldiza M (2005) Comparative study of c-axis AlN films sputtered on metallic surfaces. Diam Relat Mater 14:1198–1202CrossRef Sanz-Hervas A, Vergara L, Olivares J, Iborra E, Morilla Y, Garcia-Lopez J, Clement M, Sangrador J, Respaldiza M (2005) Comparative study of c-axis AlN films sputtered on metallic surfaces. Diam Relat Mater 14:1198–1202CrossRef
go back to reference Shen D, Park J, Ajitsaria J, Choe S, Wikle H, Kim D (2008) The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting. J Micromech Microeng 18:055017CrossRef Shen D, Park J, Ajitsaria J, Choe S, Wikle H, Kim D (2008) The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting. J Micromech Microeng 18:055017CrossRef
go back to reference Sodano H, Inman D, Park G (2005) Generation and storage of electricity from power harvesting devices. J Intell Mater Syst Struct 16:67–75CrossRef Sodano H, Inman D, Park G (2005) Generation and storage of electricity from power harvesting devices. J Intell Mater Syst Struct 16:67–75CrossRef
go back to reference Tang L, Yang Y, Soh C (2010) Toward broadband vibration-based energy harvesting. J Intell Mater Syst Struct 21(18):1867–1897CrossRef Tang L, Yang Y, Soh C (2010) Toward broadband vibration-based energy harvesting. J Intell Mater Syst Struct 21(18):1867–1897CrossRef
go back to reference Xiong J, Gu H, Hu K, Hu M (2010) Influence of substrate metals on crystal growth of AlN films. Int J Miner Metall Mater 17:98–103CrossRef Xiong J, Gu H, Hu K, Hu M (2010) Influence of substrate metals on crystal growth of AlN films. Int J Miner Metall Mater 17:98–103CrossRef
go back to reference Yen T, Hirasawa T, Wright P, Pisano A, Lin L (2011) Corrugated aluminium nitride energy harvesters for high energy conversion effectiveness. J Micromech Microeng 21:085037CrossRef Yen T, Hirasawa T, Wright P, Pisano A, Lin L (2011) Corrugated aluminium nitride energy harvesters for high energy conversion effectiveness. J Micromech Microeng 21:085037CrossRef
Metadata
Title
Evaluation of low-acceleration MEMS piezoelectric energy harvesting devices
Authors
Nathan Jackson
Rosemary O’Keeffe
Finbarr Waldron
Mike O’Neill
Alan Mathewson
Publication date
01-04-2014
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 4-5/2014
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-013-2006-6

Other articles of this Issue 4-5/2014

Microsystem Technologies 4-5/2014 Go to the issue