Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 2/2019

17-11-2018

Evaluation of thermoacoustics parameters of CoFe2O4–ethylene glycol nanofluid using ultrasonic velocity technique

Authors: Prashant B. Kharat, Apparao R. Chavan, Ashok V. Humbe, K. M. Jadhav

Published in: Journal of Materials Science: Materials in Electronics | Issue 2/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Chemical co-precipitation method was employed to synthesize cobalt ferrite (CoFe2O4) nanoparticles and to prepare stable nanofluids. The cobalt ferrite nanoparticles and the prepared nanofluids were characterized further for their structural, morphological, elemental, magnetic properties and dispersion stability in order to explore various properties. It shows the prepared CoFe2O4 nanoparticles of spinel structured and 11 nm superparamagnetic, spherical in nature. Finally, CoFe2O4 nanoparticles were dispersed in the ethylene glycol to prepare magnetic nanofluid in various concentrations (0.2%, 0.4%, 0.6%, 0.8%, and 1% by volume). The prepared nanofluids showed highly stable of more than 8 days for 0.2 vol%. The thermo-acoustic studies were carried out at different temperatures ranging from 20 to 80 °C of the nanofluids. Thermo-acoustical properties such as ultrasonic velocity (U), acoustic impedance (Z), adiabatic compressibility (β), bulk modulus (K), ultrasonic attenuation (α), relaxation time (τ), and intermolecular free length (Lf) were estimated and examined in the present work. The thermo-acoustic studies of magnetic nanofluids elaborate deeper understanding of particle–fluid, particle–particle interactions as functions of concentration, temperature. In addition, the paper is intended to formulate a relationship between thermo-acoustic properties and concentration of CoFe2O4 in nanofluids, which would be of great importance to the nanofluids.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H. Chiam, W. Azmi, N. Usri, R. Mamat, N. Adam, Thermal conductivity and viscosity of Al2O3 nanofluids for different based ratio of water and ethylene glycol mixture. Exp. Therm. Fluid Sci. 81, 420–429 (2017)CrossRef H. Chiam, W. Azmi, N. Usri, R. Mamat, N. Adam, Thermal conductivity and viscosity of Al2O3 nanofluids for different based ratio of water and ethylene glycol mixture. Exp. Therm. Fluid Sci. 81, 420–429 (2017)CrossRef
2.
go back to reference L.J. Felicia, S. Vinod, J. Philip, Recent advances in magnetorheology of ferrofluids (magnetic nanofluids)—a critical review. J. Nanofluids 5, 1–22 (2016)CrossRef L.J. Felicia, S. Vinod, J. Philip, Recent advances in magnetorheology of ferrofluids (magnetic nanofluids)—a critical review. J. Nanofluids 5, 1–22 (2016)CrossRef
3.
go back to reference A. Chiolerio, M.B. Quadrelli, Smart fluid systems: the advent of autonomous liquid robotics. Adv. Sci. 4, 1700036 (2017)CrossRef A. Chiolerio, M.B. Quadrelli, Smart fluid systems: the advent of autonomous liquid robotics. Adv. Sci. 4, 1700036 (2017)CrossRef
4.
go back to reference I. Nkurikiyimfura, Y. Wang, Z. Pan, Heat transfer enhancement by magnetic nanofluids—a review. Renew. Sustain. Energy Rev. 21, 548–561 (2013)CrossRef I. Nkurikiyimfura, Y. Wang, Z. Pan, Heat transfer enhancement by magnetic nanofluids—a review. Renew. Sustain. Energy Rev. 21, 548–561 (2013)CrossRef
5.
go back to reference R. Saidur, K. Leong, H. Mohammad, A review on applications and challenges of nanofluids. Renew. Sustain. Energy Rev. 15, 1646–1668 (2011)CrossRef R. Saidur, K. Leong, H. Mohammad, A review on applications and challenges of nanofluids. Renew. Sustain. Energy Rev. 15, 1646–1668 (2011)CrossRef
7.
go back to reference L. Godson, B. Raja, D.M. Lal, S. Wongwises, Enhancement of heat transfer using nanofluids—an overview. Renew. Sustain. Energy Rev. 14, 629–641 (2010)CrossRef L. Godson, B. Raja, D.M. Lal, S. Wongwises, Enhancement of heat transfer using nanofluids—an overview. Renew. Sustain. Energy Rev. 14, 629–641 (2010)CrossRef
8.
go back to reference D. Jiles, Introduction to Magnetism and Magnetic Materials. (CRC Press, Boca Raton, 2015) D. Jiles, Introduction to Magnetism and Magnetic Materials. (CRC Press, Boca Raton, 2015)
9.
go back to reference M. Shisode, P.B. Kharat, D.N. Bhoyar, V. Vinayak, M. Babrekar, K. Jadhav, Structural and multiferroic properties of Ba2+ doped BiFeO3 nanoparticles synthesized via sol-gel method. AIP Conf. Proc. 1953, 030276 (2018)CrossRef M. Shisode, P.B. Kharat, D.N. Bhoyar, V. Vinayak, M. Babrekar, K. Jadhav, Structural and multiferroic properties of Ba2+ doped BiFeO3 nanoparticles synthesized via sol-gel method. AIP Conf. Proc. 1953, 030276 (2018)CrossRef
10.
go back to reference S.B. Kale, S.B. Somvanshi, M. Sarnaik, S. More, S. Shukla, K. Jadhav, Enhancement in surface area and magnetization of CoFe2O4 nanoparticles for targeted drug delivery application. AIP Conf. Proc. 1953, 030193 (2018)CrossRef S.B. Kale, S.B. Somvanshi, M. Sarnaik, S. More, S. Shukla, K. Jadhav, Enhancement in surface area and magnetization of CoFe2O4 nanoparticles for targeted drug delivery application. AIP Conf. Proc. 1953, 030193 (2018)CrossRef
11.
go back to reference G. Kale, A.V. Humbe, P. Kharat, D. Bhoyar, K. Jadhav, Tartaric acid a novel fuel approach: synthesis and characterization of CoFe2O4 nano particles. Bionano Front. 8, 146–148 (2015) G. Kale, A.V. Humbe, P. Kharat, D. Bhoyar, K. Jadhav, Tartaric acid a novel fuel approach: synthesis and characterization of CoFe2O4 nano particles. Bionano Front. 8, 146–148 (2015)
12.
go back to reference A. López-Ortega, E. Lottini, C.d.J. Fernandez, C. Sangregorio, Exploring the magnetic properties of cobalt-ferrite nanoparticles for the development of a rare-earth-free permanent magnet. Chem. Mater. 27, 4048–4056 (2015)CrossRef A. López-Ortega, E. Lottini, C.d.J. Fernandez, C. Sangregorio, Exploring the magnetic properties of cobalt-ferrite nanoparticles for the development of a rare-earth-free permanent magnet. Chem. Mater. 27, 4048–4056 (2015)CrossRef
13.
go back to reference J.S. Kounsalye, P.B. Kharat, M.V. Shisode, K. Jadhav, Influence of Ti4+ ion substitution on structural, electrical and dielectric properties of Li0.5Fe2.5O4 nanoparticles. J. Mater. Sci.: Mater. Electron. 28, 17254–17261 (2017) J.S. Kounsalye, P.B. Kharat, M.V. Shisode, K. Jadhav, Influence of Ti4+ ion substitution on structural, electrical and dielectric properties of Li0.5Fe2.5O4 nanoparticles. J. Mater. Sci.: Mater. Electron. 28, 17254–17261 (2017)
14.
go back to reference S. More, R. Kadam, A. Kadam, A. Shite, D. Mane, K. Jadhav, Cation distribution in nanocrystalline Al3+ and Cr3+ co-substituted CoFe2O4. J. Alloys Compd. 502, 477–479 (2010)CrossRef S. More, R. Kadam, A. Kadam, A. Shite, D. Mane, K. Jadhav, Cation distribution in nanocrystalline Al3+ and Cr3+ co-substituted CoFe2O4. J. Alloys Compd. 502, 477–479 (2010)CrossRef
15.
go back to reference A.V. Humbe, J.S. Kounsalye, M.V. Shisode, K. Jadhav, Rietveld refinement, morphology and superparamagnetism of nanocrystalline Ni0.70–xCuxZn0.30Fe2O4 spinel ferrite. Ceram. Int. 44, 5466–5472 (2018)CrossRef A.V. Humbe, J.S. Kounsalye, M.V. Shisode, K. Jadhav, Rietveld refinement, morphology and superparamagnetism of nanocrystalline Ni0.70–xCuxZn0.30Fe2O4 spinel ferrite. Ceram. Int. 44, 5466–5472 (2018)CrossRef
16.
go back to reference A. Raut, D. Kurmude, S. Jadhav, D. Shengule, K. Jadhav, Effect of 100 kGy γ-irradiation on the structural, electrical and magnetic properties of CoFe2O4 NPs. J. Alloys Compd. 676, 326–336 (2016)CrossRef A. Raut, D. Kurmude, S. Jadhav, D. Shengule, K. Jadhav, Effect of 100 kGy γ-irradiation on the structural, electrical and magnetic properties of CoFe2O4 NPs. J. Alloys Compd. 676, 326–336 (2016)CrossRef
17.
go back to reference R. Shu, G. Zhang, J. Zhang, X. Wang, M. Wang, Y. Gan, J. Shi, J. He, Fabrication of reduced graphene oxide/multi-walled carbon nanotubes/zinc ferrite hybrid composites as high-performance microwave absorbers. J. Alloys Compd. 736, 1–11 (2018)CrossRef R. Shu, G. Zhang, J. Zhang, X. Wang, M. Wang, Y. Gan, J. Shi, J. He, Fabrication of reduced graphene oxide/multi-walled carbon nanotubes/zinc ferrite hybrid composites as high-performance microwave absorbers. J. Alloys Compd. 736, 1–11 (2018)CrossRef
18.
go back to reference B. Nafradi, E. Horvath, L. Forro, Magnetic-photoconductive material, magneto-optical data storage device, magneto-optical data storage system, and light-tunable microwave components comprising a photoconductive-ferromagnetic device, in, Google Patents, 2018 B. Nafradi, E. Horvath, L. Forro, Magnetic-photoconductive material, magneto-optical data storage device, magneto-optical data storage system, and light-tunable microwave components comprising a photoconductive-ferromagnetic device, in, Google Patents, 2018
20.
go back to reference D.R. Karana, R.R. Sahoo, Effect on TEG performance for waste heat recovery of automobiles using MgO and ZnO nanofluid coolants. Case Stud. Therm. Eng. 12, 358–364 (2018)CrossRef D.R. Karana, R.R. Sahoo, Effect on TEG performance for waste heat recovery of automobiles using MgO and ZnO nanofluid coolants. Case Stud. Therm. Eng. 12, 358–364 (2018)CrossRef
22.
go back to reference C. Qi, N. Zhao, X. Cui, T. Chen, J. Hu, Effects of half spherical bulges on heat transfer characteristics of CPU cooled by TiO2-water nanofluids. Int. J. Heat Mass Transf. 123, 320–330 (2018)CrossRef C. Qi, N. Zhao, X. Cui, T. Chen, J. Hu, Effects of half spherical bulges on heat transfer characteristics of CPU cooled by TiO2-water nanofluids. Int. J. Heat Mass Transf. 123, 320–330 (2018)CrossRef
23.
go back to reference I. Zakaria, W. Mohamed, W. Azmi, A. Mamat, R. Mamat, W. Daud, Thermo-electrical performance of PEM fuel cell using Al2O3 nanofluids. Int. J. Heat Mass Transf. 119, 460–471 (2018)CrossRef I. Zakaria, W. Mohamed, W. Azmi, A. Mamat, R. Mamat, W. Daud, Thermo-electrical performance of PEM fuel cell using Al2O3 nanofluids. Int. J. Heat Mass Transf. 119, 460–471 (2018)CrossRef
24.
go back to reference N.K. Gupta, A.K. Tiwari, S.K. Ghosh, Heat transfer mechanisms in heat pipes using nanofluids—a review. Exp. Therm. Fluid Sci. 90, 84–100 (2018)CrossRef N.K. Gupta, A.K. Tiwari, S.K. Ghosh, Heat transfer mechanisms in heat pipes using nanofluids—a review. Exp. Therm. Fluid Sci. 90, 84–100 (2018)CrossRef
25.
go back to reference M. Siavashi, H.R.T. Bahrami, E. Aminian, Optimization of heat transfer enhancement and pumping power of a heat exchanger tube using nanofluid with gradient and multi-layered porous foams. Appl. Therm. Eng. 138, 465–474 (2018)CrossRef M. Siavashi, H.R.T. Bahrami, E. Aminian, Optimization of heat transfer enhancement and pumping power of a heat exchanger tube using nanofluid with gradient and multi-layered porous foams. Appl. Therm. Eng. 138, 465–474 (2018)CrossRef
26.
go back to reference S.M. Jafari, F. Saramnejad, D. Dehnad, Designing and application of a shell and tube heat exchanger for nanofluid thermal processing of liquid food products. J. Food Process Eng. 41, e12658 (2018)CrossRef S.M. Jafari, F. Saramnejad, D. Dehnad, Designing and application of a shell and tube heat exchanger for nanofluid thermal processing of liquid food products. J. Food Process Eng. 41, e12658 (2018)CrossRef
27.
go back to reference M.H. Esfe, S. Esfandeh, Investigation of rheological behavior of hybrid oil based nanolubricant-coolant applied in car engines and cooling equipments. Appl. Therm. Eng. 131, 1026–1033 (2018)CrossRef M.H. Esfe, S. Esfandeh, Investigation of rheological behavior of hybrid oil based nanolubricant-coolant applied in car engines and cooling equipments. Appl. Therm. Eng. 131, 1026–1033 (2018)CrossRef
28.
go back to reference P.D. Tagle-Salazar, K. Nigam, C.I. Rivera-Solorio, Heat transfer model for thermal performance analysis of parabolic trough solar collectors using nanofluids. Renew. Energy 125, 334–343 (2018)CrossRef P.D. Tagle-Salazar, K. Nigam, C.I. Rivera-Solorio, Heat transfer model for thermal performance analysis of parabolic trough solar collectors using nanofluids. Renew. Energy 125, 334–343 (2018)CrossRef
29.
go back to reference S. Akilu, A.T. Baheta, M.A.M. Said, A.A. Minea, K. Sharma, Properties of glycerol and ethylene glycol mixture based SiO2-CuO/C hybrid nanofluid for enhanced solar energy transport. Sol. Energy Mater. Sol. Cells 179, 118–128 (2018)CrossRef S. Akilu, A.T. Baheta, M.A.M. Said, A.A. Minea, K. Sharma, Properties of glycerol and ethylene glycol mixture based SiO2-CuO/C hybrid nanofluid for enhanced solar energy transport. Sol. Energy Mater. Sol. Cells 179, 118–128 (2018)CrossRef
30.
go back to reference M.N. Rashin, J. Hemalatha, Magnetic and ultrasonic investigations on magnetite nanofluids. Ultrasonics 52, 1024–1029 (2012)CrossRef M.N. Rashin, J. Hemalatha, Magnetic and ultrasonic investigations on magnetite nanofluids. Ultrasonics 52, 1024–1029 (2012)CrossRef
31.
go back to reference M.N. Rashin, J. Hemalatha, A novel ultrasonic approach to determine thermal conductivity in CuO–ethylene glycol nanofluids. J. Mol. Liq. 197, 257–262 (2014)CrossRef M.N. Rashin, J. Hemalatha, A novel ultrasonic approach to determine thermal conductivity in CuO–ethylene glycol nanofluids. J. Mol. Liq. 197, 257–262 (2014)CrossRef
32.
go back to reference M.N. Rashin, J. Hemalatha, Viscosity studies on novel copper oxide–coconut oil nanofluid. Exp. Therm. Fluid Sci. 48, 67–72 (2013)CrossRef M.N. Rashin, J. Hemalatha, Viscosity studies on novel copper oxide–coconut oil nanofluid. Exp. Therm. Fluid Sci. 48, 67–72 (2013)CrossRef
33.
go back to reference K. Anu, J. Hemalatha, Ultrasonic and magnetic investigations of the molecular interactions in zinc doped magnetite nanofluids. J. Mol. Liq. 256, 213–223 (2018)CrossRef K. Anu, J. Hemalatha, Ultrasonic and magnetic investigations of the molecular interactions in zinc doped magnetite nanofluids. J. Mol. Liq. 256, 213–223 (2018)CrossRef
35.
go back to reference P.B. Kharat, M. Shisode, S. Birajdar, D. Bhoyar, K. Jadhav, Synthesis and characterization of water based NiFe2O4 ferrofluid. AIP Conf. Proc. 1832, 050122 (2017)CrossRef P.B. Kharat, M. Shisode, S. Birajdar, D. Bhoyar, K. Jadhav, Synthesis and characterization of water based NiFe2O4 ferrofluid. AIP Conf. Proc. 1832, 050122 (2017)CrossRef
36.
go back to reference P.B. Kharat, A.V.H. JSK, S.D. Birajdar, K. Jadhav, Preparation and diverse properties of cobalt ferrite ferrofluid. Int. J. Adv. Res. Basic Appl. Sci. 2, 106–109 (2017) P.B. Kharat, A.V.H. JSK, S.D. Birajdar, K. Jadhav, Preparation and diverse properties of cobalt ferrite ferrofluid. Int. J. Adv. Res. Basic Appl. Sci. 2, 106–109 ​(2017)
37.
go back to reference T. Kavitha, T. Vasantha, P. Venkatesu, R.R. Devi, T. Hofman, Thermophysical properties for the mixed solvents of N-methyl-2-pyrrolidone with some of the imidazolium-based ionic liquids. J. Mol. Liq. 198, 11–20 (2014)CrossRef T. Kavitha, T. Vasantha, P. Venkatesu, R.R. Devi, T. Hofman, Thermophysical properties for the mixed solvents of N-methyl-2-pyrrolidone with some of the imidazolium-based ionic liquids. J. Mol. Liq. 198, 11–20 (2014)CrossRef
38.
go back to reference P.B. Kharat, S.B. Somvanshi, J.S. Kounsalye, S.S. Deshmukh, P.P. Khirade, K. Jadhav, Temperature dependent viscosity of cobalt ferrite/ethylene glycol ferrofluids. AIP Conf. Proc. 1942, 050044 (2018)CrossRef P.B. Kharat, S.B. Somvanshi, J.S. Kounsalye, S.S. Deshmukh, P.P. Khirade, K. Jadhav, Temperature dependent viscosity of cobalt ferrite/ethylene glycol ferrofluids. AIP Conf. Proc. 1942, 050044 (2018)CrossRef
39.
go back to reference J.S. Kounsalye, P.B. Kharat, A.R. Chavan, A.V. Humbe, R. Borade, K. Jadhav, Symmetry transition via tetravalent impurity and investigations on magnetic properties of Li0.5Fe2.5O4. AIP Conf. Proc. 1942, 050067 (2018)CrossRef J.S. Kounsalye, P.B. Kharat, A.R. Chavan, A.V. Humbe, R. Borade, K. Jadhav, Symmetry transition via tetravalent impurity and investigations on magnetic properties of Li0.5Fe2.5O4. AIP Conf. Proc. 1942, 050067 (2018)CrossRef
40.
go back to reference J.S. Kounsalye, P.B. Kharat, D.N. Bhoyar, K. Jadhav, Radiation-induced modifications in structural, electrical and dielectric properties of Ti4+ ions substituted Li0.5Fe2.5O4 nanoparticles. J. Mater. Sci.: Mater. Electron. 29, 8601–8609 (2018) J.S. Kounsalye, P.B. Kharat, D.N. Bhoyar, K. Jadhav, Radiation-induced modifications in structural, electrical and dielectric properties of Ti4+ ions substituted Li0.5Fe2.5O4 nanoparticles. J. Mater. Sci.: Mater. Electron. 29, 8601–8609 (2018)
41.
go back to reference R. Zhang, L. Sun, Z. Wang, W. Hao, E. Cao, Y. Zhang, Dielectric and magnetic properties of CoFe2O4 prepared by sol-gel auto-combustion method. Mater. Res. Bull. 98, 133–138 (2018)CrossRef R. Zhang, L. Sun, Z. Wang, W. Hao, E. Cao, Y. Zhang, Dielectric and magnetic properties of CoFe2O4 prepared by sol-gel auto-combustion method. Mater. Res. Bull. 98, 133–138 (2018)CrossRef
42.
go back to reference N. Daffé, F. Choueikani, S. Neveu, M.-A. Arrio, A. Juhin, P. Ohresser, V. Dupuis, P. Sainctavit, Magnetic anisotropies and cationic distribution in CoFe2O4 nanoparticles prepared by co-precipitation route: influence of particle size and stoichiometry. J. Magn. Magn. Mater. 460, 243–252 (2018)CrossRef N. Daffé, F. Choueikani, S. Neveu, M.-A. Arrio, A. Juhin, P. Ohresser, V. Dupuis, P. Sainctavit, Magnetic anisotropies and cationic distribution in CoFe2O4 nanoparticles prepared by co-precipitation route: influence of particle size and stoichiometry. J. Magn. Magn. Mater. 460, 243–252 (2018)CrossRef
43.
go back to reference K.F. Herzfeld, T.A. Litovitz, Absorption and Dispersion of Ultrasonic Waves. (Academic Press, Cambridge, 2013) K.F. Herzfeld, T.A. Litovitz, Absorption and Dispersion of Ultrasonic Waves. (Academic Press, Cambridge, 2013)
44.
go back to reference W. Azmi, K.A. Hamid, R. Mamat, K. Sharma, M. Mohamad, Effects of working temperature on thermo-physical properties and forced convection heat transfer of TiO2 nanofluids in water–ethylene glycol mixture. Appl. Therm. Eng. 106, 1190–1199 (2016)CrossRef W. Azmi, K.A. Hamid, R. Mamat, K. Sharma, M. Mohamad, Effects of working temperature on thermo-physical properties and forced convection heat transfer of TiO2 nanofluids in water–ethylene glycol mixture. Appl. Therm. Eng. 106, 1190–1199 (2016)CrossRef
45.
go back to reference P. Shima, J. Philip, B. Raj, Synthesis of aqueous and nonaqueous iron oxide nanofluids and study of temperature dependence on thermal conductivity and viscosity. J. Phys. Chem. C 114, 18825–18833 (2010)CrossRef P. Shima, J. Philip, B. Raj, Synthesis of aqueous and nonaqueous iron oxide nanofluids and study of temperature dependence on thermal conductivity and viscosity. J. Phys. Chem. C 114, 18825–18833 (2010)CrossRef
46.
go back to reference L. Schmid, A. Wixforth, D.A. Weitz, T. Franke, Novel surface acoustic wave (SAW)-driven closed PDMS flow chamber. Microfluid. Nanofluid. 12, 229–235 (2012)CrossRef L. Schmid, A. Wixforth, D.A. Weitz, T. Franke, Novel surface acoustic wave (SAW)-driven closed PDMS flow chamber. Microfluid. Nanofluid. 12, 229–235 (2012)CrossRef
47.
go back to reference F. Franks, Water a Comprehensive Treatise: Aqueous Solutions of Amphiphiles and Macromolecules, vol. 4 (Springer, Berlin, 2013) F. Franks, Water a Comprehensive Treatise: Aqueous Solutions of Amphiphiles and Macromolecules, vol. 4 (Springer, Berlin, 2013)
48.
go back to reference R.A. Mahdi, H. Mohammed, K. Munisamy, N. Saeid, Review of convection heat transfer and fluid flow in porous media with nanofluid. Renew. Sustain. Energy Rev. 41, 715–734 (2015)CrossRef R.A. Mahdi, H. Mohammed, K. Munisamy, N. Saeid, Review of convection heat transfer and fluid flow in porous media with nanofluid. Renew. Sustain. Energy Rev. 41, 715–734 (2015)CrossRef
49.
go back to reference B. Raj, J. Philip, K. Rajkumar, P. Kalyanasundaram, Effect of magnetic field on ultrasonic velocity in a magnetic nanofluid. Proc.-Indian Natl. Sci. Acad. 72, 145 (2006) B. Raj, J. Philip, K. Rajkumar, P. Kalyanasundaram, Effect of magnetic field on ultrasonic velocity in a magnetic nanofluid. Proc.-Indian Natl. Sci. Acad. 72, 145 (2006)
50.
go back to reference D. Pandey, S. Pandey, Ultrasonics: A Technique of Material Characterization in: Acoustic Waves. (InTech, London, 2010) D. Pandey, S. Pandey, Ultrasonics: A Technique of Material Characterization in: Acoustic Waves. (InTech, London, 2010)
51.
go back to reference F. Kremer, A. Schönhals, The Scaling of the Dynamics of Glasses and Supercooled Liquids (Springer, New York, 2002) F. Kremer, A. Schönhals, The Scaling of the Dynamics of Glasses and Supercooled Liquids (Springer, New York, 2002)
52.
go back to reference M. Leena, S. Srinivasan, Synthesis and ultrasonic investigations of titanium oxide nanofluids. J. Mol. Liq. 206, 103–109 (2015)CrossRef M. Leena, S. Srinivasan, Synthesis and ultrasonic investigations of titanium oxide nanofluids. J. Mol. Liq. 206, 103–109 (2015)CrossRef
Metadata
Title
Evaluation of thermoacoustics parameters of CoFe2O4–ethylene glycol nanofluid using ultrasonic velocity technique
Authors
Prashant B. Kharat
Apparao R. Chavan
Ashok V. Humbe
K. M. Jadhav
Publication date
17-11-2018
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 2/2019
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-0386-1

Other articles of this Issue 2/2019

Journal of Materials Science: Materials in Electronics 2/2019 Go to the issue